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ABSTRACT

Although the complex modulus is one of the most basic properties used in pavement
analysis and design, its accurate measurement for existing pavement layers has al-
ways been a challenging task. When samples cut out from the pavement asphalt
layers are used for the HMA complex modulus tests, they are performed separately
for each layer. This paper describes an original method for determining the complex
moduli of individual asphalt layers. The new idea is tested by applying uniaxial
loading-unloading cycle tests to the HMA specimens combined of multiple layers. It
was observed that changing the thickness ratios in samples’ layers, allows obtaining
the sets of load and displacement values (F,u), which effectively enlarge the database
needed for the back analysis. For now, the conducted analysis presented in the pa-
per focused on numerical modelling of HMA specimens. The simulated numerical
testing conditions were based on viscoelastic parameters of asphalt concrete samples
whose values were determined in real laboratory tests. In the case of noisy results of
laboratory test simulations with a stochastic Gaussian process, by applying multiple
cuts and changing sample’s height, the determined values of stiffness moduli of the
individual layers do not vary from the reference values by more than 10%.
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1. Introduction

The material stress-strain relationship is one of the most basic properties used for
computer modelling of pavement layers. Various laboratory testing procedures have
been proposed in the past for determining the stiffness properties, such as complex
modulus of hot mix asphalt materials (HMA) as discussed in the ASTM D3497-79
(2003) and EN 12697-26 (2012) standards. Depending on the choice of the static
scheme in both laboratory and numerical tests, the complex modulus is determined in
relation to a forced stress state (compression, tension, bending, shearing) Di Benedetto
et al. (2001), Kim et al. (2004), Zhanping and Qingli (2007), Kim (2009), Lee et al.

(2012). For the design of new pavements, a material sample of required dimensions is
prepared in the laboratory. For determining stiffness properties of the existing asphalt
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layers, testing is conducted on the cores cut out from pavement. However, modern
asphalt pavements are often constructed with multiple layers, some of them are too
thin to be tested individually (see Figure 1).

Figure 1. Examples of specimens with layers for which it is impossible to determine the values of their

complex moduli in the laboratory

This paper proposes a method for determining complex moduli of individual asphalt
layers, based on back analysis of sample‘s vertical displacements subjected to the load.
The numerical testing conditions were simulated, based on viscoelastic parameters of
asphalt concrete samples whose values were determined in real laboratory tests.

2. Leaps and bounds method of reducing the HMA sample’s height

The proposed method involves measuring the complex modulus of HMA lifts in the
laboratory using a standard procedure for determining cylindrical HMA specimen stiff-
ness moduli (EN 12697-26:2012). The testing procedure was assumed to be similiar to
the uniaxial compression-tension method of HMA samples with, the samples subjected
to repeated loading-unloading cycles (Figure 2).

(a) View of a sample
prepared for tests.

(b) Calculation
model of the sample.

(c) Example of test results for the specimen com-
bined of 3 layers of HMA (testing temperature
was T=25◦C).

Figure 2. The scheme of loading-unloading mode.

Using the procedure illustrated in Figure 2, a set of maximum applied forces and
maximum top surface displacements for various temperature can be obtained and the
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complex modulus of the specimen can be calculated using an analytical solution in the
following form:

E⇤ = f(F, u, T,D, h) (1)

where:
E⇤ - complex modulus [MPa]
f(F, u, T,D, h) - functions of variables of respectively: force [kN], displacement [mm],
sample temperature [deg. C], and sample dimensions (D - diameter [mm], h - height
[mm]).

If an HMA core extracted from a pavement consists of at least two different HMA
layers, the standard testing procedure allows calculating only the so-called equivalent
value of the complex modulus, which describes stiffness of the whole sample, by analogy
to the relation (1):

E⇤

z = f(F, u, Tw, Dw, hw) (2)

where:
E⇤

z - equivalent complex modulus [MPa]
f(F, u, Tw, Dw, hw) - function of variables of, respectively: force [kN], displacement
[mm], temperature [◦C] and dimensions of a multilayer sample [mm].

