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Eco-Evolutionary Dynamics of a Population with Randomly Switching Carrying Capacity
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Environmental variability greatly influences the eco-evolutionary dynamics of a population, i.e. it affects how

its size and composition evolve. Here, we study a well-mixed population of finite and fluctuating size whose

growth is limited by a randomly switching carrying capacity. This models the environmental fluctuations be-

tween states of resources abundance and scarcity. The population consists of two strains, one growing slightly

faster than the other, competing under two scenarios: one in which competition is solely for resources, and

one in which the slow (“cooperating”) strain produces a public good that benefits also the fast (“freeriding”)

strain. We investigate how the coupling of demographic and environmental (external) noise affects the popula-

tion’s eco-evolutionary dynamics. By analytical and computational means, we study the correlations between

the population size and its composition, and discuss the social-dilemma-like “eco-evolutionary game” charac-

terizing the public good production. We determine in what conditions it is best to produce a public good; when

cooperating is beneficial but outcompeted by freeriding, and when the public good production is detrimental for

cooperators. Within a linear noise approximation to populations of varying size, we also accurately analyze the

coupled effects of demographic and environmental noise on the size distribution.

Keywords: population dynamics, evolution, ecology, fluctuations, cooperation dilemma, public goods

I. INTRODUCTION

The fate of populations is affected by a number of endlessly

changing environmental conditions such as the presence of

toxins, resources abundance, temperature, light, etc. [1, 2].

In the absence of detailed knowledge of how external fac-

tors vary, they are modeled as external noise (EN) shaping

the randomly changing environment in which species evolve.

The impact of fluctuating environments on population dynam-

ics has been studied in a number of systems [3–14], and sev-

eral evolutionary responses to exogenous changes have been

analyzed [15–21]. In finite populations, internal noise is an-

other important form of randomness, yielding demographic

fluctuations of stronger intensity in small populations than in

large ones. Internal noise (IN) is responsible for fixation [22–

24] (when one species takes over and others are wiped out)

and thus plays an important role in the evolution of a pop-

ulation’s composition. Ecological and evolutionary dynam-

ics are often coupled, through an interdependent evolution of

the population size and composition [25–31]. As a conse-

quence, environmental variability may affect the population

size and hence the demographic fluctuations intensity, thus

coupling EN and IN. The interdependence of environmental

noise and demographic fluctuations is particularly relevant for

microbial communities, whose properties greatly depend on

the population size and on the environment [1, 2]. These pop-

ulations often experience sudden environmental changes that

can drastically affect their size, e.g. by leading to popula-

tion bottlenecks under which the colony of reduced size is

more prone to fluctuations [32–35]. The coupling between

the different forms of randomness therefore generates feed-

back loops between socio-biological interactions and the en-

∗Electronic address: M.Mobilia@leeds.ac.uk

vironment [32, 33, 36, 37], which results in fascinating eco-

evolutionary phenomena such as cooperative behavior. For in-

stance, experiments on Pseudomonas fluorescens showed that

the formation and sudden collapse of biofilms promotes the

evolution of cooperation [34, 35, 38]. In most studies, how-

ever, EN and IN are treated as uncoupled [4–14].

Recently, we introduced a model describing a fluctuat-

ing population—consisting of a fast strain competing with a

slow (cooperating) species, that can produce a public good—

evolving under a randomly switching carrying capacity [39].

In this model, demographic fluctuations are coupled to EN, re-

sulting in a significant influence on the species fixation prob-

ability and leading to noise-induced transitions of the popu-

lation size. In the context of the eco-evolutionary dynam-

ics of this model, here we introduce the theoretical concept

of “eco-evolutionary game” to characterize the emergence of

cooperation in populations of fluctuating size. We study the

correlations between the population size and its composition

and show that a social dilemma of sorts arises: while the pub-

lic good production increases the overall expected population

size, it also lowers the survival probability of cooperators. In

the biologically-inspired setting of a metapopulation of non-

interacting communities of varying size, we measure the suc-

cess of each species in the eco-evolutionary game in terms of

its expected long-term number of individuals. We thus deter-

mine the circumstances under which public good production

(cooperation) is detrimental or beneficial to cooperators, and

find the conditions in which it is best to produce the public

good. Furthermore, we have devised a linear noise approxi-

mation that allows us to accurately characterize the population

size distribution and noise-induced transitions in a population

whose size fluctuates under the joint effect of coupled demo-

graphic and environmental noise.

The next two sections establish our approach: In section

II, we introduce our stochastic model; in section III, we out-

line the properties of the fitness-dependent Moran model and

piecewise deterministic Markov processes associated with the

mailto:M.Mobilia@leeds.ac.uk
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FIG. 1: (a) Cartoon of the eco-evolutionary dynamics of the model: the population consists of strains S (◦) and F (•), subject to K(t) ∈
{K−,K+} that randomly switches, see (4). After each switch of K(t), N and x change: following a K− to K+ switch, N increases and the

intensity of the internal noise decreases; the opposite occurs following a K+ to K− switch. (b) Typical random switching of K(t) according

to (4). (c) Sample paths of N(t) (gray, dashed line) and x(t) (blue, solid line), corresponding to the switching portrayed in (b). We notice that

x evolves much slower than N , see text. Parameters are (s, ν,K+,K−, b) = (0.02, 0.1, 450, 50, 0).

model, and review how to combine these to compute the

species fixation probabilities. In the following two sections,

we present our main results: Section IV is dedicated to the

correlations between the population size and its composition,

and to the discussion of the emergence of cooperative behav-

ior along with an “eco-evolutionary game” in a population of

fluctuation size; in section V, we study the population size

distribution within a linear noise approximation. Our con-

clusions are presented in Sec. VI. Additional information is

provided in the Supplementary Material (SM) [40].

