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Abstract: The immobilization of redox proteins or enzymes

onto conductive surfaces has application in the analysis of

biological processes, the fabrication of biosensors, and in

the development of green technologies and biochemical

synthetic approaches. This review evaluates the methods

through which redox proteins can be attached to electrode

surfaces in a “wired” configuration, that is, one that facili-

tates direct electron transfer. The feasibility of simple electro-

active adsorption onto a range of electrode surfaces is illus-

trated, with a highlight on the recent advances that have

been achieved in biotechnological device construction using

carbon materials and metal oxides. The covalent crosslinking

strategies commonly used for the modification and biofunc-

tionalization of electrode surfaces are also evaluated. Recent

innovations in harnessing chemical biology methods for

electrically wiring redox biology to surfaces are emphasized.

1. Introduction to biological redox chemistry

The proteins that facilitate biological electron transfer process-

es are referred to as “redox proteins.” These molecules play es-

sential roles in processes ranging from photosynthesis to respi-

ration, from bioluminescence to nitrogen fixation, and from

nucleic acid biosynthesis to apoptosis.[1, 2] The thermodynamics

and kinetics of the biological electron transfer reactions are de-

termined by the nature of the redox centers within the partici-

pating proteins. These redox-active centers can be either or-

ganic cofactors (e.g. , quinones and flavins)[3] or metal centers

(e.g. , iron sulfur clusters and Cu sites),[1] as exemplified by

Figure 1. Redox enzymes are a subset of redox-active proteins

that catalyze the oxidation or reduction of substrate molecules

at a redox-active center. The approximately 1.5 V potential

window which such biological redox centers span (see

Figure 2) is wider than the thermodynamic stability window of

water, since proton reduction to hydrogen (E(2H+/H2)=

�0.41 V at pH 7) and water oxidation to oxygen (E(O2/H2O)=

+0.82 V at pH 7) are both processes which have been occur-

ring in biology for millennia.[4] Recent work on azurin, a single-

copper electron-transfer protein, has elegantly demonstrated

how the reduction potential of biological redox centers is

tuned by the interplay between both the redox center archi-

tecture and the surrounding protein structure.[5, 6]

Research interest in biological redox chemistry is inspired by

more than just an academic curiosity in understanding the bio-

chemical reactions of life. Enzymes play an essential role in the

production of biofuels, and redox-active metalloenzymes play

a particularly vital role in hydrogen generation,[7–9] methane

production,[10] and a recently discovered role in cellulose break-

down.[11] Other redox-enzyme based applications range from

the development of novel biocatalysts for solving challenging

synthetic problems,[12,13] to the sequestering of atmospheric

CO2.
[14,15] As both redox-active proteins and enzymes can be

used to elicit an electronic response from a biological stimulus,

there is also a vast range of literature exploring the use of

such molecules for developing new sensor technologies.[16]

One of the most famous examples is the blood glucose sensor,

a device that helps billions of people worldwide by monitoring

the concentration of glucose in the bloodstream through the

electrochemical response of glucose oxidase.[17,18]

Figure 1. Examples of the diverse range of redox centers utilized in redox proteins and enzymes.
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This Review focuses on strategies for stably attaching pro-

teins and enzymes onto surfaces. Regardless of whether pro-

teins or enzymes are redox-active or not, the analytical study

and commercial utilization of such biomolecules is aided by

such immobilization methodologies. For example, surface plas-

mon resonance (SPR) detection of drug molecule binding is in-

herently reliant on the attachment of proteins or enzymes

onto sensor chips[19] or nanoparticles.[20] In industrial catalysis,

the localization of enzymes on the surface of a solid support

can also help overcome high operation costs, improving the

ease of separation of enzyme from product, the lifetime and

reusability of the enzyme, and potentially enhancing the ther-

mostability.[21] In the case of redox proteins and enzymes, im-

mobilization onto a conducting surface provides a route for

the delivery or removal of electrons (Figure 3). Such a “wired”

biomolecule–surface configuration can either be utilized in

electroanalytical measurements that probe the biological

redox process, or for constructing electrodes for biotechnologi-

cal applications such as medical bio-sensing,[22] solar fuel pro-

duction,[23,24] or cofactor regeneration systems.[25]

2. Electroactive protein adsorption onto
unmodified conducting surfaces

The orientation of redox proteins or enzymes onto electrode

surfaces in a so-called “electroactive” configuration, that is, one

that permits direct electron transfer between the surface and

the biomolecule, is a prerequisite for protein film electrochem-

istry, often referred to as PFE.[16,18,26–29] This technique quantifies

the thermodynamic and kinetic parameters of the electro-

chemical reactions of redox proteins and enzymes which form

a “film” on the surface of the working electrode that is interro-

gated using a standard three-electrode electrochemical

setup.[16,18, 26–29] The wealth of detailed mechanistic PFE studies

conducted using a wide range of different proteins or enzymes

directly adsorbed onto electrodes demonstrates the feasibility

of immobilizing such redox-active macromolecules onto solid

surfaces through noncovalent interactions.[16,18,26–29] When suc-

cessful, such an immobilization strategy clearly represents the

simplest approach for achieving electroactive films of redox

protein or enzyme.

In living systems, the exchange of electrons between soluble

redox proteins is dependent on the two proteins “docking” so

that the electron-donor and electron-acceptor redox centers

are brought into close enough approach to facilitate rapid,

direct electron transfer.[30] These interactions are often mediat-

ed by areas of complementary polarity on the donor and ac-

ceptor proteins.[30] Thus, a simple model for understanding suc-

cessful direct electroactive protein adsorption onto electrode

surfaces is to envisage the electrode surface polarity comple-

menting a region of oppositely charged residues on the pro-

tein surface that is proximal to the electron entry/exit redox

center (Figure 3).[31] This means that direct electron transfer be-

tween redox proteins and electrode surfaces is most easily ach-

ieved when the electron entry/exit redox center is close to the

protein surface.[32] The adsorption and orientation of proteins

onto surfaces can be influenced by the solution electrolyte

conditions. As described below, ionic strength and pH are both

important variables, and the entropically disfavored process of

adsorption is also favored at lower temperatures.[29]

Detailed work by Harry Gray and co-workers has demon-

strated that electrons tunnel through the protein structure

which separates electron-donor and electron-acceptor partner

redox-active centers, and therefore distance plays a crucial role

in determining the rate of electron transfer.[33,34] A helpful rule-

of-thumb provided by Dutton and co-workers is that within

metalloenzyme structures a tunneling distance of less than

14 � between redox active sites appears to support electron

transfer rates that are sufficiently fast to avoid limiting the rate

of redox catalysis.[31] Ideally, all protein or enzyme molecules

would therefore orient on the electrode with the same sub-

14 � distance between the redox-active center and the con-
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ducting surface. However, in some cases the electrochemical

response of otherwise identical protein molecules differs, and

this has been attributed to a “dispersion” in protein/enzyme

orientation.[7, 29,35]

Redox proteins/enzymes can also become adsorbed onto

surfaces in configurations which do not facilitate direct elec-

tron transfer at all, as illustrated in Figure 3. Alternatively, the

biomolecules may remain in solution, with the slow rate of dif-

fusion of these macromolecules impeding solution electro-

chemistry, and electron transfer to the electrode instead rely-

ing on the introduction of redox mediators. Such mediated bi-

oelectrochemistry is extremely useful in sensor develop-

ment,[36–38] and careful design of electron-transfer polymer gels

can even permit simultaneous entrapment of enzymes on the

electrode and modification of the reactivity. For example, a H2

enzyme was recently made functional in O2-saturated solution

through use of a viologen-polymer net.[39] However, as noted

above, herein we focus our attention on protein/enzyme–elec-

trode immobilization strategies that permit direct, unmediated

electron transfer.