The equivalent complex modulus of a multilayer sample depends on the height (thick-
ness) of its layers and their stiffness moduli. Therefore, it is possible to describe the
equivalent complex modulus of a multilayer sample with relation (3).

E⇤

z = g(E1, E2, ..., Ej−1, Ej , h1, h2, ..., hj−1, hj) (3)

hw =

j
X

i=1

hi (4)

where:
Ei - complex modulus of ith layer [MPa]
hi - thickness of i

th layer [mm]
j - number of pavement layers in a multilayer sample, j ≥ 2.

To determine the complex moduli of individual layers, it is proposed to perform mul-
tiple testing on a cylindrical core extracted from a pavement. Each testing should be
performed with the same loading protocol, but the height of core is reduced in each
subsequent testing by cutting off a portion of the cores. From each testing, pairs of
applied load and displacement histories are recorded and equivalent complex modulus
is determined according to equation (2). The set constituting the basis for back anal-
ysis used for determining complex moduli for all layers in the sample can be easily
created by the application of the leaps and bounds method for changing the height of
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the sample (by reducing the thickness of one of the outermost layers). The task can
be expressed with an equation system (5).
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Ez(0)(E1, E2, ..., Ej−1, Ej , h0)

Ez(1)(E1, E2, ..., Ej−1, Ej , h1)

...

Ez(i−1)(E1, E2, ..., Ej−1, Ej , hi−1)

Ez(i)(E1, E2, ..., Ej−1, Ej , hi)

= f(0)(F, u, T,D, h0)

= f(1)(F, u, T,D, h1)

...

= f(i−1)(F, u, T,D, hi−1)

= f(i)(F, u, T,D, hi)

(5)

where:
Ez(n) - equivalent elasticity moduli [MPa] for the samples’ numerical models of hn
height [mm],
f(n)(F, u, T,D, hn) - functions of: force [kN], displacement [mm], temperature [◦C]
and dimensions of the sample (D - diameter [mm], hn - sample height [mm]),
E1, E2, ..., Ej−1, Ej - stiffness moduli [MPa] of subsequent layers from 1 to j,
i - number of sample cuts,
j - number of sample layers when i ≥ j − 1,
n = 0 - sample cut out from the pavement of the height of h0 [mm],
n = 1..i - sample with a reduced height of hn [mm].

3. Verification of the algorithm

The method was verified based on the sets of (F, u) values, prepared using the numer-
ical sample models. The developed models allowed for a simulation of the laboratory
conditions of one-axis cyclic loading – unloading tests performed on cylindrical HMA
samples.

3.1. Numerical models of the samples

Three examples of core configurations were considered. All three consisted of layers
with materials properties either BA1 or BA3, and various thicknesses. Figure 3 shows
three chosen specimens A, B and C, and the corresponding locations of cuts, for which
numerical simulations of tests were conducted. Specimens A and B consist of two layers
made of BA1 and BA3 materials. Specimen C consists of three layers.
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(a) Specimen A. (b) Specimen B. (c) Specimen C.

Figure 3. Examples of the specimen models designated for tests of leaps and bounds method of reducing the
sample height.

3.1.1. The loading model

The authors assumed a static load described with Gaussian white noise in all the
calculations, which is a stationary stochastic process based on a normal distribution
with the mean value of 0 and standard deviation of σ. The general relation derived by
means of load values’ calculations, is given in the form of (6).

P = WN(σ) + F = WN(0.025) +A · Sin(2⇡10 · t+ ') [kN ] (6)

where:

P - one-row matrix with noisy F load values, that is (P1, P2, ..., Pn−1, Pn), A - an
amplitude of a sinusoidal load function of a cylindrical sample with a diameter of r
= 5 cm, corresponding to the maximum compressive stresses on the contact surface
equal to 100 kPa (a priori assumption),
WN(σ) - white noise process, understood as a series of uncorrelated random variables
of the expected value of zero and constant variance of σ2,
' - phase shift angle between the initial function value, and the value at which point
the function reaches the value of 0.