II. MODEL

As in our recent work [39], we consider a well-mixed pop-

ulation of fluctuating size N(t) = NS(t) + NF (t), consist-

ing of NS individuals of species S and NF of species, or

strain, F [42]. The fast-growing strain F has fitness fF = 1,

whereas the slow-growing strain S has a slightly lower fitness

fS = 1 − s, where 0 < s ≪ 1 denotes the (weak) selec-

tion intensity. At time t the fraction of S individuals in the

population is x(t) = NS(t)/N(t) and the average population

fitness is f̄ = xfS + (1 − x)fF = 1 − sx = 1 + O(1).
Here, the evolution of the population size N(t) is coupled to

the internal composition x(t) by a global growth rate g(x),
and its growth is limited by a logistic death rate N/K(t) [25–

27, 39]. The carrying capacity K(t) is a measure of the pop-

ulation size that can be supported, and is here assumed to

vary in time, see below. We specifically focus on two im-

portant forms of global growth rates: (i) the pure resource

competition scenario g(x) = 1, in which x andN are coupled

only through fluctuations; and (ii) the public good scenario in

which g(x) = 1 + bx, corresponding to a situation where S

individuals are “cooperators” [25–27, 41] producing a public

good (PG) that enhances the population growth rate through

the benefit parameter 0 < b = O(1), here assumed for sim-

plicity to be independent of s. In the PG scenario, N and

x are explicitly coupled, since the changes in the size of the

population (ecological dynamics) and those in its composition

(evolutionary dynamics) are interconnected. This interplay es-

tablishes a form of “eco-evolutionary dynamics” [28, 29]. It is

worth noting that, as customary in evolutionary game theory,

we assume that mutation rates of the strains are negligible, and

we thus characterize the population evolutionary dynamics in

terms of the fixation properties [24, 41].

In this context, the population size and composition change

according to the continuous-time birth-death process [26, 45,

46]

NS/F

T+

S/F−−−→ NS/F + 1 and NS/F

T−

S/F−−−→ NS/F − 1, (1)

with transition rates

T+
S/F = g(x)

fS/F

f̄
NS/F and T−

S/F =
N

K(t)
NS/F . (2)

We model environmental randomness by letting the car-

rying capacity K(t) switch randomly between K+ (abun-

dant resources) and K− < K+ (scarce resources), see figure

1(a,b). We assume that K(t) switches at rate ν, according

to a time-continuous symmetric dichotomous Markov noise

(DMN) [43, 44, 47] ξ(t) ∈ {−1,+1} (or random telegraph

noise):

ξ
ν−→ −ξ , (3)

The stationary symmetric DMN has zero-mean 〈ξ(t)〉 = 0
and autocorrelation 〈ξ(t)ξ(t′)〉 = exp(−2ν|t − t′|) (〈·〉 de-

notes the ensemble average over the environmental noise) [43,



3

44]. This is a colored noise with a finite correlation time

1/(2ν) [43, 44, 47–50], see Section 1 in SM [40]. As a re-

sult, the fluctuating carrying capacity reads

K(t) =
1

2
[(K+ +K−) + ξ(t)(K+ −K−)] , (4)

and endlessly switches between K+ and K−.

In what follows, we consider that the DMN is stationary:

〈ξ(t)〉 = 0 for t ≥ 0. Hence, the initial carrying capacity is

either K− or K+ with probability 1/2, and the average carry-

ing capacity is constant: 〈K(t)〉 = 〈K〉 = (K+ +K−)/2.

The DMN models suddenly changing conditions, reflecting

several situations in bacterial life, such as cells living at either

side of a physical phase transition [1], or in the ever-changing

conditions of a host digestive tract. In the laboratory, bac-

teria can be subjected to complex gut-like environment [54]

or simplified stressful conditions, typically through variable

exposure to antibiotics [55–57]. Furthermore, with modern

bioengineering techniques it is possible to perform controled

microbial experiments in settings allowing for sensible com-

parisons with theoretical models sharing some of the features

considered here (switching environment, time-varying popu-

lation size, public good production) [16, 17, 30, 36]. As dis-

cussed in Section IV.B, the setting where colonies of bacteria

are grown in arrays of wells or test tubes [30, 36], modeled as

a metapopulation of communities, is particularly relevant for

our purposes.

In this model, the population evolves according to the mul-

tivariate stochastic process defined by equation (1)-(4), which

obeys the master equation

dP ( ~N, ξ, t)

dt
= (E−

S − 1)[T+
S P (

~N, ξ, t)]

+ (E−
F − 1)[T+

F P (
~N, ξ, t)]

+ (E+
S − 1)[T−

S P (
~N, ξ, t)]]

+ (E+
F − 1)[T−

F P (
~N, ξ, t)]

+ ν[P ( ~N,−ξ, t)− P ( ~N, ξ, t)], (5)

where ~N = (NS , NF ), E
±
S/F are shift operators such

that E
±
SG(NS , NF , ξ, t) = G(NS ± 1, NF , ξ, t) for any

G(NS , NF , ξ, t), and similarly for E±
F .

Equation (5) fully describes the stochastic eco-evolutionary

dynamics of the population, and can be simulated exactly (see

Sec. 2 in SM [40]).

Importantly, here demographic fluctuations are coupled to

the colored non-Gaussian environmental noise [39, 40] and

encoded in the master equation (5). This contrasts with the

discrete-time population dynamics of, for example Ref. [18],

where external and internal noises are independent and Gaus-

sian. Simulation results, see figure 1(c) and Ref. [62] (in

whichN(0) = 〈K〉, as in all our simulations), reveal that gen-

erally N(t) evolves much faster than the population composi-

tion. We consider K+ > K− ≫ 1 to ensure that, after a tran-

sient, N(t) is at quasi-stationarity where it is characterized

by its quasi-stationary distribution (N -QSD). The population

eventually collapses after a time that diverges with the sys-

tem size [51, 52], a phenomenon that can be disregarded for

our purposes. Below we study the eco-evolutionary dynam-

ics in terms of the random variables N and x, focusing on the

fixation properties of the population and its quasi-stationary

distribution.

It is useful to start our analysis by considering the mean-

field approximation which ignores all noise (say K = 〈K〉).
In this case, the population size N and composition x evolve

deterministically according to [26, 27, 39, 53]

Ṅ =
∑

α=S,F

T+
α − T−

α = N

(
g(x) − N

K

)
, (6)

ẋ =
T+
S − T−

S

N
− x

Ṅ

N
= −sg(x)x(1 − x)

1− sx
, (7)

where the dot signifies the time derivative. Equation (7), rem-

iniscent of a replicator equation [24], predicts that x relaxes

on a timescale t ∼ 1/s ≫ 1 and eventually vanishes while,

according to equation (6), N(t) equilibrates to N(t) = O(K)
in a time t = O(1).

III. PIECEWISE-DETERMINISTIC MARKOV PROCESS,

MORAN MODEL & FIXATION PROBABILITIES

In this section, we review the effects of environmental and

demographic noise separately, and compound them to obtain

the fixation probabilities characterizing the population com-

position, as outlined in Ref. [39]. Here, these results provide

the necessary background for the discussion in Sections IV

and V of our main novel findings.

