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ABSTRACT:  

When a tablet is compacted from deformable granules and then broken, the fracture plane may 

cleave granules in two (intra-granular fracture) or separate neighboring granules (extra-granular 

fracture). In this study, a novel method was developed to quantify the extent of intra- versus 

extra-granular fracture by compacting tablets from multi-colored ideal granules and evaluating 

fracture surfaces. The proportions of intra-granular and extra-granular fracture were quantified 

and modeled in light of a new metric, the deformation potential, Δ, reflecting the solid fraction 

increase as an initial granule bed is compressed into a final tablet. Results show that a 

measurable tablet strength is achieved at Δ > 0.18, but intra-granular fracture is not observed 

until Δ > 0.21. At very large Δ, tablets experience almost exclusively intra-granular fracture, yet 

the tablet tensile strength is considerably lower than that of a tablet compacted from raw powders 

versus pre-compacted granules. Thus, secondary compaction of granules appears to weaken the 

granule matrix, leading to reduced tablet tensile strength even in the presence of strong extra-

granular bonding. 
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1. Introduction 

Pharmaceutical tablets can experience a range of mechanical stressors from multiple sources 

including the tumbling action inside a tablet coating pan, vibration and impact during bulk 

transport in bottles, or from being forcefully pushed through the foil backing of a blister pack. In 

these cases, it is desirable to avoid tablet fracture. Fracture not only affects tablet elegance, but 

can also increase the risk of unintended exposure to care givers in cases where the tablet coating 

helps contain the medicine within. A mechanistic understanding of tablet fracture is therefore 

highly desirable.  

 

The transformation of powder into a coherent tablet structure is essentially an inter-particle 

bonding process. However, the majority of pharmaceutical powders fed to a tablet press are not 

primary particles, but granular, porous secondary particles. Powders are often converted into 

granules via various granulation techniques and then forward processed into tablets to achieve 

desired quality attributes of the final product (such as mechanical strength, content uniformity, 

dissolution) and/or to improve process performance. Tablets prepared from granules can be 

described as granules bonded together. In addition to the mechanical properties of the primary 

particles and granules, the physical changes that occur to granules during the confined 

compression process are also important in evolution of the tablet structure. In the development of 

a quality tablet dosage form, a balance between physical (e.g., appearance) and mechanical (e.g., 

solid fraction (SF), tensile strength (TS)) properties of tablets and their performance (e.g., 



 

 

disintegration time, dissolution) must be maintained. Use of mechanistic understanding in 

selecting material attributes and/or process parameters to design a tablet product can potentially 

ensure robustness of the product quality attributes.  

 

To mechanistically explain the strength of tablets formed from granules, the process of fracture 

has attracted considerable interest. The TS of pharmaceutical tablets has been explained in view 

of the phenomena that generally occur in metal (Hall-Petch relationship [1, 2]) and ceramic 

compacts (Griffith’s crack criterion [3, 4, 5]). In fact, Sun et al.
 
[6] and others [7, 8, 9] have used 

milled granules of microcrystalline cellulose (MCC) and showed that larger granule sizes lead to 

lower tablet TS. Relationships between TS, critical stress intensity and crack size have also been 

reported in literature [10, 11, 12]. However, mechanical properties of pharmaceutical materials 

such as ductility and brittleness are generally ranked between metal and ceramic materials. It is 

not clear whether the Hall-Petch relationship nor fracture mechanics can be applied to 

pharmaceutical materials such as MCC. Dislocation glide is not the expected deformation 

mechanism in MCC. Fracture of an MCC tablet by crack propagation is also less likely to occur 

because of the potential blunting of the crack-tip by plastic deformation [13]. Moreover, the 

crack length is a critical parameter that cannot be easily determined [14]. The largest crack is not 

necessarily located on the fracture plane. 

 

TS of tablets have also been modeled using the bond summation concept which is based on 

Rumpf’s theory of strength of agglomerates [15]. TS of a tablet is governed by the inter-

particular bonding force and the bonding area in a given cross section that fails under an applied 

stress [16, 17]. Johansson et al. [18] showed that low and high SF MCC pellets achieved larger 

and smaller bonding area in the tablet, respectively. For the bond summation concept to work, it 

is critical to determine the actual bonding surface area and the bonding force. However, it is 

difficult to quantify the directly. 

 

In the literature [18, 19, 20, 21], there is a common perception that the fracture plane of tablets 

prepared from granules is created between the neighboring granules. In contrast, our previous 

study [22] demonstrated that high SF tablets prepared from low SF granules fracture 

indiscriminately both intra- and extra-granularly and produce a smooth fracture plane. 



 

 

Conversely, low SF tablets prepared from high SF granules fracture extra-granularly by 

separating neighboring granules. A common perception also exists that intra-granular bonding 

strength is higher than extra-granular bonding strength in a tablet [18, 21].  