No tools are currently available to predict the likelihood that

a redox protein or enzyme of interest will become adsorbed in

an electroactive configuration on a solid support, and screen-

ing for a successful protein–surface combination remains an

empirical process.[29] The electrode surfaces most commonly

used for electroactive protein/enzyme electrode immobiliza-

tion are briefly reviewed below.

2.1 Carbon electrodes

2.1.1 Carbon bulk materials

Carbon is an extremely popular material for constructing elec-

trodes for the electrochemical interrogation of small mole-

cules.[40] As a highly conductive allotrope of carbon, graphite

electrodes are common.[40] Either pyrolytic graphite edge (PGE)

or basal plane graphite (BPG) electrodes can be fabricated

from cutting highly ordered pyrolytic graphite (HOPG) sub-

strate in perpendicular directions, across or parallel to the

graphite sheets, respectively (Figure 4).[41]

For PFE, PGE has proved to be the most successful carbon

electrode material for the electroactive adsorption of redox

proteins and enzymes.[16,18, 26–29,42,43] This has been attributed to

the PGE surface components, including a diverse range of aro-

Figure 2. The voltage range spanned by biological redox centers. Reproduced with permission from ref. [1] .

Figure 3. Non-specific protein adsorption outcomes. a) Electrostatic attrac-
tion of oppositely charged protein residues and electrode surface facilitates
the immobilization of the protein in an electroactive orientation, facilitating
direct electron transfer between a redox center and the electrode. b) Protein
becomes immobilized in an orientation that does not facilitate direct elec-
tron transfer. c) Protein does not adsorb to the electrode surface.
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matic, hydrophilic (i.e. phenolic), and carboxylate functionali-

ties that are present as defects on the edge plane (Figure 5),

yielding a generally negatively charged surface that will elec-

trostatically attract regions of complementary positive polarity

on the protein surface.[44,45] Electrode surface polishing/abra-

sion processes using emery paper or pastes of diamond or alu-

mina are often used to actively increase the surface roughness

and thus increase the number of defect sites.[29] Alumina and

diamond polishing materials can remain on the electrode sur-

face even after rinsing and sonicating the electrodes, so it is

also possible that the presence of polishing materials contrib-

utes to the performance of PGE electrodes.[43]

The combination of the chemical heterogeneity and the

topological roughness of the PGE surface has also been credit-

ed with making it particularly suitable for electroactive pro-

tein/enzyme immobilization.[42] The chemical heterogeneity

allows multiple and varied favorable contacts to be made be-

tween the protein and the electrode surface.[29] The roughness

of the surface can ensure that a range of immobilized protein

orientations are electroactive,[46] as even if the face through

which the protein is adsorbed to the electrode surface is dis-

tant from an electron entry/exit site, rapid electron transfer

may still be feasible because this site is close to another part

of the electrode surface (Figure 5).[29] Such orientational flexibil-

ity may also explain a statistical variation in the electrochemi-

cal reaction parameters. For example, in H2-enzyme voltamme-

try modelling studies, the need to include a range of different

interfacial electron-transfer kinetic rate constants in the calcula-

tions is attributed to dispersion in the distance between the

electrode surface and the electron entry/exit site in the pro-

tein.[16,35,47] In studies on azurin, variations in the apparent mid-

point potential of the biological electron transfer were attribut-

ed to different protein–surface orientations/environments.[48,49]

In cases where the electron entry/exit site of the protein or

enzyme is located within a region of negative charge, the po-

larity of the PGE surface may not help facilitate electroactive

adsorption, and may instead promote the desorption of ad-

sorbed proteins.[45,51] Alleviating the electrostatic repulsion be-

tween protein and electrode can be achieved through mild

Figure 4. a) The edge- and basal planes of highly ordered pyrolytic graphite
(HOPG). b) The different potential configurations of HOPG in disk electrodes,
either : i) with the basal plane exposed, or ii) the edge plane (often denoted
pyrolytic graphite edge or “PGE” electrodes).

Figure 5. a) SEM images of the rough surface topology of PGE adapted with permission from ref. [50] . b) The chemical groups presented at the edge plane of
HOPG. c) The facilitation of electroactive adsorption of redox proteins onto PGE by the rough topology of the surface.
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acidification, or through the co-adsorption of protein with

polycationic hydrophilic compounds such as aminocyclitols,[32]

polylysine,[32] polymyxin[16,29,51] or polyethyleneimine.[45,51] Poly-

cationic species have an affinity for the PGE surface, and are

thought to mediate protein adsorption through the formation

of ternary salt bridges between areas of negative charge on

the protein and electrode surface (Figure 6).[32,29]

Aside from PGE, other carbon surfaces have also proved suc-

cessful for producing electroactive films of redox proteins or

enzymes. Carbon felt is comprised of an amorphous tangle of

smooth carbon fibers.[52] The high surface area, high conductiv-

ity, large void spaces and low cost of this material make it suit-

able for application in redox-enzyme biofuel devices.[52] Carbon

felt electrodes of small geometric surface area can accommo-

date and directly exchange electrons with large quantities of

enzymes, with a diiron hydrogenase used in a bio-H2 device.
[53]

Such porous materials can be less useful in mechanistic studies

of redox enzymes since the diffusion rates of substrate, prod-

uct, or inhibitor through the material may limit the rate of re-

activity. This would mean that electrochemical current cannot

be used to monitor the inherent maximum turnover rate of

the enzyme. However, in enzyme fuel cell developments,

where the focus is to maximize the enzyme current per unit

surface area, such porous materials are very useful, and have

enabled order-of-magnitude power increases.[54]

In solution-state electrochemical studies of small redox-

active molecules, common carbon-based electrode substrates

include boron-doped diamond (BDD) and glassy carbon

(GC).[55] BDD consists of diamond in which approximately one

atom in a thousand has been replaced by boron, giving the

material p-type semiconductive properties and yielding the

hardest carbon material used for electrodes.[41] The very low ca-

pacitance of BDD minimizes background current, effectively

enhancing the sensitivity of the electrochemical measure-

ment.[41] However, BDD is not widely utilized in PFE, presuma-

bly indicating that the surface electrostatics do not facilitate

protein adsorption. The structure of GC consists of interwoven

graphite ribbons, reminiscent of three-dimensional chain-

mail.[41] GC is much harder than HOPG, and contains hydropho-

bic basal-like and hydrophilic edge-like regions within the

same plane. This complex surface can facilitate the adsorption

of some proteins onto the bare GC surface,[16,56] but much of

the recent literature using GC electrodes for direct immobiliza-

tion of redox proteins describes the functionalization of the GC

surface with nanomaterials, such as carbon nanotubes

(CNTs),[57–60] carbon black,[61] and even silicon dioxide nanoparti-

cles.[62]