3.1.2. The reference values of complex moduli

The materials comprising individual cylindrical sample layers were described with
a Linear Visco – Elastic model (LVE). For the loading scheme shown in Figure 2
(for a one-layer sample), the value of complex modulus is the relation of stress and
deflection. Following our preliminary laboratory investigation, the stress-strain model,
shown in Figure 4, was assumed. The quantities shown in the figure are as follows:
|E⇤| – complex modulus (absolute value of complex number) [MPa],
E

0

– the real part of complex modulus [MPa],
E

00

– the imaginary part of complex modulus [MPa],
σ – stresses in the loaded – unloaded cylindrical sample [MPa],
✏ – strains in the loaded – unloaded cylindrical sample [–],
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' – phase angle [radians].

(a) The Lissajous material model (b) Zoom of the max
values

Figure 4. Model of stress-strain relationship assumed for the general case of loading-unloading test of HMA
samples

Viscoelastic properties in back analysis were described by means of a relaxation func-
tion. The authors used normalized forms of the functions, which, for the generalized
Maxwell model in the load frequency domain can be described with Prony series
Di Benedetto et al. (2004). Prony series for the real G0 part and the imaginary G00

part of the G(!) shear modulus can be written as follows (7):

G(!) → G0 = G0·(1−

N
X

i=1

gi+

N
X

i=1

gi · ⌧
2
i · !2

1 + ⌧2i · !2
) and G00 = G0·(

N
X

i=1

gi · ⌧i · !

1 + ⌧2i · !2
) (7)

where:

G0, gi, ⌧i - Prony series parameters, presented for BA1 and BA3 materials in Table 1.

Table 1. LVE parameters for BA1 and BA3 materials at temperature

T=15◦ C.

Parameter

Material name G0 [MPa] g [-] ⌧ [-] ⌫ [-] ⇢ [kg/m3]

BA3 2 017.7 0.5422 0.0221 0.34 2 500
BA1 2 430.8 0.5789 0.0166 0.34 2 500

For each FEM numerical simulation of the laboratory test, the values of the force and
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vertical displacement (F(t), u(t)), are recorded and the effective complex modulus is
determined by assuming that the sample is uniform using the equations (8).

|E⇤| ≈
F (t)max

u(t)max
· γ , γ =

h

⇡D2
(8)

where:
γ – the shape coefficient for the cylindrical sample [ 1

m
],

h – height of the single layered cylindrical sample [m],
D – diameter of the cylindrical sample [m].

The values of complex moduli of numerically modeled cylindrical samples made of
BA1 and BA3 materials are given in Table 2 (for readability purposes their quantities
are reported without the asterisk symbol).

Table 2. Set of the true complex
moduli values determined for samples

made of materials BA1 and BA3.

Complex modulus [MPa]

EBA1 5 289

EBA3 4 742

Further, in the paper, they are treated as true values approximating the moduli of
samples made of mixtures used in HMA layers.

3.2. Preparation of the dataset (F, u)

The choice of random A, B, and C samples shown in Figure 3 was based on the analysis
of a system comprised of asphalt layers in flexible pavements, and the analysis of typical
solutions applied in practice. In order to determine the values of complex moduli for
individual specimen layers, the authors assumed a necessary number of cuts i, for
each of the specimens A, B, and C (i = j + 1) and their locations. The assumption is
to address the issue of noise in the input data set, according to the hypothesis that
the accuracy of estimating the parameters of the model increases with the increasing
sample population size.

(a) Specimen A. (b) Specimen B. (c) Specimen C.

Figure 5. Indicated location of the cutting mark forcing a change in the height of the HMA specimen.

For individual series of numerical test models, the authors considered the noisy values
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of the load function and calculated displacements. An example of the individual series
of test results obtained for the specimen A before it was cut is illustrated in Figure 6.

(a) The relation of load in the func-
tion of time.

(b) The relation of displacements
in the function of time.

(c) Load-displacement relation.

Figure 6. Graphic representation of the (F, u) data set (black markers on the charts symbolize the results of
the numerical test model and the continuous green line - its approximation.

Thanks to comprehensive data, it is possible to complete the result set of measured
values (F, u) for modeled multilayer A, B, and C samples, and to introduce them later
on to the algorithm schematically presented in Figure 7. The mean values of maximum
displacements for all three samples and cutting variants shown in Figure 5 are given
in Table 3.