 

In this work a mechanistic model of tablet compression and strength evolution is proposed and 

explored experimentally by examining the fracture planes on matching halves of broken tablets 

prepared from novel, multi-colored monodisperse granules. The model explores basic 

phenomena that transpire as a bed of porous granules is compressed into a tablet and then 

broken. This includes the densification of individual granules with increasing compaction stress 

and associated evolution of granule strength as well as the formation of bonds between granules 

and the associated evolution of extra-granular bond strength. The novel use of multi-colored 

monodisperse granules in this work permits the experimental quantification of intra-granular 

fracture versus extra-granular fracture when compacted tablets are broken. These fracture areas 

are examined under different conditions of initial granule solid fraction and final tablet solid 

fraction. Analysis of these results leads to the identification of a new variable, the deformation 

potential, as being critical to the formation of extra-granular bonds and the evolution of tablet 

strength. Results also suggest that the inherent weakening of granules due to repeated 

deformation (first in the granulation process and then again in the tablet compaction process) is 

the dominant factor leading to decreased tablet TS. 

2. Mechanistic Model to Predict Tablet Tensile Strength  

The fracture of tablets composed of compressed granules can occur along two possible paths. 

The first occurs when the fracture plane propagates along the shortest possible path, cleaving 

granules and serving to minimize the fracture surface area regardless of the relative position of 

grain boundaries. This is expected when the strength of the grain boundaries (i.e. the extra-

granular bond strength), !!∀ , is the same or higher than the strength of the granule matrix (i.e. 

the intra-granular bond strength), !!∀ . The resulting fracture surfaces are flat and smooth with 

minimum surface area. The second occurs when the fracture plane propagates entirely between 

the granules, separating neighboring granules as it passes. This is expected when the grain 

boundaries are weak compared to the granule strength (i.e. !!∀ ! !!∀). The resulting fracture 



 

 

surfaces are rough and exhibit topography associated with the size and shape of the freshly 

separated granules.  

The most general, and perhaps the most common case is a combination. The fracture plane 

cleaves some granules but also separates granules when convenient (e.g. when grain boundaries 

are close by and moderately parallel to the fracture plane).  For the general case, the overall 

tablet strength, !!, can be modeled as a combination of both fracture paths: 

!! ! !!∀ ! !!∀ ! !!∀ ! !!∀             (1) 

where AIG and AEG are the area fractions of intra- and extra-granular fracture, respectively. While 

!! can be measured easily using a diametrical compression test, other approaches are needed to 

either predict or measure the variables on the right hand side of eqn.1. These approaches are 

discussed below. 

2.1. Estimation of AIG and AEG 

Analytical methodologies were developed and experiments were performed in this work to 

quantify the extent of intra-granular versus extra-granular fracture during diametrical 

compression testing (aka “hardness” testing) of round tablets. The approach was developed 

based on the pictorial model described in Figure 1. Tablets were prepared from mixtures of equal 

numbers of monodisperse granules of four different colors (white, blue, red and grey). Fracture 

by the diametrical compression test produced two fracture surfaces of tablets. If the granule color 

was different on each side of the fracture plane then fracture occurred extra-granularly (i.e. along 

grain boundaries). If the granule color was the same on each side, then either fracture occurred 

intra-granularly, or it occurred extra-granularly between two neighboring granules of the same 

color.  



 

 

 

Figure 1. Illustration of the Approach to Quantify Intra-granular and Extra-granular Fracture of 

Tablets. 

 

On average, the probability of two neighboring granules having the same color is 25% because 

of the equal mixing proportions of four colors of granules. Thus, we can write:  

!! ! !!∀ !
!

!
! !!!∀                                                                 (2) 

where Am denotes the area fraction where colors match on both sides of the fracture surface. 

Noting that the area fractions of matched colors and fracture types must both sum to unity 

provides: 

!! ! !!! ! !      (3) 

!!∀ ! !!∀ ! !              (4) 



 

 

where Amm denotes the area fraction where colors are mis-matched on both sides of the fracture 

surface. Combining equations 2-4, one can determine the intra-granular and extra-granular 

fracture area fractions as: 

!!∀ !!
!

!
!!! ! !                               (5) 

!!∀ !
!

!
! ! !!! = 

!

!
! ! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                                            

 

 

 

2.2. Prediction of !�� 

The prediction of granule tensile strength, !!∀ , for use in Equation 1 requires two steps. First, !!∀  

must be established as a function of granule solid fraction, ��! . Second, ��!  must be estimated 

as a function of the overall tablet solid fraction, SFT, since it is not possible to measure the solid 

fraction of granules directly within a tablet.  