2.1.2 Carbon nanomaterials

There are two classes of CNT: single-wall carbon-nanotubes

(SWCNTs) and multi-wall carbon nanotubes (MWCNTs).[63,64]

SWCNTs have a cylindrical nanostructure, and can be thought

of as a single graphite sheet rolled up into a tube,[63] whereas

MWCNTs comprise several layers of SWCNTs concentrically ar-

ranged like rings in a tree trunk.[63] The ability of CNTs to medi-

ate direct ET is attributed to the combination of high surface

area, high conductivity, and the polarities of the surfaces they

present; the side walls of CNT likely have properties similar to

those of the basal plane of HOPG, whereas the ends of the

tubes likely have properties akin to PGE.[63,65] The walls of these

nanotubes are capable of forming strong p–p interactions to

small molecule species, such as pyrene.[64]

There are a variety of methods for structuring CNT/redox

protein assemblies on electrode surfaces, and these methods

have been comprehensively reviewed.[63,66,67] Simple ap-

proaches include the evaporation of a droplet of redox pro-

tein/CNT dispersion onto a GC electrode surface, followed by

the addition of a small amount of Nafion membrane to act a

binding agent,[60] or the filling of microcavities in the bulk elec-

trode surface with CNTs.[68] Such methods have resulted in

facile direct ET being established between the electrode sur-

face and a range of proteins, including hemoglobin,[60] horse-

radish peroxidase[60] and, remarkably, glucose oxidase;[60, 68] a

protein for which the establishment of direct ET is infamously

difficult owing to the coenzyme flavin adenine dinucleotide

(FAD) unit of GOx being deeply embedded within the protein

structure.[69] More advanced techniques, such as the construc-

Figure 6. Left : the interaction of polycationic species such as polylysine with negatively charged PGE surfaces. Right: the formation of ternary salt bridges be-
tween negatively charged protein surfaces and negatively charged electrode surfaces using polycationic species can facilitate the adsorption of negatively
charged proteins.
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tion of “CNT forests” (i.e. , short SWCNTs arranged orthogonally

to an electrode surface by self-assembly[70]) provide high sur-

face area assemblies into which redox proteins can be sponta-

neously incorporated,[65] or atop which redox enzymes can be

covalently wired.[71]

Graphene can be formulated as a highly conductive carbon

nanomaterial, that can also be used to make electrode surfaces

amenable for PFE. The attachment of graphene to a support-

ing electrode can be achieved through simple electrode treat-

ments, such as the application of graphene suspensions to GC,

which promotes the formation of a stable thin film owing to

p–p stacking interactions.[72] Alternatively, composite mixtures

of chitosan and graphene can be applied to carbon electrode

surfaces as thin films which promote the physisorption of

redox proteins.[73–76] A review of the uses of graphene in elec-

trochemical sensors and biosensors has been compiled by

Shao et al.[77]

The functionalization of electrode surfaces with high con-

ductivity carbon black (CB) nanomaterials, such as Ketjen Black

powder,[78] can also promote direct ET to redox proteins or en-

zymes.[78,79] The affinity between CB and protein surfaces has

been attributed to hydrophobic–hydrophobic interactions,

high porosity, and high surface-area-to-volume ratio.[80] The

electroactive immobilization procedure is often performed by

evaporation of suspension/slurries of CB particles onto carbon

electrodes.[61,78,79,81] More complex hybrid bio-synthetic catalyt-

ic systems can be generated by combining CB particles with

redox enzymes and other nanoparticles. For example, Matteo

Duca and co-workers showed that a nitrate reductase from E.

coli could be immobilized onto carbon black, and the co-depo-

sition onto a PGE surface of these bio-modified particles along

with Pt or Rh nanoparticles yielded a system capable of the

electrocatalysis of nitrate to ammonia at neutral pH.[82] In the

absence of enzyme, the slow reduction of nitrate by the noble

metal catalysts alone significantly limited the rate of denitrifica-

tion, whereas the enzyme-containing system may be applica-

ble for wastewater treatment.[82]

2.2 Metal oxide semiconductors

Electrodes constructed of metal oxide semiconductors have

become increasingly important in both PFE studies and metal-

loenzyme biotechnological device development. In particular,

n-type metal oxide semiconductors such as TiO2,
[83] indium tin

oxide (ITO)[84] and CdS[85] were used for solar fuel applica-

tions[24] and NADH recycling.[25] TiO2 electrode surfaces are

rough, porous structures consisting of aggregated nanoparti-

cles.[24] The CdS surface topology is similar, comprising a highly

porous three-dimensional network of CdS sheets.[24,46] ITO elec-

trodes with porous architectures suitable for redox-protein im-

mobilization can also be constructed[84,86] and, along with

PGE[24,45] and TiO2,
[87,88] present negatively charged oxide func-

tionalities for adsorbing protein or enzyme molecules at neu-

tral pH.[43,89] The rough/porous nature of these electrode mate-

rials is thought to aid in electroactive enzyme immobilization,

as described for PGE.[46,86] Indeed, PFE of a H2-producing

[FeFe]-hydrogenase from Clostridium acetobutylicum was re-

cently demonstrated using a TiO2 electrode,
[90,91] whereas previ-

ously immobilization of [FeFe]-hydrogenases on native elec-

trode surfaces had only been achieved using rough carbon

electrode substrates, such as PGE[92,93] or carbon felt.[53]

Unlike PGE, ITO is transparent and the porosity of such

metal oxide electrode surfaces is also readily tunable.[84,86] An

especially high-surface-area hierarchically structured ITO elec-

trode with a microporous inverse opal architecture and a mes-

oporous skeleton was recently developed by Reisner and co-

workers.[84] Immobilization of high quantities of the enzymes

photosystem II and a [NiFeSe]-hydrogenase onto a photoa-

node and a cathode, respectively, yielded a photoelectrochemi-

cal solar-water-splitting enzyme cell (Figure 7).[84] This device is

capable of yielding a light-to-hydrogen conversion efficiency

of as much as 5.4%.[84] Alternatively, using photosystem I, cyto-

chrome c and human sulfite oxidase, Lisdat and co-workers

have demonstrated the possibility of using ITO as a support

for light-driven bio-sensing redox enzyme devices.[94]

As with PGE, nonspecific adsorption of protein to a semicon-

ductor can be facilitated by considering the effect of pH. For

example, the isoelectric point (pI) of a TiO2 surface was found

to be 6.2,[95] whereas the pI values of a carbon monoxide dehy-

drogenase[96] and a [NiFeSe]-hydrogenase[83] were found to be

5.5 and 5.4, respectively. Both enzymes could be adsorbed to

TiO2 nanoparticles at pH 6,[83, 97,98] and this has been rational-

ized by considering that under these conditions the net sur-

face charge of the enzymes is negative whereas that of the

TiO2 is positive. Similarly, the work of Emmanuel Topoglidis and

co-workers[95] has shown that the adsorption to TiO2 of cyto-

chrome c and hemoglobin was greater at pH 7 than at pH 6.[95]

Likewise, this was explained by considering that at pH <7.5,

the proteins would be positively charged whereas the TiO2 sur-

face is negatively charged at pH 7 but not at pH 6.[95]

Figure 7. The water-splitting photoelectrochemical cell developed by Erwin
Reisner and co-workers, utilizing photosystem II and hydrogenase enzymes
immobilized on hierarchically structured ITO electrodes.[84]
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3. Common electrode functionalization strat-
egies to promote electroactive surface adsorp-
tion

In this section we outline surface functionalization strategies

that make electrode surfaces amenable to electroactive redox-

protein and redox-enzyme adsorption. The general merit of all

such electrode modification strategies is that they do not re-

quire changes to be made to the protein structure. Instead,

the surface–protein interactions should ideally mimic those

which underpin electron exchange between the biological

molecule and its redox partner(s) in vivo. Covalent bonding

strategies that aim to make single, site-specific linkages be-

tween electrodes and proteins or enzymes will be discussed in

Section 5.