A. Environmental noise & Piecewise-deterministic Markov

process

If the population is only subject to external noise (EN), it

follows the bivariate piecewise-deterministic Markov process

(PDMP) [58], defined by (7) and

Ṅ = N

{
g(x)− N

K + ξN

(
1

K − 1

K+

)}
, (8)

where K = 2K+K−/(K+ + K−) is the harmonic mean of

K+ and K− [39]. Equation (8) is a stochastic differential

equation with multiplicative DMN ξ of amplitude N2(K+ −
K−)/(2K+K−) [40]; it reduces to the deterministic limit (6)

when the EN is removed (i.e. K+ = K−).

Although the process is only subject to EN, the global

growth rate g(x) couples the evolutionary and ecological dy-

namics. To simplify the analysis, we introduce an effective

parameter q ≥ 0 (see Section III C 2) and assume a constant

g ≡ 1 + q [39], obtaining the single-variate effective process

Ṅ = F(N, ξ) =

{
F+(N) if ξ = 1

F−(N) if ξ = −1,
(9)

with F±(N) ≡ N

[
1 + q − N

K±

]
, (10)
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describing the evolution of a population of size N(t) subject

only to EN. According to (9) and (10), each environmental

state ξ has a fixed point

N∗(ξ) =

{
N∗

+ = (1 + q)K+ if ξ = 1

N∗
− = (1 + q)K− if ξ = −1,

(11)

After t = O(1), the PDMP is at stationarity, char-

acterized by a stationary probability density function

(PDF) p∗ν,q(N, ξ) (derived in the SM [40]). Central

for our purposes are the features of the marginal sta-

tionary PDF p∗ν,q(N) = p∗ν,q(N, ξ) + p∗ν,q(N,−ξ) ∝
N−2

[
(N∗

+ −N)(N −N∗
−)N

−2
] ν

1+q−1
[53], giving the

probability density of N regardless of the environmental state

ξ (see Section 3 of [40] for a derivation). Depending on

the sign of the exponent, the distribution may be unimodal

or bimodal [39], but has always support [N∗
−, N

∗
+], on which

F+ ≥ 0 and F− ≤ 0.

B. Internal noise & Fitness-dependent Moran process

Internal noise stems from the inherent stochasticity of indi-

vidual birth and death events in the population; it ultimately

causes fixation (one strain taking over the whole population),

and hence determines the long-term population composition.

When internal and ecological dynamics are coupled, which

strain fixates has consequences on the population size, mak-

ing the fixation phenomenon particularly important.

If internal noise is the only source of randomness (constant

K), we can study its effects using the fitness-dependent Moran

model [22, 23, 41, 59, 60], with constant sizeN ≡ K [61]. To

keep the population size constant, at each birth corresponds a

death. Therefore, x increases by 1/N if an S individual is

born and an F dies (SF → SS at rate T̃+
S = T+

S T
−
F /N ), and

decreases by 1/N if an F individual is born, replacing a dead

S (SF → FF at rate T̃−
S = T−

S T
+
F /N ), with

T̃+
S =

1− s

1− sx
g(x)(1 − x)xN, T̃−

S =
1

1− sx
g(x)(1 − x)xN .

The corresponding mean-field equation is again (7). For an

initial fraction x0 of S individuals, in the framework of the

Fokker-Planck equation, the fixation probability of S is [22,

23, 41, 45] (see also Section 5.1 in SM [40])

φ(x0)|N =
e−Ns(1−x0) − e−Ns

1− e−Ns
. (12)

The fixation probability of S thus becomes exponentially

smaller the larger the population’s (constant) size or selection

intensity s are; and, notably, is independent of g(x). In the

following we assume x0 = 1/2 and drop the initial condition

for notational simplicity: φ|N ≡ φ(x0)|N and φ ≡ φ(x0).

Clearly, the fixation probability of F is φ̃|N = 1 − φ|N . In

Section 5.1 of the SM [40], we also outline the main proper-

ties of the mean fixation times of the fitness-dependent Moran

model. The most relevant for our purposes is the fact that, in

both cases b = 0 and b > 0, the unconditional and conditional

mean fixation times scale as O(1/s) to leading order when

s≪ 1 and Ns≫ 1.

C. Fixation under switching carrying capacity

The strain S unavoidably goes extinct in the determinis-

tic limit, see equation (7), and has an exponentially vanishing

survival probability when K is constant, see equation (12).

However, when the carrying capacity switches, the population

undergoes “bottlenecks” that can enhance this probability [39]

and alter the long-term average population size.

1. Fixation probabilities in the pure competition scenario (b = 0)

When b = 0, both species compete for the same finite re-

sources, with a slight selective advantage to F . Therefore, N
and x are solely coupled by demographic fluctuations. After

a time t = O(1), N attains quasi-stationarity where it is dis-

tributed according to its N -QSD [62], that is well described

by the PDF p∗ν/s ≡ p∗ν/s,0(N). On the other hand, x relaxes

on a much slower timescale t ∼ 1/s ≫ 1 and we showed

that the mean fixation time scales as O(1/s) to leading order

when s ≪ 1 and 〈K〉s ≫ 1 [39, 40, 53]. As a consequence,

as shown in Section 5.2 of the SM [40], the population expe-

riences, on average, O(ν/s) environmental switches prior to

fixation (see figures S6 in [40] and 1(c)). When s ≪ 1 and

K− ≫ 1, we can thus exploit this timescale separation and

compute the S fixation probability φ by averaging φ|N over

p∗ν/s, with the rescaled switching rate ν → ν/s [39]:

φ ≃
∫ K+

K−

φ|N p∗ν/s(N) dN. (13)

The PDF p∗ν/s is sharply peaked at N ≃ K when ν ≫ s,

whereas it has two sharp peaks at N ≃ K± when ν ≪ s.

Equation (13) captures the limiting behavior φ
ν→∞−−−−→ φ|K

when ν ≫ s (many switches prior to fixation), resulting from

the self-average of the EN (since ξ(t)
ν→∞−−−−→ 〈ξ(t)〉 = 0), as

well as φ
ν→0−−−→ (φ|K−

+φ|K+
)/2 in the regime of rare switch-

ing (ν ≪ s), when the environment almost never changes

prior to fixation [39]. As shown by figure S2 in Section 2 of

the SM [40], equation (13) reproduces the simulation results

for the fixation probability of S within a few percent over a

broad range of ν values. While S remains less likely to fix-

ate than F , its fixation probability is much higher than in a

constant environment (φ≫ φ|〈K〉): environmental variability

considerably offsets the evolutionary bias favoring F .

2. Fixation in the public good scenario, b > 0

In the public good scenario, g(x) = 1 + bx with 0 < b =
O(1), S individuals act as public good producers (coopera-

tors). The higher x, in fact, the higher the reproduction rate of
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FIG. 2: (a) q(b) vs. b for s = 0.02 (cyan) and s = 0.05 (yellow),

see text. (b) φ vs. ν in the case b > 0: for (s, b) = (0.02, 0.2) (blue,

◦), (0.02, 2) (green, �), (0.05, 0.2) (orange, ⋄), (0.05, 2) (red, ∇).