 

The relation between !!∀  and ��!  can be measured directly on granules without including them 

in a tablet by making granules at different solid fractions and measuring their tensile strength by 

diametrical compression. The resulting data set can be fit to an exponential equation as follows: 

!!∀ ! ! ! ���!! ! ��!!          (7) 

where, c and d are material-dependent coefficients. Values of c and d can be established by 

regressing Ln(!!∀! against ��! . Equation 7 can thus be used to predict!!!∀  if ��!  is known.  

 

Unfortunately, while it is easy to measure the initial granule solid fraction, ��!
! , as well as the 

final tablet solid fraction, SFT, it is not practical to measure the final solid fraction of granules 

within the tablet,  ��
!

!
. Thus an additional equation must be established to estimate  ��

!

!
 as a 

function of SFT and ��!
! . The requirements of the equation are that: 

1) The curve must pass through the initial condition where both ��!
!  and SFT are known.  

2) ��
!

!
 must be greater than SFT at all values of SFT since the packing fraction is always <1. 

3) ��
!

!
  increases monotonically with SFT. 

4) ��
!

!
 approaches 1 as SFT approaches 1. 



 

 

5) The slope ���
!

!
!���! approaches 1 as SFT approaches 1.  

 

We find the following exponential equation to be useful in meeting these requirements: 

��
!

!
! !!

!
!! !!!∀!

!
! ! !

!

!
                                              (8) 

 

where, p is a fitting parameter adjusted to meet the initial condition (requirement 1).  

2.3. Deformation Potential 

As described above, tablet tensile strength is affected by both the initial granule solid fraction, 

��!
! , and (final) tablet solid fraction, SFT. In this work we combine these variables to provide a 

revised
 
[22] definition of the deformation potential, Δ. The deformation potential is defined as 

the difference between the final SF of the compacted tablet and the initial solid fraction of the 

un-compacted bed of granules, SFbed. Δ and SFbed are thus defined as: 

 

!! ��! ! ��!∀#      (9) 

and 

 

��!∀# ! ! ! !! ��!
!       (10) 

where !! denotes the voidage of the packed bed.  The voidage is defined as the space between 

granules and is a function of granule shape and packing, but not of granule solid fraction.  The 

packed bed can thus be considered as a “tablet” with zero strength. As the bed is compacted into 

a tablet (Figure 2), the granules will deform plastically. Deformation will occur by both 

densification of granules and by the plastic “flow” of granules into available void space. Both 

mechanisms lead to increased tablet solid fraction and strength. Combining Equations 9 and 10 

yields: 

 

!! ��! ! ! ! !! ��!
!     (11) 

Thus Δ=0 for an un-compacted bed of granules and Δ increases with increasing ��! or with 

decreasing ��!
!.  Consequently, tablet strength is expected to increase with increasing Δ and 



 

 

fracture of a tablet with low Δ is expected to occur by separation of granules with little or no 

intra-granular fracture. 

 

 

Figure 2. Illustration of Deformation of Granules  During Compression. 

 

3. Materials and Methods 

3.1. Virgin Microcrystalline Cellulose (V-MCC) 

In this study, microcrystalline cellulose (Avicel PH200, FMC, PA, USA) was used as the starting 

material to produce monodisperse granules, which were forward processed into tablets. Figure 3 

illustrates the schematic diagram of the study design.  



 

 

 

Figure 3. Schematic Diagram of the Study Design. 

 

A sieve fraction of 150-250 µm of MCC powder was obtained using a rotary sieve apparatus 

(Rotap RX29), and was referred to as 200 µm V-MCC. V-MCC was equilibrated at 20°C/30% 

RH condition for 24 hours prior to forward processing to eliminate the impact of moisture 

content variability on the compact’s mechanical properties [23]. The apparent density of V-MCC 

powder was determined to be 1.556 g/cc by helium pycnometry which was consistent with the 

literature [24].  

3.2. Monodisperse Granule Preparation  

V-MCC was mixed with 2% (w/w) FDC blue 2, iron oxide red or iron oxide black powder using 

a Turbula mixer (model T2F, Willy A. Bachofen AG, Basel, Switzerland) for 10 minutes at 32 

rpm to obtain blue, red or grey colored MCC powders, respectively. White, blue, red and grey 

colored monodisperse granules of precisely controlled size (1.5 mm diameter x 1.5 mm 

thickness), shape (biconvex cylindrical compact), and SF (nominally 0.44, 0.61 and 0.80) were 



 

 

produced by directly compressing V-MCC and colored MCC powders. A Korsch EK0 (Korsch 

Pressen, Berlin, Germany) tablet press equipped with standard concave, multi-tip tooling was 

used. SF of granules were controlled by varying the granule weight while keeping the granule 

thickness the same. The press speed was 30 strokes/ min. To condition for moisture content and 

allow post ejection relaxation, monodisperse granules were equilibrated at 20°C/30% RH for 24 

hours and stored in airtight glass containers until being characterized (for weight, thickness, and 

breaking force) and forward processed into tablets. Neither the V-MCC powder nor the 

monodisperse granules were lubricated in this study. 