3.1 Thiol self-assembled monolayers on gold

A significant amount of literature describes the immobilization

of redox proteins onto surface-modified gold nanoparticles

and surface-modified macroscopic gold surfaces.[43] The re-

quirement for surface modification does not arise because pro-

teins cannot bind to gold surfaces; computational evidence

suggests the alcohol moieties of serine and threonine amino

acid residues can bind to crystalline Au (111) surfaces.[99] The

problem is that such interactions can induce protein unfold-

ing.[43] The functionalization of gold surfaces with alkanethiol

based self-assembled monolayers (SAMs) is thus common prac-

tice as it offers the dual opportunity to both mask the gold

atoms[100] and present a reactive headgroup into solution that

will induce orientation of the protein in an electroactive con-

figuration (Figure 8).[101–109]

SAM formation is generally achieved by immersing a clean

gold substrate into a dilute solution of the desired thiol in eth-

anol, whereupon the thiol functionalities chemisorb to the

gold, spontaneously forming S�Au bonds.[110] The “self-assem-

bled” nature of the monolayer arises owing to the hydropho-

bic effect which drives the spontaneous vertical alignment of

the alkane chains, yielding a uniform monolayer of densely

packed alkanethiols (Figure 8).[111] The gold cleaning process is

necessary to remove any oxide coating and/or adsorbed or-

ganic moieties on the gold surface.[112]

Metals other than gold also form strong-enough thiol bonds

to enable alkanethiol SAM formation. This is relatively trivial for

palladium, silver, and mercury that, like gold, do not form

stable oxide layers.[113,114] However, it is more challenging to

form high-quality SAMs on copper,[113] and accordingly such

surface modifications are more poorly understood than those

constructed on other coinage metals.[111]

The biggest limitation for using gold-thiol based SAM sys-

tems in redox protein/enzyme electrochemical applications is

that they have a limited electrode potential window over

which they are stable. This window has been reported as be-

tween �0.9 and +1.0 V versus standard hydrogen electrode

(SHE) at ambient temperature,[112, 115] but a more conservative

estimate further limits this range to between �0.4 and +0.6 V

versus SHE.[43] At a sufficiently negative potential, reduction of

the gold-thiol bond causes the SAM to detach from the sur-

face, whereas over-oxidization leads to SAM detachment attrib-

uted to the generation of sulfur oxides.[43] This inherent SAM

redox activity prevents the use of gold-thiols in some bioelec-

trochemical applications,[43] for example the construction of en-

zymatic CO2 reduction or H2O oxidation systems. SAMs also

often have poor long-term storage stability, owing to air-in-

duced oxidation of the metal-thiolate bond.[112] As exemplified

below, this has not prevented the use of Au-SAMs in a signifi-

cant number of analytical bioelectrochemical studies, but po-

tentially introduces the requirement for more stable electrode

modification routes for the development of commercial tech-

nological devices.

3.1.1 Single-component SAMs on gold

Alkanethiol SAMs are frequently used to tailor the polarity of a

metal electrode to complement that of the target protein, me-

diating immobilization through non-specific interactions, as de-

scribed in Section 2.[102–109,114] Azurin, a blue type-I copper pro-

tein, has been immobilized as monolayers or submonolayers

using simple SAMs of different length, such as pentanethiol[103]

and decanethiol.[102] Such non-functionalized (i.e. alkane head-

group) alkanethiols are thought to facilitate direct electron

transfer between a gold electrode and azurin because the pro-

tein has a patch of hydrophobic surface residues proximal to

the redox-active copper center.[116,117] The stability of azurin on

such alkanethiol SAMs has been put to particularly good use

in the quantification of kinetic and thermodynamic dispersion,

through the coupling of fluorescence monitoring of the

copper redox state with electrochemical control of the redox

potential.[118, 119]

The immobilization of proteins which interact well with neg-

atively charged PGE electrodes has been achieved through the

use of carboxylic-acid-terminated SAMs.[105–109,120] This has been

probed in detail using cytochrome c, a protein thought to

transfer electrons through interaction with redox partners that

are attracted to the positively charged surface lysine moieties

close to the redox-active haem group.[121,29,37] When a SAM

with SO3H headgroups was used instead of a COOH-terminat-

ed SAM, electroactive electrode immobilization was still ach-

ieved.[122] Cytochrome c has also been used in experiments to

probe the impact of alkane chain length on the rate of elec-

tron transfer, kET, between a gold electrode and a protein sit-

ting atop a SAM. When shorter alkanethiols (�6 carbon atoms)

are used, kET is independent of the alkane chain length, indicat-

Figure 8. Left : depiction of an alkanethiol SAM on a gold surface, and right:
the generic structure of alkanethiols used in SAM construction.
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ing that the electrochemistry is reporting on the inherent max-

imum rate of the Fe3+ +1e�ÐFe2+ biological redox process of

interest.[123–125] However, kET decreases exponentially with the

length of the alkanethiol when molecules of more than nine

carbon atoms are used.[123–125] This indicates that the tunneling

of the electron through the SAM has become the rate-limiting

step in electron transfer.[123–125]

For redox proteins bearing negative surface charges close to

the electron entry/exit site, such as plastocyanin or ferredox-

ins,[32] amino-terminated SAMs can support direct electron

transfer in a similar way.[37] Alternatively, as with PGE (Figure 6),

the treatment of acid-terminated alkanethiol SAMs with poly-l-

lysine allows for electroactive immobilization of negatively

charged proteins such as cytochrome b5,[126] avidin,[127] and glu-

cose oxidase,[128] with the cationic poly-amine again acting as

an electrostatic “glue” between the negative protein and SAM

surfaces.[126]

Alkanethiols are not the only molecules which can be used

for the formation of SAMs that support electron transfer to an

immobilized redox protein or enzyme. Short peptides have

been used to form SAMs that permit the electrochemical assay

of cytochrome b562 from E. coli[129] and a methane monooxy-

genase from Methylococcus capsulatus.[130]

3.1.2 Multicomponent SAMs on gold

Mixing two or more different alkanethiol molecules together

enables the formation of multicomponent SAMs. For example,

myoglobin has been stabilized by forming a multicomponent

SAM using alkanethiols with OH headgroups and alkanethiols

with COOH headgroups.[104] In certain electroanalytical applica-

tions, mixed SAM systems may prove superior to single-com-

ponent SAM modifications. The standard rate constant for elec-

tron transfer, kET, to cytochrome c immobilized on a multicom-

ponent SAM of composition 8:2 mercaptoundecanoic acid

(MUA) to decanethiol was about five times greater than that

on a single-component SAM of MUA at pH 7.[131, 122] This was at-

tributed to the notion that deprotonation of the headgroups

of a SAM formed from just COOH-terminated alkanethiols in-

troduces such a high concentration of negative charge on the

surface of the electrode that immobilized proteins are induced

to adopt an orientation that is not optimized for rapid electron

transfer.[122]