Symbols are φ from simulations (104 runs) and solid lines show φq

from the effective theory, see text. In all panels, other parameters are

(K+,K−, x0) = (450, 50, 0.5).

both strains, see equations (2). However, since S bears alone

the metabolic cost of cooperation (PG production), it grows

slower than F and, deterministically, x decreases.

When b > 0, N and x are explicitly coupled, and they do

not evolve on separate timescales: N is a fast variable, en-

slaved to the slow-varying x [62]. To determine the fixation

probability, in Ref. [39] we devised an effective approach,

based on suitably choosing the parameter q (0 ≤ q ≤ b) and

setting g(x) ≡ 1 + q in equation (8). This decouples N and

x in an effective population whose size distribution, at quasi-

stationarity and for any ν, is well described by the PDMP PDF

p∗ν,q(N). As outlined in Ref. [39], the fixation probability of

S within this effective theory is determined similarly to the

case b = 0 and is given by φq =
∫ N∗

+

N∗

−

φ|N p∗ν/s,q(N) dN .

As above, this expression simplifies in the limiting regimes of

frequent/rare switching: φq ≃ φ
(∞)
q ≡ φ|(1+q)K when ν ≫ s,

and φq ≃ φ
(0)
q ≡ (φ|N∗

−

+ φ|N∗

+
)/2 when ν ≪ s. We deter-

mined the effective parameter q = q(b) for given (K±, s, b)

by matching the prediction of φ
(∞)
q with the results of simu-

lations (see [39] and SM [40]). Figure 2(a) shows that q(b)
increases almost linearly with b, and depends weakly on s.

Clearly, q(0) = 0 when b = 0, and φq thus reverts to (13).

Figure 2(b) shows that the effective approach captures the

effects of the coupling betweenN and x for several choices of

b and s, over a broad range of ν. As detailed in the SM [40],

the predictions of φq agree within a few percent with simula-

tion results when s ≪ 1, while the accuracy deteriorates as

s and b increase, therefore lowering φ. In fact, increasing b
yields higher q(b), which results in effectively increasing the

carrying capacity K± → (1 + q(b))K±. In the ν → ∞, 0
limits, this is equivalent to rescaling the selection intensity as

s → (1 + q(b))s, as inferred from φ
(∞,0)
q and equation (12).

Therefore φ decays (approximately) exponentially with b, as

shown by figure 3(a).

IV. CORRELATIONS & COOPERATION IN THE

ECO-EVOLUTIONARY GAME

After a time t≫ 1/s, fixation has very likely occurred and

the population composition is fixed and consists of only F or

S individuals. In this quasi-stationary regime, the population

size N(t) however keeps fluctuating, driven by the randomly

switching carrying capacity K(t). When the slow strain S
produces a public good (PG), the long-time eco-evolutionary

dynamics is characterized by the correlations between the

population size and its composition. In this section, we an-

alyze the long-term dynamics by computing the correlations

first, and then by analyzing the ensuing “eco-evolutionary

game”.

To this end, it is useful to consider the average population

size 〈N〉∗ν,b for given ν and b, after a time t ≫ 1/s, when the

population is at quasi-stationarity and consists of only S or

F individuals, see Section 5.2 in SM [40]. Within the PDMP

approximation—that is, approximating the evolution of N by

the PDMP (9), see Section 6.1 of SM [40]—we can compute

the quasi-stationary average of N using the PDMP PDF p∗ν,q
(see also Sec. V A):

〈N〉∗ν,b = (1 + b)φb〈N〉∗ ν
1+b ,0

+ φ̃b〈N〉∗ν,0 > 〈N〉∗ν,0, (14)

where 〈N〉∗ν,0 is the population long-time average in the ab-

sence of PG production, φb denotes the fixation probability of

S for a public good parameter b, and φ̃b = 1 − φb. Through

equation (14), the PDMP approximation thus predicts that the

long-term population size increases with b, see figure 3(b).

Furthermore, while the fixation probabilities φb and φ̃b can in-

crease or decrease with ν, the PDMP approximation predicts

that the average population size at stationarity monotonically

decreases with ν (see (S20)-(S22) in the SM [40]). Simulation

results shown in figure 3(b) confirm that 〈N〉∗ν,b increases with

b, and decreases with ν (keeping other parameters constant).

A. Correlations between ecological & evolutionary dynamics

Equation (14) also highlights how fixation probabilities af-

fect the long-term average population size. When b > 0, there
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FIG. 3: (a) φ vs b in lin-log scale for s = 0.02, ν = 0.1 (orange,

◦) and ν = 10 (cyan, ∇); s = 0.05, ν = 10 (yellow, �). Lines are

from φq , see text, and markers are from simulations. (b) 〈N〉∗ν,b vs.

ν for b = 0 (cyan, squares), b = 0.2 (blue, circles) and b = 2 (green,

triangles) and s = 0.02. Solid lines are from (14); empty symbols

are from simulations; filled symbols are from (25) within the linear

noise approximation. Dashed lines indicate the predictions of (14)

in the regimes ν → ∞, 0, see Section 6.1 in [40]. Parameters are

(K+,K−, x0) = (450, 50, 0.5).

are nontrivial correlations between population size and com-

position, and how N(t) and x(t) are correlated is of direct

biological relevance, see e.g. [30, 31].

Prior to fixation, these correlations are accounted by the ef-

fective parameter q(b) (see section III C 2). Here, we inves-

tigate their effect after fixation using the rescaled connected

correlation function

Cν,b(t) =
〈(N(t)− 〈N(t)〉) (x(t) − 〈x(t)〉)〉

〈N(t)〉〈x(t)〉 , (15)

where 〈·〉 denotes the ensemble average. When 〈N(t)x(t)〉 =
〈N(t)〉〈x(t)〉, i.e. in absence of correlations, Cν,b(t) van-

ishes. At quasi-stationary, t ≫ 1/s, we have 〈N(t)x(t)〉 →
〈Nx〉∗ν,b, 〈N(t)〉 → 〈N〉∗ν,b, x→ 1 or 0 with respective prob-

ability φb and φ̃b, 〈x(t)〉 → φb and Cν,b(t) → C∗
ν,b. Within the

PDMP approximation, using eq. (14) and φb ≃ φq , equation

(15) becomes (t≫ 1/s)

C∗
ν,b =

〈Nx〉∗ν,b
〈N〉∗ν,bφb

− 1 ≃
φ̃q

[
(1 + b)〈N〉∗ ν

1+b ,0
− 〈N〉∗ν,0

]

(1 + b)φq〈N〉∗ ν
1+b ,0

+ φ̃q〈N〉∗ν,0
. (16)

Since 〈N〉∗ν,0 is decreasing in ν (see figure 3(a)), this long-

term correlation is always positive for b ≥ 0, and vanishes

only for b = 0.