3.3. Compression of Tablets from Colored Monodisperse Granules 

A list of tablets prepared from monodisperse granules is shown in Table 1. At each granule SF, 

equal proportions of granules, by weight, of all four colors were mixed together for 10 minutes at 

32 rpm on a Turbula mixer (model T2F, Willy A. Bachofen AG, Basel, Switzerland) prior to 

compaction.  For each set of conditions, five tablets (n=5), weighing 1.1 g each were made using 

an Instron universal testing machine (model 5569, Instron Ltd. Buckinghamshire, United 

Kingdom) equipped with 12.5 mm flat face tooling. The compression and decompression rate 

was 50 mm/min with zero dwell time. The die wall was lubricated with magnesium stearate 

powder.  Compressive stresses of approximately 60, 100 and 200 MPa were used to produce 

tablets with nominal SF of 0.72, 0.81, and 0.90. To allow post ejection relaxation, tablets were 

stored in airtight scintillation glass jars for at least 24 hours prior to measuring weight, thickness, 

and breaking force. 

 

Table 1. Colored Granule Mixtures and Tablets Prepared There From 

V-MCC 

Particle Size 

(µm) 

Colored Granule Mixtures Tablet 

Solid Fraction 

 

 

Diameter 

 

(mm) 

Nominal 

Thickness   

(mm) 

Nominal 

Volume  

(mm
3
) 

Nominal Solid 

Fraction 

 

200 1.5 1.5 2.0 

0.44 

0.61 

0.80 

0.72 

0.81 

0.90 

 

 



 

 

3.4. Physical Characterization of Granules and Tablets 

The apparent density of colored V-MCC was determined from the weight fractions and apparent 

densities of individual constituents [25]: 

!!∀# !
!!!!!

!!

!!
!
!!

!!

                                                                (12) 

where m and ρ denote the weight percent and apparent density of constituent powder, 

respectively.  

 

Monodisperse granules and tablets were characterized out-of-die for weight, thickness, and 

breaking force at least 24 hours after compression.  Solid fractions were calculated as [25]. 

 

�� !
!!!!∀#

!!!!∀#!!!∀#!! !!!!!!∀#

                                                     (13) 

where m, ρmix, Vcup, Adie, t and  dcup are defined as compact mass, apparent density of powder mix, 

cup volume of the punch, die hole area, out-of-die thickness of the compact, and cup depth of the 

punch, respectively. Tapped SF of the granule bed was determined from the tapped density and 

the initial granule SF using eq. 10 and the deformation potential using eq. 11.  

 

The breaking force of monodisperse granules was measured using a Zwick Testing System 

(Zwickiline 2.5kN, Zwick GmbH & Co. Germany) equipped with a Zwick Xforce 500 N load 

cell and 10 mm compression platens. Breaking forces of tablets were measured using an Instron 

universal testing machine (model 5569, Instron Ltd. Buckinghamshire, UK) equipped with a 1 

kN load cell and 50 mm diameter upper and lower platens. The upper platen compression rate 

was 10 mm/min for both equipment. Out-of-die thicknesses of compacts were measured using a 

Mitutoyo Absolute digital thickness gauge (Mitutoyo Mexicana S.A., Mexico). Weights of 

monodisperse granules and tablets were measured using a Mettler Toledo AE240 or Mettler 

Toledo XP56 balance (Mettler-Toledo, OH, USA). 

 

Tensile strengths of monodisperse granules (biconvex cylindrical compacts) and flat-faced round 

tablets were calculated using the following relation [22, 26]:
 

�� !
!!!!

!!!!∀

                                                              (14) 



 

 

where Fc, D, and Veq are defined as diametrical breaking force of the compact, diameter of the 

compact, and volume of the compact, respectively. Recent work suggests that tensile strengths 

calculated with this equation are likely in error by a factor of two [27]. However, the relation is 

used here for consistency with other works. 

 

The volume of monodisperse granules was calculated as: 

 !!∀ !
!!!

!
! !!!!∀#

!
! ! ! !!∀#                                                        (15)  

where D, t, dcup and Vcup are defined as diameter of the compact, total thickness (out-of-die) of 

the compact, cup depth of the tooling and cup volume of the tooling, respectively.  