In a particularly elegant example of biological mimicry, the

incorporation of further self-assembling layers on top of multi-

component SAMs can be used to fabricate structures that

mimic biological membranes (Figure 9).[132,133] Such electrode-

confined tethered bilayer lipid membranes are constructed by

first creating a multicomponent SAM using a mixture of spe-

cially designed lipid tethers and small alkanethiol molecules,

such as 6-mercaptohexanol (Figure 9).[132, 133] Owing to the mis-

matches in chain length and polarity between these two spe-

cies, they form nanoscale phase-separated domains on the

gold surface. The lipid tethers bind to the electrode surface

through an Au-S bond, while their headgroups (often choles-

terol lipids) induce the self-assembly of phospholipid layers on

top of them. Phospholipid bilayers are formed to span across

the alkanethiol spacer domains that sit between the lipid

tether domains, and transmembrane proteins can be embed-

ded into these bilayer regions and electrochemically interro-

gated, often through the mediation of electron transfer by qui-

none molecules that are incorporated into the bilayer, such as

ubiquinone (Figure 9).[132, 133] This technique has been applied

to study proteins ranging from the relatively small cytochrome

bo3 from Escherichia coli[132] to the very large [NiFe]-hydroge-

nase of Ralstonia eutropha.[133, 134]

3.1.3 Long-length conducting SAMs

As described in 3.1.1, slow electron transfer through long-

length alkanethiols (>9 carbon atoms) can introduce an arte-

fact into biological electrochemistry experiments, with the lim-

iting rate of the redox process reflecting the interfacial elec-

trode-to-protein electron-transfer rate instead of the speed of

the biological reaction.[123–125] This can be overcome by using

more electrically conductive SAMs.[135] For example, the use of

Figure 9. Tethered bilayer lipid membrane on gold electrode for the immobilization of membrane-bound redox proteins. a) Structures of the components
used in tethered bilayer lipid membrane assembly: lipid tethers, spacer units, and quinone-type molecules. b) Structure of a tethered bilayer lipid membrane
on a gold electrode, including embedded transmembrane proteins. c) Mediation of electron transfer by quinone-type molecules.[132–134]
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a SAM containing a highly conjugated diarylethene moiety for

modification of a gold electrode enabled fast electron transfer

to the small blue copper protein azurin.[135] The redox chemis-

try rate constant was higher (3–27 times faster) than obtained

when using SAMs formed from alkanethiols of a similar

length.[135]

Alternatively, redox-active so-called electron transfer “media-

tor” units can be built into SAMs. An example of such a con-

ducting SAM precursor molecule is 1-(10-mercaptodecyl)-1’-

benzyl-4,4’-bipyridinium dibromide, which was synthesized for

immobilization of a H2-producing [FeFe] hydrogenase.[136] Un-

fortunately the enzymatic activity was only approximately

2.5% of that expected based on solution-state experiments, il-

lustrating the complexity in optimizing such a SAM-enzyme

system.[136]

3.2 Aryl diazonium salt reduction

The reduction of aryl diazonium salts for the functionalization

of electrodes has been demonstrated on a variety of different

materials including all conducting allotropes of carbon,[137–139]

silicon,[140] ITO,[141] and a range of metals including gold, plati-

num, and copper.[142] A surface-to-carbon bond is formed via

the one-electron reductive formation of an aryl radical, which

subsequently attacks the electrode surface, as illustrated in

Scheme 1.[137,143,144] Electrode functionalization using aryl diazo-

nium salts is therefore electrochemically controllable

(Figure 10), and can often be performed in aqueous or organic

electrolyte.[137, 143,144] Either isolated aryl diazonium salts can be

utilized, or they can be generated in situ using an aniline or ni-

trophenyl derivative and a source of the NO+ cation, such as

NaNO2/HCl or NOBH4 (Scheme 1).[145,146]

Given the range of commercially available aniline and nitro-

phenyl derivatives, the scope of chemical functionalities that

can be introduced onto the surface using diazonium chemistry

is comparable to that which can be accessed using commercial

alkanethiol derivatives for SAM formation. Unlike SAM forma-

tion, this methodology is theoretically applicable to the cova-

lent functionalization of any conducting surface, not just those

that form a stable bond to sulfur. The redox stability of the

electrode–carbon bond does not restrict the electrochemical

window of biological experiments, and such surface modifica-

tions are also more amenable to long-term storage than SAM-

modified gold surfaces.[144,147–150]

Diazonium electrode modification is not entirely without

challenges. Multilayer formation can occur when further aryl

radicals attack the unsaturated bonds of the aromatic p sys-

tems of the original monolayer, resulting in carbon�carbon

bonds.[144, 151–153] Alternatively, multilayers can arise from diazo-

nium cations coupling to surface phenyl groups through azo

bond formation.[144,151–153] Both modes of multilayer formation

can contribute to the build-up of an amorphous, organic, insu-

lating layer on the surface of the electrode.[144, 151–153] Methodol-

ogies to prevent or minimalize multilayer formation have been

reported, such as the use and subsequent cleavage of bulky

protecting groups,[154] sterically hindering the 3,5-positions of

the aryl diazonium salt,[155] and addition of the radical scaveng-

er 2,2-diphenyl-1-picrylhydrazyl (DPPH) to quench excess aryl

radicals.[152,153]

In the context of bioelectrochemistry, diazonium electrode

modifications can be used to induce protein adsorption

through non-covalent interactions in a similar manner to that

achieved using unmodified PGE or SAMs on gold. Table 1 sum-

marizes some examples that have utilized different diazonium

electrode functionalization methods. The flexibility of the

method is illustrated by the literature precedence of the use of

the same diazonium–protein immobilization strategy on a

range of different electrode surfaces to immobilize a range of

redox proteins. The coupling of dialdehydes to aryl amine

groups, introduced through diazonium cation electrografting

(Table 1, entry d) was used to immobilize several redox en-

zymes on both carbon[156,157] and gold[158,159] electrodes.

Scheme 1. Electrochemical reduction of aryl diazonium salts resulting in the
formation of a pacifying multilayer film.

