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Abstract. In standard formulations of the uncertainty principle, two
fundamental features are typically cast as impossibility statements: two
noncommuting observables cannot in general both be sharply defined (for the
same state), nor can they be measured jointly. The pioneers of quantum mechanics
were acutely aware and puzzled by this fact, and it motivated Heisenberg to seek
a mitigation, which he formulated in his seminal paper of 1927. He provided
intuitive arguments to show that the values of, say, the position and momentum
of a particle can at least be unsharply defined, and they can be measured together
provided some approximation errors are allowed. Only now, nine decades later,
a working theory of approximate joint measurements is taking shape, leading
to rigorous and experimentally testable formulations of associated error tradeoff
relations. Here we briefly review this new development, explaining the concepts
and steps taken in the construction of optimal joint approximations of pairs of
incompatible observables. As a case study, we deduce measurement uncertainty
relations for qubit observables using two distinct error measures. We provide
an operational interpretation of the error bounds and discuss some of the first
experimental tests of such relations.

PACS numbers: 03.65.Ta, 03.67.-a
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1. Introduction

The year 2017 marked the 90th anniversary of Heisenberg’s uncertainty principle,
laid down in his fundamental paper of 1927 [1]. Heisenberg sought to mitigate
two fundamental operational limitations imposed by quantum mechanics: the
impossibility of preparing simultaneous sharp values of noncommuting quantities; and
the obstruction to making arbitrarily accurate joint measurements of such observables.
His aim was to understand how, in the light of these restrictions, quantum mechanics
could account for the evidence of particle trajectories observed in cloud chambers.s

The degree of uncertainty in the values of an observable can be operationally
quantified by some measure of the spread in the distribution of that quantity attributed
by the given quantum state. The textbook preparation uncertainty relation thus
describes the tradeoff between the standard deviations of two incompatible observables
in the same state, as obtained in accurate measurements performed separately. This
is one (and the more familiar) side of the coin that is the uncertainty principle.

The other side concerns a limitation of the accuracy of approximate joint
measurements of a pair of incompatible observables. It took several decades before
Heisenberg’s intuitive idea, which he explained by means of semi-classical descriptions
of Gedanken experiments, could be made precise. In modern terminology, the challenge
at hand is that of approximating a pair of incompatible sharp observables by two
observables that are jointly measurable. It is now well understood that the price for
the ability of performing such approximate joint measurements comes in the form
of a measurement uncertainty relation that describes the tradeoff between suitably

2
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defined measures of approximation errors. An account of early results and examples
of measurement uncertainty relations is given in [2]. This book also provides a self-
contained treatment of the underlying quantum theory of measurement, on which
we will freely draw here. An extensive review of measurement uncertainty relations,
primarily for the position and momentum of a quantum particle, is provided in [3]. The
necessary conceptual developments for the formulation of these relations, including
the theory of joint measurements of noncommuting unsharp observables, and the first
proposals of error measures applicable in quantum mechanics, are also provided. We
also draw the reader’s attention to the more recent review [4], which focuses on a
critical comparison of two distinct proposals for adapting the classic Gauss root-mean-
square error concept to the realm of quantum measurements.

The purpose here is to present a pedagogical review of the subject of approximate
joint measurements and associated measurement uncertainty relations. We offer a
systematic exposition of this subject, pulling together and integrating methods and
results from a range of recent investigations (e.g., [5, 6, 7, 8, 9]). We feel that the time
has come to incorporate a basic introduction of measurement uncertainty into the
undergraduate quantum mechanics curriculum, and hope that the material presented
here may serve as a starting point. Accordingly, we introduce relevant concepts simply
for the case of discrete observables in finite-dimensional Hilbert spaces. Instead of
looking, in the usual ad hoc manner, for specific forms of error tradeoff relations (e.g.,
as lower bounds for the product or sums of errors), we show how the problem of
finding optimal joint approximations of incompatible observables is appropriately cast
in terms of the associated error region, and solved by specifying its lower boundary.
This programme will be illustrated for the case of qubit observables. In doing so, we
will also present a number of new results, as specified below.