3.5. Mapping of the Fracture Surfaces of Tablets for Intra-granular and 

Extra-granular Fracture 

Optical images of monodisperse granules, tablets and fracture surfaces of tablets were taken 

using a Keyence digital microscope (VHX 2000, Keyence America, IL, USA). The area of 

differing color between the two fracture surfaces of a tablet was initially measured using a macro 

developed in the FIJI distribution of ImageJ software [28, 29, 30, 31]. However, the automated 

process was found to be extremely sensitive to subtle changes in lighting and after several 

attempts was deemed unreliable for quantitative analysis. As a result, a manual method was also 

developed in which a grid was overlaid on each fracture surface as shown in Figure 4 and 

aligned with position/orientation of each mating fracture surface. The grid contained 275 

intersections. The intersections with same alphanumerical identities are the adjacent points on 

the two fracture surfaces; the two corresponding points were circled if their colors did not match 

as shown in Figure 4. The area fraction of mismatched colors, Amm, (e.g. for use in Equation 6) 

was estimated as the number of circles divided by the total number of intersections.    



 

 

 

Figure 4. Image Analysis Using a Grid Overlay. 

4. Results  

4.1. Granule Characterization 

Granule tensile strengths are plotted as a function of granule solid fraction in Figure 5. The data 

show that granule TS increases approximately exponentially with increasing granule SF, which 

is consistent with literature [32]. An exponential regression was performed (R
2
=0.98) resulting in 

regression constants of ! ! !!���� and ! ! !!���� for use in Equation 7. During testing, 

granules were observed to fracture along the centerline, indicative of tensile failure, and the 

calculated tensile strength was found to be unaffected by granule color. 

 



 

 

 

Figure 5.  Tensile Strength of Granules Versus Granule Solid Fraction. 

 

4.2. Deformation Potential 

Granule bed packing fractions (! ! !!) and solid fractions (SFbed) of tapped cylindrical beds of 

granule mixtures are summarized in Table 2 along with final tablet solid fractions and associated 

deformation potentials. For all three sets of granules, the packing fraction was slightly lower than 

the packing fraction (0.64) of randomly packed monodisperse spheres as reported in literature 

[33]. SFbed increased as the initial SF of granules ��!
!  increased. At a given tablet SF, the 

deformation potential (∆) is higher for low SF granules than for high SF granules.  

 

 

 

 

 

 

 

 



 

 

Table 2. Properties of Packed Granule Bed Prior to Compaction 

Initial Granule 

Solid Fraction 

(��!
! ) 

Packed Granule Bed Tablet Solid 

Fraction 

(SFT) 

Deformation 

Potential 

(∆) 
Packing Fraction 

(! ! !!)       

Solid Fraction 

(SFbed)  

0.44 0.58 0.26 

 

 

0.72 

0.81 

0.90 

0.46        

0.55       

0.64 

0.61 0.58 0.35 

0.37       

0.46       

0.55 

0.80 0.61 0.49 

0.23        

0.32       

0.41 

 

4.3. Fracture Surfaces – Qualitative observations 

Figure 6 shows optical images of fracture surfaces of tablets for various combinations of initial 

granule SF and final tablet SF. The highest SF tablets prepared from the lowest SF granules 

(highest deformation potential) have the smoothest surfaces (top-left images). The smooth 

fracture surface suggests indiscriminate fracture of individual granules (intra-granular fracture) 

with minimal separation of neighboring granules (extra-granular fracture). On the other hand, the 

lowest SF tablets prepared from the highest SF granules (lowest deformation potential) have the 

roughest surfaces (bottom-right images). The presence of intact three-dimensional granule 

structures in the fracture surface suggests that neighboring granules were preferentially separated 

(extra-granular fracture).  
 

 



 

 

 

Figure 6. Optical Images of Fracture Surfaces of Tablets Produced from Colored Granule 

Mixtures. Granule solid fraction increases left-to-right and tablet solid fraction increases bottom-

to-top.  

 

In Figure 7, optical images of fracture surfaces of the two halves of a tablet with a high 

deformation potential (top image) and a tablet with a low deformation potential (bottom image) 

are shown. Adjacent locations of the two paired surfaces are identified by A1 and A2, B1 and 

B2, and so on. The smoothest fracture surfaces (top image) have greater color match between the 

two parts, if superimposed, compared to the roughest fracture surface (bottom image). This 

observation suggests that fracture of individual granules (intra-granular fracture) and/or 

separation of neighboring granules of the same color (extra-granular fracture) contributed to the 

color match between the two surfaces in the top image. Alternatively, separation of neighboring 

granules of different colors (extra-granular fracture) resulted in color mismatch between the two 

surfaces of the bottom image.   

 



 

 

 

Figure 7. Optical Images of Fracture Surfaces of the Two Halves of Tablets. Top and bottom 

images are for the highest and lowest deformation potential, respectively. 