Figure 10. Characteristic cyclic voltammograms for the reduction of an aryl
diazonium salt generated in situ from 2-(4-aminobenzyl)isoindoline-1,3-
dione. Potential vs. Ag/AgCl (3m KCl), scan rate 20 mVs�1, GC working elec-
trode. Solvent system 1:5 water/acetonitrile+0.1m Bu4NPF6+0.5% v/v 6.6m
HCl. Ambient temperature.
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4. Covalent coupling of electrodes to native
proteins

Attempts to physically adsorb proteins onto surfaces in an

electroactive configuration are not always successful and, as

described above, even when they do work, the adsorption

strategies may be strongly dependent on the pH of the elec-

trolyte solution. Alternatively, the film of molecules may only

be transiently stabilized, with either misfolding[160] or possible

desorption processes leading to a steady decrease in redox ac-

tivity. To avoid such problems the covalent attachment of pro-

teins to electrode surfaces is desirable, particularly in biotech-

nological device development. Such a covalent coupling ap-

proach often requires a complementary surface functionaliza-

tion strategy, so either thiol self-assembly or diazonium modifi-

cation is often used to introduce surface groups that will react

with protein moieties.[154–156,161–164]

4.1 Peptide bond formation

The most common covalent protein immobilization strategy is

to mimic nature and generate peptide bonds, either through

coupling carboxylic-acid-functionalized surfaces to protein-sur-

face lysine residues,[68,154–156,165–170] or crosslinking glutamate

and aspartate residues that adorn protein surfaces to amine

functionalized surfaces.[157,170–173] The use of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide and N-Hydroxysuccinimide

(EDC/NHS) coupling is one way to form these peptide bonds

(Figure 11).[170, 166] Alternatives to EDC/NHS include EDC/sulfo-

NHS[174] or N-cyclohexyl-N’-(2-morpholinoethyl)carbodiimide-

methyl-p-toluenesulfonate (CMC).[165] Otherwise, long-chain car-

boxylic-acid-terminated alkanethiols can be activated toward

nucleophilic attack by an amine using trifluoroacetic acid anhy-

dride through formation of interchain acid anhydrides.[163]

As described in Section 3.1.1, carboxylic acid or amine head-

groups can be readily introduced onto gold electrodes

through the selection of appropriate alkanethiols, and there

are numerous examples of such a strategy being harnessed to

form amide bonds to redox proteins.[162,165,166] Likewise, carbox-

ylic acid groups can be readily introduced onto electrode sur-

faces through the reduction of suitable diazonium precur-

sors.[150,167,168] Using isolated diazonium salts, the introduction

of an amine functionality can be achieved through the reduc-

tion of the p-aminodiazonium cation.[176] Alternatively, the

same surface modification can be achieved using the commer-

cially available 4-nitrobenzenediazonium tetrafluroborate salt,

Table 1. Selected strategies for the functionalization of electrode surfaces through diazonium cation electrografting and subsequent chemical/electro-
chemical treatments that further modify the electrode surface polarity or provide chemical derivatives that can be exploited in covalent coupling strat-
egies.

Entry Surface functionalization strategy[a] References

a)

i) R=COOH[167]

ii) R=CH2COOH
[168]

iii) R=CH=CHCOOH[169]

iv) R=NO2
[69, 170–172,175]

v) R=NH2
[176]

b) [69, 170–172,175]

c) [69]

d) [156–159]

e) [156]

f) [177]
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with electrochemical reduction being used to reduce the nitro

“headgroups” into the desired amine functionalities in a post-

diazonium crosslinking step.[151,158,159] The introduction of more

reactive alkyl amine groups to electrode surfaces through di-

azonium modification can be achieved through the use of the

4-aminoethylbenzenediazonium cation,[178] or phthalimide-pro-

tected alkylamine functionalities.[154]

Amide bond formation strategies have been used in the fab-

rication of many mediator-free biosensors; EDC/NHS-activated

tyrosinase was crosslinked to aminophenyl groups on BDD

electrodes and used to detect phenolic compounds.[170] The

EDC/NHS activation and crosslinking of horseradish peroxidase

or cytochrome P450 enzymes to amine moieties on carbon

electrodes has been used in the fabrication of biosensors for

the detection of a series of pharmaceutically relevant

drugs.[157,171,172] Horseradish peroxidase could be used to sense

levetiracetam,[171] and the specific cytochrome P450 enzymes

could be used to detect phenobarbital[157] and codeine.[172] The

immobilization of an oxygen-tolerant hydrogenase onto

pyrene-modified multiwalled carbon nanotubes coated onto

PGE electrodes was also achieved through EDC/NHS cou-

pling.[174] The resultant derivatized PGE electrode was utilized

as the anode in the fabrication of an enzyme H2/O2 fuel cell,

which resulted in significantly improved current density and

stability when compared to a fuel cell containing a hydroge-

nase electrode fabricated using simple adsorption proce-

dures.[174]

The most significant limitation of such approaches is that re-

gardless of whether carboxylic acid residues or lysine groups

are targeted (multiple occurrences of such amino acid side

chains on the surface of the redox protein or enzyme of inter-

est are often present), significant dispersion in the orientation

of the immobilized biomolecule commonly results (Figure 11).

Careful genetic engineering of the target protein can over-

come this problem. A recent publication by Lalaoui et al.[179] re-

ports the site specific immobilization of a laccase onto CNTs

through the generation of a variant enzyme that only contains

a single surface-accessible lysine residue that is located proxi-

mal to the electron entry/exit type 1 copper center.[179]

4.2 Imine tethering

Redox proteins or enzymes can also be covalently crosslinked

to surfaces through imine bond formation between electrode-

surface aldehyde moieties and protein-surface lysine residues

(Scheme 2). For example, diazonium electrografting methods

have been used to introduce aldehyde functionality onto elec-

trodes (Table 1, entry d) that have subsequently been modified

with enzymes, including acetylecholinesterase[156,180] horserad-

ish peroxidase,[175] and tyrosinase.[158] Analogously, the reaction

of glutaraldehyde with amine terminated SAMs yields an alde-

hyde-functionalized surface that can be used to attach proteins

through their surface lysine residues.[164,181,182] To generate

more stable covalent linkages, the imine bonds can be re-

duced to amine linkages using reagents such as sodium cyano-

borohydride.[183]

As with amide bond formation between an electrode and

surface-lysine residues on a protein or enzyme, the same limi-

tation remains; crosslinking electrodes to lysine residues that

are not within close approach of the electron entry/exit site in

a protein or enzyme will not yield electroactively bound bio-

molecules. Additionally, the presence of multiple surface lysine

residues could result in dispersion in the orientation of the

protein or enzyme on the electrode surface, as illustrated in

Figure 11.

Figure 11. Amide bond formation between surfaces and protein residues, catalyzed through EDC/NHS activation. a) Activation of electrode-surface carboxylic
acid groups and reaction with protein lysine residues. b) Activation of carboxylic acid groups on the protein surface and reaction with electrode surface
amine groups. c) Owing to the presence of many amine/carboxylic acid moieties on protein surfaces; immobilization through EDC/NHS activation often leads
to a dispersion in immobilized protein orientation.

Scheme 2. The use of an imine-functionalized electrode to immobilize horse-
radish peroxidase, as detailed in reference [175].
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5. Crosslinking strategies for site-specifically
connecting proteins to electrodes

In theory, an excellent method to generate a uniform configu-

ration of proteins or enzymes on a surface, with each biomole-

cule attached through the same single point, is to develop

site-selective covalent crosslinking strategies, as illustrated in

Figure 12. This is often a complex process which usually re-

quires a combination of genetic manipulation and surface

chemistry to ensure that there is a single amino acid residue

suitable for selective reaction with a complementary surface

moiety. The advantage of modifying electrodes rather than

non-conductive solid substrates is that redox-activated reac-

tions such as diazonium salt electroreduction can be utilized in

the surface chemistry (Section 3.2). However, this is tempered

by the disadvantage that for direct electron transfer between

the electrode surface and a redox protein or enzyme to be fea-

sible the target amino acid reaction site must be sufficiently

close to the electron entry/exit site (Section 2).