Table 3. Displacement values from the dataset for back analysis.

Specimen status Mean of max. amplitude of displacements, [µm]

(No. of cut) Specimen A Specimen B Specimen C

No cut 2.027 2.222 3.110

First cut 1.817 2.007 2.807

Second cut 1.622 1.776 2.620

Third cut 1.413 1.586 2.411

Fourth cut — — 2.260

3.3. Back analysis

The back analysis algorithm used in analysis is shown in the Figure 7. Although
it refers to a three-layer specimen, the method can be applied for determining the
complex moduli of specimens with a greater number of layers. The calculations are
iterative, and the number of iterations depends on the number of considered sets of
values (F, u) for a given core (”(F, u) couples”). As the criterion for convergence of
the back analysis, the authors assumed the best fit between the known displacements
u and uk which were the calculated displacements values for the samples using the
numerical model after the k − th iteration. The criterion was expressed in the form
of an objective function described with condition (9). For calculating uk displacement
values, the authors used the finite element method described in Górnaś and Pożarycki
(2014).

sum(δ) =
u− uk

u
< δmax = 0.01 (9)
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where:
sum(δ) - sum of the values of the relative differences between referenced displacement
values u (those from numerical simulation) and displacement values uk, which are
calculated in each iteration k,
δmax - specified maximum value of the relative differences, which can be accepted in
engineering calculations.

(a)

Figure 7. The procedure for determining complex moduli of individual lifts in a core by use of back analysis
(used symbols correspond to the description in text, symbol k stands for iteration step in the back analysis
procedure of searching for the moduli E1, E2 and E3).

The assumed method uses a static load scheme. In the back analysis, the optimization
procedure was performed using the Nelder Mead optimizing algorithm Fuchang and
Lixing (2012). It is a derivative-free, direct search method, which in cases of numeri-
cally – oriented problems is its big advantage. Generally, the Nelder Mead algorithm
performs well (considering the speed and accuracy) for solving low dimensional prob-
lems (the indicated limit is n < 10) and without many local minima. Dimensionality
stands here for the number of input independant variables in the objective function.
Considering the search variables declared for specimen C, equation (9) generates the
two dimensional optimization problem expressed by formula (10).

δ(EBA1, EBA3) → min. (10)
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However standard form of Nelder Mead algorithm becomes inefficient in high dimen-
sions and lacks of a satisfactory convergence theory. Therefore the Adaptive Nelder-
Mead Simplex was chosen for our calculations such as described in already men-
tioned Fuchang and Lixing (2012), where the basic algorithm parameters (expansion,
contraction and shrink) depend on the dimension (n) of the optimization problem. In
this paper, the calculations were performed assuming:
- reflection ↵ = 1
- expansion β = 1 + 2/n
- contraction γ = 0.75 + 1/2n
- shrink δNM = 1-1/n
- the tolerance tol = 1e-6
- maximum number of iterations maxiter = 200.
The obtained values of searched variables are given in Table 4. Absolute value of the
relative error of determining the complex modulus of individual specimen layers was
assumed as the relation described with the general formula (11).

✏ = |
E − True value

True value
| · 100% (11)

where:
E - calculated values of complex modulus referred to individual sample layers incor-
porated in studies of the samples A, B or C [MPa],
True value - the values of reference complex modulus [MPa] referred to individual
sample layers considered in particular configuration of studied specimens A, B and C.

Table 4. The results of determining complex moduli of asphalt mineral mixtures for
multilayer specimens A, B, and C

Calculated E, [MPa] Criterion, sum(δ), [%] Error ✏, [%]

Specimen BA1 BA3 BA1 BA1 BA3 BA1

A 5182 4540 ... 0.65 2.02 4.26 —

B 4981 4656 ... 0.40 5.82 1.81 —

C 6089 3929 5364 0.25 15.13 17.14 1.42

True value 5289 4742 5289 — — — —

In the first approximation, the values in Table 4 come solely from calculations in
which it was assumed that the number of cuts is greater by 1 than the number of
layers in the sample (j + 1). This means that in the case of a sample with two layers
(specimens A and B), the maximum value of errors for determining complex moduli
of individual layers is lower than 6%. Assuming the admissible limit value of error
equal to 10%, the results meet the requirements at the engineering assessment level.
However, as far as specimens with three layers are concerned (specimen C), the value
of error exceeds 10%. Figure 8 shows that the resulting relative error depends on the
number of consecutive cuts.
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(a) Specimen A. (b) Specimen B. (c) Specimen C.