 

The extent of color match and mismatch between mating fracture surfaces was qualitatively 

estimated using ImageJ software. Results are mapped for tablets of varying deformation potential 

in Figure 8. The black color denotes mating fracture surfaces where granules were the same color 

on both sides. Red indicates mating fracture surfaces where granule colors were mis-matched. At 

a given tablet SF, color match area decreases as granule SF increases (left to right). On the other 

hand, at a given granule SF, color match area decreases as tablet SF decreases (top to bottom). 

The extent of color match varies with the deformation potential. The largest color match area 

(black area in the top-left image) corresponds to the highest deformation potential, and vice versa 

(red area in the bottom-right image is the largest). This observation is consistent with the optical 

images presented in Figure 7.  

 



 

 

 

Figure 8. Color Match (Black) and Mismatch (Red) Areas Between Fracture Surfaces of the Two 

Halves of Tablets as a Function of Deformation Potential (∆). Deformation potential decreases in 

both left-to-right and top-to-bottom directions. 

 

4.4. Fracture Surfaces – Quantitative observations 

Quantitative estimations of AEG using the grid-overlay technique (Figure 4) are presented in 

Table 3 and are plotted in Figure 9. The figure shows proportions of intra-granular fracture areas 

(AIG) plotted against the deformation potential (∆). Interestingly, the AIG of tablets are collapsed 

into a single line in this plot. Over a wide range of both initial granule SF and final tablet SF, the 

mode of granule fracture appears to be a function of deformation potential only. AIG increases 

linearly to approximately 100% as the deformation potential increases to a maximum value of 

approximately 0.66. The linear fit when extrapolated slightly, passes through an x-intercept value 

of approximately 0.21.  



 

 

 

Figure 9.  Proportion of Intra-granular Fracture as a Function of Deformation Potential. Open, 

grey and black markers represent nominally 0.72, 0.81 and 0.90 SF tablets, respectively.  

 

This suggests that a critical deformation potential, (∆c) exists, below which the tablet may not 

have a coherent structure and would not fracture intra-granularly if the final tablet SF is not 

greater than the initial SF of the granule bed at least by 0.21.  

4.5. Tensile Strength of Tablets 

Tablet tensile strengths, σT, are tabulated in Table 3 and plotted as a function of the deformation 

potential in Figure 10. The figure shows that TS increases with deformation potential at any 

given tablet SF. Comparing the results in Figure 9 and Figure 10 shows that despite the 

comparable AIG  at a given deformation potential, tablets with higher SF have higher TS. This 

suggests that higher intra-granular strength may contribute to the higher TS of tablets even when 

intra-granular fracture areas are the same. The slope of the linear fit is also higher at a higher 

tablet SF. One should take caution in extrapolating the data as certain condition may not be 

physically achievable. For example, for 0.58-0.61 granule packing fraction, by definition, 

granule SF needs to be >1 to achieve a condition of 0.25 deformation potential in a 0.90 SF 

tablet, which is not physically possible. It should be noted that minor surface flattening (not more 



 

 

than 5% of the tablet diameter estimated by visual observation) of the low SF tablets prepared 

from low SF granules was observed at the tablet/platen contacts during the breaking force test. 

 

 

Figure 10. Tablet Tensile Strength Versus Deformation Potential. Open, grey and black markers 

represent nominally 0.72, 0.81 and 0.90 SF tablets, respectively. Dotted lines are the linear fits. 

 

 

Interestingly, the linear fits at all tablet SF’s when extrapolated, pass through a common x-

intercept of ~0.18, which is close to, but smaller than, the value of 0.21 established in Figure 9. 

This observation suggests that between a deformation potential of 0.18 and 0.21, bonds are 

formed at grain boundaries. These bonds are sufficiently strong to provide measurable TS to the 

tablets but are not as strong as the granules. As a result, these bonds are the weakest link and fail 

during tablet fracture. Thus, granules separate at grain boundaries instead of cleaving. 

Conversely, above a deformation potential of 0.21, the bonds not only provide measurable TS to 

the tablets, but their strength begins to approach that of the granules. Above 0.21, a portion of the 

fracture surface begins to cleave the granules instead of pulling them apart. 



 

 

4.6. Granule densification during tablet compression 

Equation 8 was utilized to describe the densification behavior of granules as they are compressed 

within a tablet. Predictions of ��
!

!
 are tabulated in Table 3 and plotted in Figure 11. The p-values 

were chosen to pass through the initial conditions (square data points) and are tabulated in Table 

3. For comparison in Figure 11, additional data are included from the work of Johansson et al. 

[20]. In Johansson’s work, MCC pellets were coated with lubricant, pressed into tablets, pulled 

apart again, and the granule solid fractions were measured directly. The figure shows that 

Equation 8 provides the expected trending behavior and also describes Johansson’s data nicely. 