5.1 Redox-center targeted binding

The easiest way to avoid the need for genetic manipulation of

the target redox protein or enzyme is to devise an electrode

binding strategy that anchors the biomolecule to the conduct-

ing surface through a non-amino acid functionality. An obvious

choice of center for such linking strategies is the electron

entry/exit redox-active cofactor of the protein/enzyme, since

anchoring to the electrode surface through such a group will

ensure that the biomolecule is crosslinked to the electrode in

an electroactive configuration. We describe a number of ap-

proaches that have used this understanding of biological struc-

ture and function to rationally design bespoke wiring strat-

egies for attaching proteins or enzymes to electrodes. The

most obvious limitation of such cofactor-targeted surface bind-

ing strategies is that biology utilizes a wide range of different

redox-active cofactors, as illustrated by Figure 1. Anchoring dif-

ferent classes of redox proteins or enzymes through a redox-

center-targeted binding strategy therefore requires the design

and optimization of many different chemical strategies: a non-

trivial synthetic task. In the case of enzymes such as lytic poly-

saccharide monooxygenases,[11] the fact they contain a single

redox site where the substrate must bind also introduces the

challenge of whether linkers can be designed that do not

hinder substrate binding and catalysis.

5.1.1 Cofactor ligation

In some instances, redox-active cofactors can be synthesized

and incorporated into so-called cofactor-free “apo-proteins.”

This offers a route to generating redox proteins containing

modified redox cofactors that have chemical functionalities

complementary to those which can be added to the electrode

surface. For example, incorporation of an azide-functionalized

heme group into cytochrome b562 enabled copper(I)-catalyzed

azide–alkyne cycloaddition to an alkyne-functionalized CNT im-

mobilized onto a GC electrode.[184] Alternatively, for proteins

containing metal-electron entry/exit sites that have multiple li-

gands, genetic removal of an amino acid ligand residue offers

the opportunity for structural reconstitution of the redox pro-

tein with an external ligand that is tethered to the electrode

surface. This strategy has been demonstrated for an azurin var-

iant.[188] The copper-coordinating histidine residue (His117) was

replaced with a glycine residue through genetic manipula-

tion.[188] This opened up the coordination sphere around the

redox-active metal and allowed a pyridine headgroup tethered

to an electrode surface to coordinate directly to the copper

center, immobilizing the azurin in an orientation suitable for

facile direct electron transfer and mimicking the native copper

ligation that is afforded by His117.[188] Surface attachment of

the pyridine group was enabled by the synthesis of a thiol-ter-

minated linker that covalently bound to gold surfaces.[188]

Figure 12. Generic strategy for site-selectively crosslinking a redox protein to an electrode.
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5.1.2 Substrate electrode tethers

With redox enzymes that internally transfer electrons from the

oxidation of a substrate in one binding pocket to reduce a

second substrate in a second binding site, surface attachment

can be achieved based on the “lock and key” model[189] of site-

selective enzyme–substrate binding. For example, multicopper

oxidases (that have evolved to couple organic-substrate oxida-

tion at one copper site to oxygen reduction at another copper

site) can be immobilized for use as Pt-free, low-overpotential

O2-reduction electrocatalysts through the use of surface-at-

tached organic-substrate mimics (Figure 13).[185, 186] The highly

conjugated nature of an anthracene electrode linker, immobi-

lized onto graphite using diazonium chemistry, was shown to

ensure rapid electron transfer from the electrode surface to

laccase.[185, 186] Using a similar strategy, surface naphthoic acid

moieties were effective in the immobilization of bilirubin ox-

idase from Myrothecium verrucaria.[190] O2 reduction by this

enzyme was externally wired to a hydrogenase-coated elec-

trode to construct an all-enzyme, membrane-free H2/O2 fuel

cell where H2-oxidation is used as the source of electrons for

O2 reduction (Figure 13).[187]

In a similar vein, the surface binding of DNA is used to im-

mobilize redox proteins for the electrochemical interrogation

of the redox reactions that may underpin DNA translation and

repair in vivo.[191]

5.2 Cysteine-based surface ligation

As the sole thiol-containing canonical amino acid, cysteine

presents a unique chemical functionality that can be harnessed

in the design of biochemical ligation methodologies that selec-

tively target only cysteine residues.[192–195] This chemical selec-

tivity is complemented by the fact that, relative to other amino

acids, cysteines are rarely present on protein surfaces.[196] Thus,

it can be relatively trivial to use site-directed mutagenesis and

chemical biology conjugation methods to engineer proteins

and enzymes with single, covalently modified surface-cysteine

residues[192–195] Such strategies are of enormous value in the

development of new biopharmaceutical therapies.[192,195] Sur-

face-attachment strategies have been developed along similar

lines, with the added consideration that for direct electron

transfer between a conducting surface and a redox protein or

enzyme, the cysteine residue must serve as a tethering site

that holds the redox protein/enzyme in an electroactive orien-

tation.[43,89, 197,198]

The most significant limitations to the use of cysteine resi-

dues for enzyme electrode “wiring” applications arise from the

potential for these residues to form intermolecular disulfide

bonds,[199] or to cause misfolding through the formation of

non-native disulfide bond formation,[200] or through the acci-

dental introduction of an extra metal–ligand residue to a met-

alloprotein or enzyme. For example, iron-sulfur cluster incorpo-

ration into a protein structure is dependent on metal cluster

binding to a highly conserved sequence of cysteines,[1] and ad-

dition of extra residues can be used to convert a [Fe3S4] center

into [Fe4S4] .
[201] To avoid the issue of unwanted disulfide bond

formation, proteins displaying free surface-cysteine residues

can be kept under reducing conditions through addition of di-

thiothreitol (DTT). However, because DTT contains thiol groups,

this reducing agent must be removed before surface bioconju-

gation is attempted, to avoid unwanted reactions between

DTT and the electrode surface.[202]

5.2.1 Direct immobilization onto gold

As described in Section 3.1, the formation of SAMs onto gold

electrodes is facilitated by the generation of gold–sulfur

bonds. An analogous approach is to therefore graft surface-

cysteine-containing proteins or enzymes directly onto gold sur-

faces.[203,204] The ability of this approach to immobilize redox

proteins in chosen orientations has been definitively demon-

strated using a cytochrome b 562 engineered to present cys-

teine residues on either the long axis or short axis.[203] The re-

sultant orthogonal orientations of these different protein var-

iants on atomically flat gold was then observed using STM

imaging.[203] As with SAMs on gold, a significant limitation of

this method is the redox instability of such covalent electrode–

protein modifications (Section 3.1). The fact that electroreduc-

tion can be used to break Au�S bonds at relatively high reduc-

ing potentials impedes the use of this methodology for study-

ing important biofuel reactions such as hydrogen production.