Figure 8. Implemented values of relative differences ✏ [%] between the values of moduli calculated by the
leaps and bounds method of reducing the HMA sample height, and the true values.

In fact, as the three-layer samples show variability, back analysis calculations were
performed for further cuts. For the number of cuts larger than 6, the calculated co-
efficient of variation of relative error values ✏, turned out to be less than 1%. It was
determined that in the case of constituting sample C the value of error below 10% is
achieved by applying a number of cuts that fulfills the condition of i ≥ 6.

Following further investigations, an additional interesting insight of the presented
method is to determine the properties of specimen C considering the consecutive cuts
removing the top layer BA1 and then the top 10 mm of the layer BA3. Next, for the
remaining sum of BA3 and BA1 thickness, consecutive cuts of the bottom layer BA1
were performed. This procedure likely gives ”the exact” properties of BA3, even if the
data are noisy. The cut configuration which meets such a cutting procedure is shown
in the Table 5 as case 1. For the comparative purposes case 2 was used (discussed
earlier according to Figure 8c).

Table 5. Cuts configuration for the further analysis of specimen C.

Sample status Number of Layer height [m] (case 1) Layer height [m] (case 2)

(No. of cuts) (F,u) couples BA1 BA3 BA1 BA1 BA3 BA1

No cut 1 0.03 0.04 0.08 0.03 0.04 0.08

1 2 0.02 0.04 0.08 0.03 0.04 0.07

2 3 0.01 0.04 0.08 0.03 0.04 0.06

3 4 0.00 0.03 0.08 0.03 0.04 0.05

4 5 0.00 0.03 0.07 0.03 0.04 0.04

5 6 0.00 0.03 0.06 0.03 0.04 0.03

6 7 0.00 0.03 0.05 0.02 0.04 0.03

In a standard deterministic modelling approach, after each consecutive cut on the spec-
imen C, one would enlarge the input data set at most by one (F ,u) couple. Therefore,
the probabilistic methods were used to address once again the rule given by equa-
tion (6). In consequence, for each number of cuts, one hundred independent samples
with the random noise were calculated to model the population of the results that
would be obtained in a laboratory practice. Figure 9 shows a candle plots for the
obtained data distributions (D), represented by the cross symbol and characterized
with only five numbers. It is a convenient way to present the population properties,
and these five numbers are:

• Min: the minimum value observed in the distribution D

• Q1: the lower quartile informing that 25% of the data points in D are less than
Q1
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• M: the median which indicates that 50% of the data points in D are less than M
• Q3: the upper quartile showing the limit of 75% of the data points in D which

are less than Q3
• Max: the maximum value of the distribution D.

The outermost part that is not covered by the underlying distribution is typically
represented by the outliers. As a criterion for the outlier detection the interquartile
method was applied.

(a) Case 1. (b) Case 2.

Figure 9. A candle plots describing the relative error distribution D in function of the number of cuts for
cases 1 and 2 of specimen C.

Back analysis results shown in Table 6 refer to the last made cut. As it was expected,
the case 1 scheme results in the smallest error value for the BA3 layer. However,
considering it is admissible engineering value below 10%, the results for cuts number
of 5 and 6 are satisfactory in both cases.

Table 6. The results of determining complex moduli of C specimen layers (6th cut)

Calculated E, [MPa] Criterion, sum(δ), [%] Error ✏, [%]

Specimen C BA1 BA3 BA1 BA1 BA3 BA1

Case 1 4873 4627 5010 0.56 7.86 2.43 5.27

Case 2 4989 4329 4785 0.48 5.67 8.71 9.52

True value 5289 4742 5289 — — — —

Numerically generated noisy data are still rather pseudo – random values than the true
ones. In order to work with a high quality noisy data, the calculations were performed
using the machine independent random number generator such as described in Mat-
sumoto and Nishimura (1998). For calculation purposes a C++ code was implemented
using the modular scientific software framework ROOT Antcheva et al. (2009).