 

 

Figure 11.  Exponential Fitting Curves (Dotted Lines) to Estimate Final Granule Solid Fraction 

in Tablets. Circle markers (O) are experimental results from literature [20]. 

 

4.7. Estimation of granule TS 

Predictions of ��
!

!
were used as input into Equation 7 to estimate the intra-granular tensile 

strength, σIG, which is also tabulated in Table 3. Estimating the granule tensile strength in this 

way assumes that granules which have already been compacted once maintain their strength 



 

 

when re-compacted to a still-higher SF within the tablet. This turns out to be a poor assumption 

as discussed below.  

 

Table 3. Quantitative Study Results 

��
!

!  SFT ∆ 

(��11) 

AIG 

(��!!! 

σT (MPa) ��
!

!
 

!��!!! 

σIG (MPa) 

(Eq 7) 

σEG (MPa) 

(Eq 1) 

0.444 0.723 0.463 0.762 2.70 0.751 4.80! -4.04!

0.444 0.719 0.459 0.630 2.62 0.748 4.70! -0.90!

0.444 0.721 0.461 0.665 2.56 0.750 4.75! -1.78!

0.608 0.719 0.369 0.472 1.61 0.777 5.73! -2.08!

0.608 0.725 0.375 0.288 1.34 0.781 5.88! -0.49!

0.608 0.718 0.368 0.363 1.61 0.777 5.71! -0.72!

0.803 0.722 0.232 0.058 0.58 0.841 8.85! 0.07!

0.803 0.725 0.235 0.020 0.53 0.842 8.90! 0.36!

0.803 0.717 0.227 0.071 0.62 0.840 8.76! -0.01!

0.444 0.812 0.552 0.814 4.90 0.825 7.94! -8.40!

0.444 0.807 0.547 0.831 4.74 0.821 7.71! -9.93!

0.444 0.807 0.547 0.831 4.56 0.821 7.71! -11.95!

0.608 0.804 0.454 0.570 3.21 0.834 8.41! -3.68!

0.608 0.814 0.464 0.622 3.18 0.841 8.83! -6.11!

0.608 0.814 0.464 0.648 3.54 0.841 8.83! -6.22!

0.803 0.810 0.320 0.202 1.66 0.872 10.92! -0.68!

0.803 0.806 0.316 0.051 1.51 0.870 10.79! 1.01!

0.803 0.800 0.310 0.309 1.88 0.868 10.61! -2.02!

0.444 0.895 0.635 0.937 9.24 0.899 13.12! -48.37!

0.444 0.905 0.645 0.874 9.37 0.908 13.97! -22.49!

0.444 0.895 0.635 0.865 9.37 0.899 13.12! -14.60!

0.608 0.896 0.546 0.719 6.72 0.905 13.63! -10.94!

0.608 0.903 0.553 0.673 6.89 0.911 14.18! -8.12!

0.608 0.889 0.539 0.651 6.88 0.899 13.10! -4.70!

0.803 0.898 0.408 0.449 4.31 0.918 14.92! -4.32!

0.803 0.897 0.407 0.263 4.07 0.918 14.86! 0.23!

0.803 0.895 0.405 0.374 4.55 0.916 14.73! -1.54!

 

 



 

 

4.8. Evaluation of Extra-granular bonding 

With estimated values of AIG, σIG, and σT, tabulated in Table 3, and given the relation AEG= 1-

AIG, it was possible to calculate a numerical result for σEG that would satisfy Equation 1. These 

results are also tabulated in Table 3. However, many of the predictions provide a negative value, 

which is not physically reasonable. The negative value occurs because the estimate of σIG is too 

high. In fact the estimate of σIG is so high that the term AIG* σIG in Equation 1 already exceeds 

the measured tablet tensile strength, σT. Thus, the actual value of σIG is necessarily lower than 

that predicted by Equation 7 and plotted in Figure 5. In other words, the granule matrix becomes 

weaker when re-compacted within the tablet.  

5. Discussion 

The experimental results in this study have implications to improve the current understanding of 

tablet TS. In the literature, the perception is that during the diametrical breaking force test tablets 

prepared from granules fracture only extra-granularly (around the granules) [18, 21], and the TS 

of tablets is governed by the bonding force and the bonding area between the neighboring 

granules that are separated. This would suggest that the strength of granules in the tablet matrix 

would have little or no impact on the TS of tablets. However, tablet fracture surfaces were 

directly mapped in this study, and clearly demonstrate that tablets fracture both intra- and extra-

granularly. The extent of each fracture type depends on the deformation potential only. This 

would give a new perspective understanding of the TS of tablets prepared from deformable 

granules and would help future development of a mechanistically based quantitative model to 

predict TS of tablets.  