5.2.2 Thiol–Michael addition click reactions

In recent years, the reaction between cysteine residues and un-

saturated p systems through Michael addition has been used

as a general tool for the chemical modification of many pro-

teins, extending well beyond electrode–protein-surface ligation

strategies.[205–208] Numerous different methodologies using dif-

ferent p systems have been optimized for different applica-

Figure 13. Membrane-free H2/O2 fuels cells can be fabricated by coupling
the redox activity of hydrogenases to oxidases.[185–187] The orientation of the
multicopper oxidase Trametes versicolor laccase III (PDB code: 1KYA) onto
an electrode surface for O2-reduction catalysis can be achieved through the
modification of the electrode surface with anthracene substrate mimics,
thereby anchoring the enzyme by the binding pocket and allowing facile
direct electron transfer.[185, 186]
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tions.[205] In the field of electrode ligation, surfaces have been

functionalized with maleimide groups, the most reactive of the

commonly available vinyl Michael acceptors.[205] Between

pH 6.5 and 7.5, maleimide groups react selectively with thiols,

as within this pH range amines remain protonated and are

thus not of a high enough nucleophilicity to partake in com-

peting side reactions (Scheme 3).[198]

Maleimide groups can be introduced onto electrode surfaces

using a variety of techniques, including the use of specially de-

signed alkanethiol SAMs,[206,209] diazonium cation electrograft-

ing (Table 1, entry f),[177] and sequential electrochemical and

solid-phase preparation.[198] The reaction between surface-mal-

eimide groups and one of the two thiol groups that naturally

occur near the heme cofactor of cytochrome c results in the

immobilization of this protein in a near-site-specific orientation

that is suitable for direct electron transfer (Scheme 3).[177]

5.3 Crosslinking to unnatural amino acids

Unnatural amino acid (UAA) mutagenesis is a technique which

utilizes codon reassignment to expand the amino acids avail-

able for the synthesis of a target protein of interest.[204–206,210–215]

This allows amino acids with novel functionalities to be intro-

duced at specific locations within proteins, and such residues

can be subsequently targeted in bio-orthogonal chemical liga-

tions.[194, 214,215] This is a rapidly expanding field of re-

search[204–206,210–215] and there are now examples of such meth-

odologies being adapted for covalent crosslinking of redox

proteins and enzymes to electrode surfaces.[216–218] A practical

consideration that makes the use of UAA mutagenesis poten-

tially unsuitable for “wiring” redox metalloenzymes onto elec-

trodes is that highly complex biosynthetic pathways can make

protein overexpression challenging; in such scenarios substan-

tial quantities of synthetic UAA may be required to generate

useable quantities of UAA containing protein.

For UAA mutagenesis to serve as an immobilization method-

ology, functionalities complementary to those of the UAA

must also be introduced to the electrode surface. Azide–alkyne

cycloaddition click reactions therefore represent an attractive

approach since methods for the introduction of these moieties

onto electrode surfaces have been developed for other appli-

cations such as DNA sensor development.[219] Should the use

of a copper catalyst for activation of the cycloaddition reaction

be undesirable, copper-free reactions can be performed

through the use of ring-strained alkynes (Figure 14).[220] Surpris-

ingly, based on the robust nature of this chemical ligation

strategy,[221] the only known example using azide–alkyne UAA

reactions for the site-specific linkage of a redox protein or

enzyme to an electrode is the immobilization of the 4-azido-l-

phenylalanine (1, Figure 14) containing laccase from Streptomy-

ces coelicolor onto a MWCNT-coated electrode functionalized

with complementary cyclooctyne containing linkers

(Figure 14).[216] Interestingly, the most effective orientation for

direct electron transfer was found to be one that tethered the

laccase at a site distal from any redox centers but adjacent to

a water channel; the structured water molecules are thought

to substantially enhance the electron transfer rate between the

Figure 14. Azide–alkyne cycloaddition click reactions between surfaces and proteins. a) Top: copper-free non-catalyzed azide–alkyne cycloaddition click reac-
tion, promoted by a ring-strained alkyne. Bottom: copper-catalyzed azide–alkyne cycloaddition reaction. b) Owing to the precedence for unnatural amino
acids bearing both alkyne and azide functionalities, it is possible to functionalize a protein with either azides or alkynes. c) The site-selective electroactive im-
mobilization of a laccase onto a MWCNT using a copper-free non-catalyzed azide–alkyne cycloaddition click reaction between an azide-functionalized UAA
and a surface-confined cyclooctyne, as described in ref. [216]. Residues from only one monomer are depicted (PDB ID: 3CG8[222]).

Scheme 3. Maleimide-thiol Michael addition reactions between maleimide
groups introduced onto an electrode surface and cytochrome c surface cys-
teine residues.[177]
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electrode and the laccase.[216] A similar strategy has also been

used to “wire” whole bacteria to electrodes.[217] Through the in-

corporation of UAA 1 into an alcohol dehydrogenase that is

displayed on the surface of E. coli,[217] copper(I)-catalyzed cyclo-

addition to an alkyne functionalized SAM linker was used to

bond bacterial cells to a gold surface.[217]

Other, non-azide–alkyne chemical ligation strategies can be

realized through the use of different UAA residues. The incor-

poration of 3-amino-l-tyrosine (NH2Tyr) into myoglobin has

been used to covalently attach the protein onto a gold surface

derivatized with acryloyl moieties, courtesy of a Diels–Alder re-

action specific to NH2Tyr (Figure 15).[218] The rate of electron

transfer between the electrode and myoglobin was slow,

which was attributed to the length of the anchoring tether

(26.7 �).[218]

6. Summary and outlook

Although highly informative reviews have been written on the

powerful bio-analysis technique of protein film electrochemis-

try, the fundamental step of protein film formation is often

overlooked. This is understandable; to establish the technique

of PFE it has been necessary to provide substantial insight into

electrochemical method design and data analysis approaches,

as well as showcase the powerful insight which can be gained

from conducting such experiments on biologically and bio-

technologically important systems. To complement such

papers, this review aims provide an up to date and broad

ranging overview of the many different surfaces, surface modi-

fication strategies and protein conjugation approaches which

can be used to “wire” redox-active macro-biomolecules to elec-

trodes.

Owing to the diversity of redox proteins and the wide range

of possible usages, there are currently no universal surface-

confinement approaches. By comparing and critiquing the dif-

ferent approaches we hope to provide the reader with a one-

stop reference library that will aid selection of appropriate

electroactive surface immobilization techniques for use in

studying/harnessing new redox proteins and enzymes, or intro-

duce them to this diverse field. For gifted bio-conjugation

chemists, we hope to inspire the need for further method de-

velopment, having emphasized that we still lack a way to gen-

erate robust, site-selective bonds from any protein or enzyme

to any electrode.
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Methodologies for “Wiring” Redox

Proteins/Enzymes to Electrode

Surfaces

Electrifying biology : Analysis of the

mechanism, kinetics and thermodynam-

ics of redox proteins and enzymes is

often dependant on the immobilization

of such molecules onto electrode surfa-

ces, as is the implementation of many

bio-hybrid systems for biosensing, syn-

thesis, or green fuel applications. Herein

we detail the methods available for

such surface “wiring” and highlight the

opportunities and challenges that arise

in their application.

Redox proteins and enzymes can be studied using electrochemistry and applied in

bio-electronic technologies. The ability to “wire” these biomolecules to conducting

surfaces underpins such work. This Review summarizes different approaches that can

be used to achieve a stable and electrically connected configuration of protein or

enzyme onto different solid substrates. Insight is provided into the range of electrode

materials which can be utilized and the different covalent and non-covalent strategies

which enable stabilization of biomolecule configurations that enable direct protein-to-

surface electron transfer. For more details see Review by A. Parkin et al. on page&&

ff.
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