(b)
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FIG. 4: (a) C∗

ν,b vs b for s = 0.05 and ν ≃ 1 (cyan, ⋄), ν = 0.1
(yellow, ∇); s = 0.02 and ν = 1 (red, �), and ν = 0.1 (orange,

◦). (b) C∗

ν,b vs ν for b = 2 and s = 0.05 (red, ∇), s = 0.02 (green,

△); b = 0.2 and s = 0.05 (orange, ⋄), s = 0.02 (blue, ◦). In all

panels, the parameters are (K+,K−, x0) = (450, 50, 0.5). Symbols

are results from simulations and solid lines are from equation (16);

dashed lines in panel (b) denote the analytical predictions of Cν,b in

the limits ν ≪ s and ν ≫ 1, see text.

As shown in figure 4, C∗
ν,b grows approximately linearly

with b and is non-monotonic in ν with a maximum for ν =
O(1); all features that equation (16) captures well. The ν-

dependence of C∗
ν,b stems from the fact that φb increases or

decreases with ν, depending on the value of s, see figure 2(b)

[39]. In the limiting regimes ν → ∞, 0, equation (16) sim-

plifies and yields C∗
ν,b ≃ b[1 − (1 + b)φ

(∞,0)
q(b) ] [40]. There-

fore, in these the limiting regimes C∗
ν,b increases in s, and

scales as O(b), as shown by figure 4, yielding 〈Nx〉∗ =

(1 +O(b))〈N〉∗ν,bφ
(∞,0)
q(b) .

These results show that, when species S provides a PG,

there are nontrivial long-term correlations between ecological

and evolutionary variables: the population size is shaped by

its composition. The correlations between N and x are max-

imal in the intermediate switching regime where ν = O(1)
is comparable to the growth rate of N , and are weaker in the

limiting switching regimes, on which we devised the effective

theory of section III C 2.
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B. When is cooperation beneficial? In which conditions is it

best to cooperate?

Producing the public good (PG) slows the growth of the

S strain, see equation (7) with g(x) > 0, and thus reduces

exponentially the fixation probability of S, as shown in fig-

ure 3(a). On the other hand, the PG leads to higher aver-

age population sizes (see equation (14) and figure 3(b)) and

therefore provides a long-term benefit to the whole popula-

tion. At the population level, a “social dilemma” [24, 41] of

sorts arises after fixation of either F or S: Cooperators pay

a cost through their reduced fixation probability, while they

provide a benefit, through the PG, by increasing the expected

long-term number of individuals of both strains. We analyze

the trade-off between benefit and cost of cooperation by intro-

ducing the notion of “eco-evolutionary game” in the context of

a metapopulation of non-interacting communities: Each sys-

tem realization (simulation run) corresponds to a community

of time-fluctuating size, and the collection of the system’s re-

alizations constitutes the metapopulation [26, 27, 30, 31, 37],

that is an ensemble of non-interacting communities. After fix-

ation, each community consists of only S or F individuals.

It is worth emphasizing that the social dilemma arising in the

eco-evolutionary game differs from traditional games in a fi-

nite population of constant size [24, 41]: Although F is al-

ways more likely to fixate than S (when x0 is not too close

to 1, as in classical evolutionary games), communities con-

sisting only of individuals of strain S can be of significantly

larger size than those containing only F ’s thanks to their pro-

duction of PG (allowing them to possibly attain the maximum

carrying capacity (1 + b)K+). In this eco-evolutionary game

in a population of time-varying size, we thus propose to mea-

sure the evolutionary success of a strain in terms of the pop-

ulation size averaged after fixation over the ensemble of non-

interacting communities, see also Section 6.2 of the SM [40]:

The expected payoff of the game is hence the relative long-

term average number of individuals of each strain, see below.

Interestingly, this formulation of the eco-evolutionary game

is of potential direct relevance to microbial experiments in

which colonies of bacteria, some of which can produce a pub-

lic good, are grown and compete in “a metapopulation of test

tubes”, see e.g. [30, 31, 36, 37].

Below, we use the PDMP approximation and simulations

to investigate the relative abundance of each species at quasi-

stationarity (see also Section 6.1 in [40]).

The average number of F individuals at quasi-stationarity,

given a switching rate ν and PG parameter b is

〈NF 〉∗ν,b = 〈N |x = 0〉∗ν,b = (1 − φb)〈N〉∗ν,0,

i.e. the average population size conditioned to F fixation.

Similarly, the average number of cooperators S at quasi-

stationarity is

〈NS〉∗ν,b = 〈N |x = 1〉∗ν,b = (1 + b)φb〈N〉∗ν/(1+b),0.

In the context of the above eco-evolutionary game, we pro-

pose to measure the expected payoff provided by the PG as

the difference between the expected number of individuals of

a strain at quasi-stationarity when b > 0 relative to the case

b = 0. Hence, the expected payoff to F is

∆Fν,b ≡ 〈NF 〉∗ν,b − 〈NF 〉∗ν,0 = (φ0 − φb)〈N〉∗ν,0 > 0. (17)

Since φ0 > φb, see figure 3(b), this quantity is positive and in-

creases with b. This means that, as in other social dilemmas,

see, e.g., Refs. [24, 41], the benefit of “freeriding” increases

when the level of cooperation, here given by b, is raised. How-

ever, this does not rule out the possibility that, under certain

circumstances, the PG production can be either beneficial or

detrimental to S, and even permits S to be better off than F .

In fact, the eco-evolutionary expected payoff for cooperators

reads

∆Sν,b ≡ 〈NS〉∗ν,b − 〈NS〉∗ν,0
= (1 + b)φb〈N〉∗ν

1+b ,0
− φ0〈N〉∗ν,0, (18)

and clearly varies nontrivially with ν and b. Unless ∆Sν,b >
0, the PG is actually detrimental for cooperators: the expected

number of S individuals is lower than it would be without PG.

In this context, the PG benefits cooperators only if the increase

in the average population size offsets the decrease in fixation

probability, i.e. if

∆Sν,b > 0 ⇔ (1 + b)
〈N〉∗ ν

1+b ,0

〈N〉∗ν,0
>
φ0
φb

In figure 5, we show that ∆Sν,b is non-monotonic in b, gener-

ating a maximum at an optimal value b∗(ν, s), which defines

the conditions where PG production is the most rewarding for

cooperators. Moreover, we observe a definite critical thresh-

old bc(ν, s), below which producing a PG benefits cooperators

since ∆Sν,b > 0.