 

The results suggest that in contrary to the common perception, higher intra-granular strength 

would improve the measured TS of tablets. Therefore, materials with high compaction properties 

such as MCC, HPMC, etc. would be beneficial to tablet strength even when granulated. Other 

plastically deformable systems are also expected to fracture in the same fashion. However, a 

broader application of these findings for formulation development would require additional 

work. The coefficients in the model are formulation dependent. Therefore, the granule TS versus 

granule SF relation and the fracture mode of tablets need to be understood for non-plastically 



 

 

deforming systems such as lactose, mannitol, or their mixtures with MCC, which would have 

different compaction behavior or fracture mechanics than MCC.   

The mechanistic model proposed in this report predicts the intra-granular strength at the final 

granule solid fraction in tablets. However, the predicted intra-granular strength was higher than 

the experimental measured tablet tensile strength would allow, resulting in an unrealistic 

estimation of extra-granular bond strength. This is attributed to potential weakening of the 

granules due to fracture or cracking of granules, which could occur to a limited extent during the 

tablet compression process. In general, the exponential equation (Eq. 7, Figure 5) predicts higher 

intra-granular strength than what is realized in the tablets.   

 

At a given tablet SF, smaller deformation potential produces weaker tablets. The SF and TS of 

granules are higher if produced using higher compaction pressure. Irrespective of the granules 

SF, the same amount of compression pressure is required to achieve the final tablet SF. However, 

high SF granules produce tablet matrices that are not homogeneous, have larger extra-granular 

pores. The deformation potential for this system is low, and the tablet exhibits lower strength in a 

diametrical breaking force test. With that respect, the results would supplement the UCC (unified 

compaction curve) model from the material attribute perspectives. According to the UCC model, 

the TS of tablets formed from plastically deformable dry granules is lower if the difference 

between the cumulative compression pressure (granulation plus tableting) and the granulation 

pressure the materials experience is smaller, and vice versa [34]. 

6. Conclusions 

The use of monodisperse colored granule mixtures in this study enabled us to visualize the fate 

of granules during the confined compression process. Granules in the die cavity, even at low SF, 

tended to maintain their integrity where they underwent plastic deformation with associated 

change in shape and increase in SF under compressive pressure. Low SF granules deformed 

extensively and neighboring granules surfaces intermingled more than high SF granules and 

produce more homogeneous tablet matrices. At a high deformation potential, tablets fractured 

mostly intra-granularly (cleavage of individual granules). In contrast, at a low deformation 

potential, tablets preferentially fractured extra-granularly. Quantification of these fracture types 

demonstrated that the proportion of intra-granular fracture was a linear function of the 



 

 

deformation potential. The granule bed needs to exceed the critical deformation potential to 

obtain a coherent tablet. The TS of tablets increased nearly linearly with the deformation 

potential with higher slope of the latter relationship at higher tablet SF. Tablet tensile strength 

was modeled as a function of the intra-granular strength at final solid fraction in tablets weighted 

by the proportion of intra-granular fracture of tablets. However, the results indicated that the 

intra-granular bond strength is reduced by an unknown extent, preventing an accurate assessment 

of both intra-granular and extra-granular bond strength.  
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Figure Caption 

Figure 1. Illustration of the Approach to Quantify Intra-granular and Extra-granular Fracture of 

Tablets. 

Figure 2. Illustration of Deformation of Granules  During Compression. 

Figure 3. Schematic Diagram of the Study Design. 

Figure 4. Image Analysis Using a Grid Overlay.   

Figure 5.  Tensile Strength of Granules Versus Granule Solid Fraction. 

Figure 6. Optical Images of Fracture Surfaces of Tablets Produced from Colored Granule 

Mixtures. Granule solid fraction increases left-to-right and tablet solid fraction increases bottom-

to-top.  

Figure 7. Optical Images of Fracture Surfaces of the Two Halves of Tablets. Top and bottom 

images are for the highest and lowest deformation potential, respectively. 

Figure 8. Color Match (Black) and Mismatch (Red) Areas Between Fracture Surfaces of the Two 

Halves of Tablets as a Function of Deformation Potential (∆). Deformation potential decreases in 

both left-to-right and top-to-bottom directions. 

Figure 9.  Proportion of Intra-granular Fracture as a Function of Deformation Potential. Open, 

grey and black markers represent nominally 0.72, 0.81 and 0.90 SF tablets, respectively.  

Figure 10. Tablet Tensile Strength Versus Deformation Potential. Open, grey and black markers 

represent nominally 0.72, 0.81 and 0.90 SF tablets, respectively. Dotted lines are the linear fits. 

Figure 11.  Exponential Fitting Curves (Dotted Lines) to Estimate Final Granule Solid Fraction 

in Tablets. Circle markers (O) are experimental results from literature [20]. 

 