3.4. Discussion

The maximum matching value of displacements max(sumδ) obtained from back anal-
ysis and laboratory tests simulations for particular examples A, B and C is lower than
0.65%. In the first approximation, during the method verification, the authors used
a minimum number of necessary cuts of numerical models of cylindrical samples in-
creased by 1. For conditions shaped in this manner, the relative values of the difference
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between determined and true values of complex moduli of asphalt mineral mixtures
for samples A and B are satisfactory and amount to much less than 10%. In the case
of sample C, that is the sample with 3 layers, the obtained values below this percent
required at least 6 cuts. As far, in order to keep the acceptable engineering accuracy
of laboratory test results, the following conditions are recommended:

• HMA specimen temperature should be ≤ 15◦C
• loading frequency meets the condition ≤ 10 Hz
• the amplitude of the strain value is ≤ 50 · 10−6

• the layers in the specimen are fully bonded
• value of Poisson’s ratio corresponds to the HMA specimen temperature. In the
current study Poisson’s ratio of 0.3, corresponding to the HMA temperature of
15◦C, was assumed.

• to address the issue of noise in the laboratory input data, the number of cuts
should be larger than the number of layers in the specimen. However, a further
increase in the number of cuts reduces the variability (or the error) of the data.
For example, in the current study at least 6 cuts were required to reduce the
value of error below 10%.

This methodology has also some limitations: (1) it will only be useful for relatively
small displacement values, (2) cutting the samples in the laboratory must be precise,
(3) the smallest height that a multilayered specimen can have after all cut configura-
tions being applied in a real laboratory conditions should be at least equal to 3 times
the diameter of the largest grain in the specimen layers. The first restriction is related
to the commonly used practice where the elastic range of asphalt concrete samples
displacement is assumed. The second limitation arises from the proposal of testing the
samples in axial loading – unloading (compression – traction) mode. If the top and
bottom surfaces of the tested samples are not horizontal and mutually parallel, the
accuracy of the laboratory test results will be significantly affected. The third limita-
tion is in a close relation to the minimum height of cylindrical specimens which must
be preserved when testing its stiffness in the laboratory (the lower limit of specimen
height required by the Indirect Tensile Stiffness Modulus procedure is ≥ 30 mm). It
is worth to mention that this condition does not apply to the situation in which the
required number of the sample‘s cuts can be obtained when cutting relatively high
specimens (≥ 10 cm).

4. Conclusions

The paper discusses the calculation and testing procedure called the leaps and bounds
method of reducing the height of cylindrical samples made of several different mixtures,
such as used in HMA pavement layers. The method can be used to determine complex
moduli of individual layers of a specimen and not only the values of the equivalent
modulus. Based on the results of the laboratory tests simulated by the numerical
models of multilayer specimens, the authors verified a procedure which uses a method
of determining the values of complex moduli of cylindrical samples in the one-axis
cyclical loading-unloading mode. It was proven that in the case of noisy results of
laboratory test simulations with a stochastic Gaussian process, by applying multiple
cuts, and changing sample’s height, the determined values of stiffness moduli of the
individual layers do not vary from the true values by more than 10%. To address the
issue of noise in the laboratory input data, the number of cuts should be larger than
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the number of layers in the specimen. However, a further increase in the number of
cuts reduces the variability (or the error) of the data. For example, in the current
study at least 6 cuts were required to reduce the value of error below 10%.

The most important direction for further development of the described methodology
is to carry out the laboratory tests. In the first try, the cylindrical samples prepared
in the laboratory should be studied. There are two possibilities here. The first is
the forming the multilayer plate, from which the cylindrical samples could be drilled
out. An interesting alternative is to develop a procedure for making the multilayer
cylindrical samples by extending the standard procedure of the Marshal method. Only
after the laboratory phase is completed, one can try to use this method for testing
the samples cut from the asphalt pavement layers. An important development for the
proposed scheme is the investigation if the method can be adopted for materials with
dissimilar phase angles.
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