Using our effective theory, φ ≃ φq(b), and the PDMP ap-

proximation, the expected payoff of S (18) reads

∆Sν,b = (1 + b)φq(b)

∫ K+

K−

Np∗ν
1+b

(N) dN

− φ0

∫ K+

K−

Np∗ν(N) dN . (19)

When ν → ∞, the DMN self-averages (ξ → 〈ξ〉 = 0) and

equation (18) is given by the expected payoff of S in a popu-

lation of effective size 〈N〉∗∞,0 = K, see equation (S23) in the

SM [40], yielding ∆S∞,b = [(1 + b)φ
(∞)
q(b) − φ

(∞)
0 ]K. Hence,

when the DMN self-averages, the expected payoff of S is pos-

itive if φ
(∞)
q(b) > φ

(∞)
0 /(1 + b).

Results in figure 5 show that equation (19) approximates

well the simulation results over a broad range of parameters.

The root and the maximum of equation (19) provide (approx-

imate) predictions for bc and b∗, see figures 6 and S7(a) in

the SM [40]. These figures reveal that bc and b∗ depend non-

monotonically on ν and vary greatly with s, both behaviors

well-captured by the theory. Figures 5 and S7(b) [40] also

show that the maximal payoff for S can be significantly higher

than that of F , especially when the selection s is low.
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FIG. 5: (a) ∆Sν,b vs. b for s = 0.02 and switching rates ν = 10
(cyan, ∇), ν = 1 (red, �), ν = 0.1 (orange, ◦). Predictions from

equation (19) (solid) are compared to simulation results (symbols).

The grey dashed line corresponds to the predictions of ∆S∞,b, see

text. We find ∆Sν,b > 0 when 0 < b < bc(ν, s) with an optimal

payoff for S when b = b∗(ν, s), e.g. (bc, b
∗) ≈ (4.9, 2.1) at ν = 1.

(b) ∆Sb,ν vs. b with ν ≃ 0.44, for s = 0.02 (blue, ∇), s = 0.03
(red, ⋄), and s = 0.05 (green, ◦). Solid lines are from equation (19)

and symbols are simulation results (see SM [40]). (c) Expected pay-

offs ∆Sν,b and ∆Fν,b vs. b for s = 0.02 obtained from equation

(19). Dashed lines show the values of b∗, β and bc. In all panels, the

parameters are (K+,K−, x0) = (450, 50, 0.5).

In order to discuss the properties of the eco-evolutionary

game, it is useful to determine the value b = β(ν, s) of equal

expected payoff, i.e. such that which ∆Sν,β = ∆Fν,β , see

figure 5(c). From equations (17)-(19), we find that β(ν, s) is

the solution of

1

1 + β

(
2φ0
φq(β)

− 1

)
=

〈N〉∗ ν
1+β ,0

〈N〉∗ν,0
=

∫K+

K−

Np∗ ν
1+β

dN
∫ K+

K−

Np∗ν dN
. (20)

So β is a nontrivial function of ν and s, see figure 6(b).

Given the parameters b and s of the eco-evolutionary game,

we have studied the values of the switching rate ν for which

0.001 0.01 0.1 1 10

0

2

4

6

8

switching rate

cr
it

ic
al

 b
en

ef
it

(a)

10

8

6

4

2

0
0.001 0.01 0.1 1 10

p
u
b
li

c 
g
o
o
d
 b

en
ef

it
switching rate

-0.6 -0.4 -0.2 0.40.20
payoff advantage for cooperators

(i)

(ii)

(iii)

(b)

FIG. 6: (a) bc vs ν. Symbols are results from simulations and solid

lines are from equation (19) for s = 0.02 (blue), s = 0.03 (orange),

and s = 0.05 (green). (b) Heatmap of (∆Sν,b − ∆Fν,b)/〈N〉∗ν,0,

from equation (19) for s = 0.02. The gray dotted line shows b =
bc(ν, s), the dashed line b = β(ν, s) and the solid line b = b∗(ν, s).
In the blue area (phases (i) and (ii)), b > β and F is better off than

S (∆Fν,b > ∆Sν,b). PG production is detrimental for S in phase

(i) where b > bc and ∆Sν,b < 0; beneficial for S (∆Sν,b > 0)

in phase (ii) where β < b < bc, but more beneficial for F (higher

expected payoff). In the red/pink area of region (iii), b < β and

S is better off than F (∆Sν,b > ∆Fν,b), see text. Colored dots

correspond to “gaps” in the numerical data (see [40]). Parameters

are (K+,K−, x0) = (450, 50, 0.5).

it is beneficial to cooperate by producing a public good, and

determined three distinct phases represented in the diagram of

figure 6(b):

(i) When b > bc, the PG production is detrimental for S.

The cost of cooperation outweighs its benefits and the

expected payoff for S is negative (∆Sν,b < 0). The PG

thus benefits only F .

(ii) When β < b < bc, the PG production benefits S, but

benefits F more (0 < ∆Sν,b < ∆Fν,b).
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(iii) When 0 < b < β, S reaps a higher expected payoff than

F (∆Sν,b > ∆Fν,b > 0). In this case, the benefit of the

PG outweigh its cost, and its production is favored.

Within the above metapopulation interpretation of the eco-

evolutionary game, species F effectively exploits S in phases

(i) and (ii), but is at a disadvantage in phase (iii). Since the

expected payoff to S is positive in regions (ii) and (iii), we say

that cooperation of a public good with benefit parameter b is

beneficial when 0 < b < bc(ν, s), and advantageous for 0 <
b < β(ν, s). Given a set of parameters (b, ν, s), PG production

is the best strategy if two conditions are met: (a) the expected

payoff of S is higher than that of F , which is satisfied in phase

(iii); (b) b yields the maximum possible payoff for S, i.e., b =
b∗. Hence, in an environment switching at rate ν and under

a selection intensity s, the best conditions to cooperate for

the public good production is when the PG benefit parameter

satisfies b = b∗(ν, s) < β(ν, s), represented by the solid gray

line in phase (iii) of figure 6(b). It is also worth noting that this

discussion also holds when the time-varying population size

is not driven by the environmental noise: The limiting case

ν → ∞, for which the DMN self-averages and the population

reaches an effective size N → K, corresponds to the right

end of the diagram of figure 6(b) where ν ≫ 1. Remarkably,

environmental stochasticity yields several additional regimes

in which cooperating becomes beneficial.

In the above context of a well-mixed population whose size

fluctuates in time, this eco-evolutionary game shows that there

are conditions under which PG production is beneficial for co-

operators, and may even be the optimal strategy. This does not

imply that the social dilemma, which still holds in its classi-

cal form prior to fixation, is resolved in general. However,

this demonstrates that under environmental variability there

are conditions in which cooperation (PG production), albeit

disadvantaged in the short term, can be more successful than

freeriding in the long term. In fact, although freeriders have

a constant growth-rate advantage over cooperators and are al-

ways more likely to fixate (assuming x0 = 1/2), here, the

selective bias can be efficiently balanced by environmental

variability, by allowing cooperators to be successful in form-

ing, in the long term, larger communities than freeriders [40].

This can result in a greater increase of the long-term average

number of cooperators than free-riders, and exemplifies the

potential role of a fluctuating environment on the emergence

of cooperative behavior in microbial communities.

V. LINEAR-NOISE AND PDMP APPROXIMATIONS TO

THE POPULATION QSD

After t ≫ 1/s, the population is likely to be at quasi-

stationarity with its composition fixed [39]. Yet, the popu-

lation size still fluctuates and N(t) is distributed according to

its quasi-stationary distribution. When K− ≫ 1, the popula-

tion size is always large and, in the first instance, demographic

fluctuations are negligible compared to environmental noise.

In this case, eq. (9) characterizes reasonably well, albeit not

fully, the long-term properties of N(t).

A. Linear-noise approximation about the PDMP predictions

Throughout this work (and in [39]), we have shown that the

PDMP approximation p∗PDMP,ν,b(N) = φp∗ν,b(N) + φ̃p∗ν(N)
reproduces many characteristics of the quasi-stationary size

distribution (N -QSD). However, as p∗ν and p∗ν,b only account

for the external noise (EN), they cannot reproduce the com-

plete N -QSD, which is also subject to internal noise (IN).

Here, we use the linear noise approximation (LNA) about the

PDMP predictions to account for the joint effect of the two

noise sources, IN and EN, on the N -QSD.

The LNA is widely employed to quantify the effect of weak

demographic fluctuations in the absence of external noise [45,

46], and has recently been used to study the joint effect of

decoupled internal and external noise [12]. Here, we show

how to generalize the LNA to the case where the population

size fluctuates and demographic fluctuations are coupled to

the external noise.

For our analysis, we assume that K+ & K− ≫ 1, so that

〈K〉 is large and of the same order as K± (see Section 7 in

SM [40] for details). It is convenient to work with the con-

tinuous random variable n = N/Ω, where Ω = 〈K〉 ≫ 1
is the system’s “large parameter”. The auxiliary Markovian

process {n(t), ξ(t)} that we consider for the LNA is defined

by n
T +

−→ n + Ω−1, n
T −

−→ n − Ω−1 and ξ
ν−→ −ξ, where

the transition rates T ± are given by equations (S30) in the SM

[40]. We also introduce ψ = limΩ→∞N/Ω = O(1), which

obeys the stochastic differential equation (S33) [40] defining

the corresponding PDMP, and the random variable η(t), cap-

turing the fluctuations of n about ψ, according to

n(t) = ψ(t) +
η(t)√
Ω
, (21)

We are interested in the (quasi-)stationary joint probabil-

ity density π∗
ν,q(η, ψ, ξ) of the process {n(t), ξ(t)}. This

probability density can be decomposed into π∗
ν,q(η, ψ, ξ) =

π∗(η|ψ, ξ)π∗
ν,q(ψ, ξ), where π∗

ν,q(ψ, ξ) = Ωp∗ν,q(Ωψ, ξ) is

the stationary joint PDF of the PDMP {ψ(t)} and is read-

ily obtained from the PDF of equation (9). The station-

ary probability density π∗(η|ψ, ξ) accounts for the demo-

graphic fluctuations about {ψ(t)} in the environmental state

ξ. Following Ref. [12], we assume that the demographic fluc-

tuations are approximately the same in both environmental

states, i.e. π∗
ν,q(η|ψ, ξ) ≃ π∗

ν,q(η|ψ,−ξ), and simply denote

π∗
ν,q(η|ψ) ≡ π∗

ν,q(η|ψ,±ξ). This assumption is reasonable

when K+ and K− are of the same order, and yields

π∗
ν,q(η, ψ, ξ) ≃ π∗(η|ψ)π∗

ν,q(ψ, ξ). (22)

With this approximation, the quasi-stationary marginal LNA

probability density of {n(t)} is

π∗
ν,q(n) =

∑

ξ=±1

∫ ∫
dψdη π∗(η|ψ)

× π∗
ν,q(ψ, ξ) δ

(
n− ψ − η√

Ω

)
, (23)
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FIG. 7: Histograms of the population size distribution (N -QSD)

when b = 0 (shaded area) compared with the predictions of the LNA

(solid), from equation (S39) of the SM [40], and with the PDMP

predictions (dashed), from p∗ν,0, for different switching rates: (a)

ν = 0.01, (b) ν = 0.1, (c) ν = 1, (d) ν = 10, see text. Param-

eters are (K+,K−, s, x0) = (400, 100, 0.02, 0.5). Here, K = 160.

where π∗(η|ψ) = exp{−η2/(2ψ)}/
√
2πψ (see SM [40]

for details), and the Dirac delta ensures that (21) is satis-

fied. Calling p∗LNA,ν,0(N) = π∗
ν,0(n)/Ω and p∗LNA,ν,b(N) =

π∗
ν,b(n)/Ω, explicitly given by eqs. (S39) and (S40) in SM

[40], the LNA quasi-stationary probability density reads

p∗LNA,ν,b(N) = φp∗LNA,ν,b(N) + φ̃p∗LNA,ν,0(N). (24)

Within the LNA, the quasi-stationary average population

size is obtained by averaging N over p∗LNA,ν,b(N):

〈N〉∗LNA,ν,b =

∫ ∞

0

Np∗LNA,ν,b(N) dN , (25)

where, it is worth noting, the integral is no longer restricted to

a finite support. As figure 3(b) shows, 〈N〉∗LNA,ν,b is as good

an approximation of simulation results, as its PDMP counter-

part 〈N〉∗ν,b from equation (14). This is not surprising, and as

done in Section IV, it is convenient to compute the averages

of N using the PDMP approximation, i.e. by averaging over

p∗PDMP,ν,b(N) as in eq. (14). However, as elaborated below,

the LNA via the equation (24) gives an excellent characteriza-

tion of the full N -QSD, well beyond the scope of the PDMP

approximation.

B. LNA, N -QSD, and noise-induced transitions

1. Pure resource competition scenario, b = 0

In the pure resource competition scenario (b = 0),

p∗LNA,ν,0(N) = π∗
0(n)/Ω provides an excellent approxima-

tion of theN -QSD in all switching regimes, as shown in figure

7. In particular, p∗LNA,ν,0 captures the noise-induced transition

arising about ν = 1 [39, 43, 44]: When ν < 1, the switching

FIG. 8: Histograms of the population size distribution (N -QSD)

when b = 2 (shaded area) compared with the predictions of the LNA

(solid), from eq. (24) and equations (S39) and (S40) in the SM [40],

and with the PDMP predictions (dashed) based on the PDF p∗ν,q, with

q = b (when x = 1) and q = 0 (when x = 0), for different switching

rates: (a) ν = 0.01, (b) ν = 0.1, (c) ν = 1, (d) ν = 10. Parameters

are (K+,K−, s, b, x0) = (400, 100, 0.02, 2, 0.5). For the analytical

results, we have used the expression of φq for φ(b) ≃ φq(b).

rate is lower than the population growth rate, and the N -QSD

and p∗LNA,0 are both bimodal, with peaks at N ≈ K±, see

figure 7 (a,b). When ν > 1, the switching rate exceeds the

population growth rate, and theN -QSD and p∗LNA,ν,0 are thus

unimodal, with a peak at N ≈ K, see Figure 7(c,d).

Figure 7 also shows that p∗LNA,ν,0(N) accurately predicts

the peaks, their width and intensity, and the skewness of the

N -QSD, whereas the PDMP predictions from p∗ν,q(N) only

captures the position of the peaks. This demonstrates how

demographic fluctuations, aptly accounted for by the LNA,

cause the discrepancies between the N -QSD and p∗ν .

2. Public-good scenario, b > 0

The LNA expression (24) also provides an excellent ap-

proximation of the N -QSD in all switching regimes for the

public good scenario (b > 0), see figure 8. In particular,

p∗LNA,ν,b captures the noise-induced transitions arising about

ν = 1 and ν = 1+b [39]: When ν < 1, both conditional pop-

ulation distributions (for fixations to S or F ) are bimodal, with

different peaks. N -QSD and p∗LNA,ν,b thus have four peaks at

N ≈ K± and N ≈ (1 + b)K±, see figure 8(a,b). When

1 < ν < 1 + b, the S-conditional distribution is bimodal,

whereas the F -conditional distribution is unimodal. The N -

QSD and p∗LNA,ν,b thus have three peaks at N ≈ (1 + b)K±

and N ≈ K, see figure 8(c). Finally, when ν > 1 + b,
both conditional distributions are unimodal, but with differ-

ent peaks. Hence, the N -QSD and p∗LNA,ν,b are bimodal with

peaks at N ≈ K and N ≈ (1 + b)K, see figure 8(d)

As figure 8 shows, p∗LNA,ν,b(N) provides a faithful charac-
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terization of the N -QSD also when b > 0. This reiterates that

the discrepancies with the PDMP approximation stem from

demographic fluctuations. We also notice that the accuracy of

the LNA slightly deteriorates near the lower-intensity peaks

at high N and low ν (see figure 8(a)). These correspond to

rare events, usually beyond the scope of the LNA. Moreover,

in those regimes, some assumptions made in the derivation—

e.g. equation (22)— reach the limit of their validity, see SM

[40].

VI. CONCLUSION

We have studied the eco-evolutionary dynamics of a pop-

ulation subject to a randomly switching carrying capacity in

which one strain has a slight selective advantage over an-

other. In a model inspired by microbial communities evolv-

ing in fluctuating environments, we have considered two

scenarios—one of pure resource competition (no interaction

between strains) and one in which the slow (cooperating)

strain produces a public good—and investigated the coupled

effect of demographic and environmental noise.

The population composition has been characterized by the

fixation probabilities, computed using the analytical proce-

dure devised in Ref. [39], and, when a public good is pro-

duced, shown to be non-trivially correlated with the evolution

of the population size. As a result, the production of public

good gives rise to an eco-evolutionary game: On the one hand,

producing the public good lowers the survival/fixation proba-

bility of cooperators; on the other hand, it also increases their

population size. A social dilemma of sorts therefore ensues

and, in a fluctuating environment, it is a priori not intuitively

clear whether there are circumstances under which it is bene-

ficial to produce a public good and what these conditions may

be. Since we consider the eco-evolutionary game in a popula-

tion of fixed composition (after fixation) but whose size fluc-

tuates, we have proposed to measure the evolutionary benefit

of the public good in terms of the long-term expected number

of individuals of each strain. This is done in the biologically-

inspired setting of a metapopulation of non-interacting com-

munities of varying size composed uniquely by one of the

species. In certain circumstances, that we have determined,

the public good production allows the communities composed

of cooperatingS individuals to achieve a greater long-term in-

crease of their average size than the communities consisting of

freeriding F individuals. In these conditions, we say that the

cooperating strain outcompetes the freeriding one. We have

thus determined, both analytically and with simulations, the

circumstances under which cooperation is beneficial or detri-

mental to public good producers, as well as the conditions un-

der which it is the optimal strategy. Hence, we have demon-

strated that the rate of switching, along with the selection in-

tensity and the public good parameter, determine when one

species is more successful than another. Our analysis of the

“eco-evolutionary game” thus shows that in a fluctuating pop-

ulation the evolutionary success of a strain goes beyond hav-

ing a growth-rate advantage and a higher fixation probability.

We have also advanced the characterization of the popula-

tion size distribution by generalizing the linear noise approxi-

mation to populations of fluctuating size, thus accounting for

demographic fluctuations about the predictions of the under-

lying piecewise deterministic Markov process. While we have

found that the linear noise and the piecewise-deterministic

Markov process approximations describe the average popu-

lation size equally well, only the former fully characterizes

the population size distribution. In fact, the linear noise ap-

proach accounts for the joint effect of environmental and de-

mographic noise and has allowed us to capture the width and

skewness of the population size distribution.

This study shows that coupled environmental and demo-

graphic noise can greatly influence how the composition and

size of a population evolve. In particular, social interactions

between strains—such as public good production—can lead

to intricate eco-evolutionary dynamics, which potentially sup-

port cooperation. This sheds light on phenomena that are di-

rectly relevant to microbial communities, which often feature

coupled internal and ecological evolution. This can yield the

kind of eco-evolutionary game analyzed here, that can be a

potential theoretical framework for experimental studies in-

vestigating the emergence of cooperative behavior in micro-

bial communities of time-fluctuating size.
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