Following a brief introduction to relevant measurement-theoretic tools in Section
2, we recall (Section 3) the notions of joint measurability and joint observable
in the case of observables with finitely many outcomes. In the general class
of measurements represented by positive operator valued measures, the joint
measurability (or compatibility) of two observables does not, in general, require
their mutual commutativity, in contrast to the case of sharp observables, represented
by spectral measures (or the associated selfadjoint operators). Among the pairs
of noncommuting observables one will find jointly measurable pairs provided these
observables are sufficiently unsharp. This as yet little-noted feature of quantum
mechanics (stated, for instance, in [10] and explained in some detail in Section 3)
thereby offers a much enlarged set of compatible observables within which to search
for optimal joint approximations for a given pair of incompatible sharp observables.

The task of jointly approximating two incompatible observables A and B with
a pair of compatible observables C and D, respectively, (see. Fig. 1) requires one to
choose an appropriate measure of error, δ(A,C), to quantify how close an approximator
C comes to matching the target observable A. A variety of error measures have
been proposed and explored, leading to measurement uncertainty relations of differing
form. In Section 4, we briefly review some of these measures and introduce instances
of the so-called metric error and calibration error, both of which represent device
figures of merit. These quantities meet the defining requirement for any operational
error measure: that it represents a generally applicable experimental error estimation
procedure, yielding an error value that can be compared with the theoretical value. As
device figures of merit, such error measures are state-independent: they quantify the
worst-case deviation between probability distributions of two observables, taken across

3
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Figure 1. Two incompatible observables A and B are approximated via jointly
measurable observables C and D, with some joint observable J. Suitably defined
error measures act as figures of merit of how well C,D approximate A,B,
respectively.

all possible states. Up to now, attempts at defining state-dependent error measures
have not met the above crucial requirement of reflecting an actual, universally
applicable error estimation procedure; the interpretation of tradeoff inequalities for
such measures as measurement uncertainty relations remains therefore problematical.

In Section 5 we introduce the task of identifying optimal approximations to
incompatible target observables A,B from within the set of compatible pairs of
observables C,D. Beginning with some relevant observations, we present steps
to reduce the search space to pairs C,D of specific simpler types, which are still
guaranteed to contain the optimisers. This follows work of [6], showing that the
methods apply to calibration error as well as metric error. While the metric error
region (Section 6), has been characterised mathematically by Yu and Oh in [8], we
here add a new interpretation in operational terms. We also give a new explicit
derivation of the calibration error region (Section 7) as the solution of an optimisation
problem. This result is closely connected with a measurement uncertainty relation due
to Branciard [7] that has attracted significant attention recently; a full explanation
of this remarkable coincidence is provided. We find that different choices of error
measures yield different sets of optimising approximator pairs C,D (as one would
expect). In the case of maximally incompatible target observables we also exhibit a
close connection between the error region and the preparation uncertainty region.

In Section 8 we present some recent examples of experimental realisations of
optimal joint approximate measurements of incompatible qubit observables. We also
investigate which of these experiments constitute direct tests (suitably defined) of
measurement uncertainty relations. We conclude in Section 9 with a discussion of our
findings.

2. Preliminaries

We adopt the standard Hilbert space description for the case of finite-dimensional
quantum systems, with H denoting the given (complex) Hilbert space. We denote
vector states by unit vectors ψ, ξ ∈ H and (generally) mixed states by density operators
(positive operators of unit trace) ρ. Vector states correspond to the pure states in
the convex set of density operators, where they are represented as rank-1 projection
operators Pψ = |ψ〉〈ψ|.

Among the set of self-adjoint linear operators acting on H, a distinguished subset
is given by the set of effects; these are the operators in the interval 0 ≤ E ≤ I, where
0, I are the null and identity operator, respectively, and ≤ denotes the operator partial
ordering, A ≤ B if 〈ψ|Aψ〉 ≤ 〈ψ|Bψ〉 for all ψ ∈ H. In other words, these operators

4
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are positive and guarantee that, for any state ρ, tr [Eρ] ≤ 1.
In this paper we consider only discrete observables, represented as positive

operator-valued measures (POVMs): a POVM C inH is defined as a map ci 7→ C(ci) =
Ci from a discrete outcome set {c1, . . . cN} =: ΩC to positive bounded operators Ci
(also called effects) such that

∑

i Ci = I. This ensures that for each state ρ, the map
ci 7→ tr[ρCi] is a probability distribution, representing the statistics of outcomes in a
measurement of C in the state ρ.

Throughout, we denote POVMs by sans serif letters. Sharp observables are
described by projection-valued (or spectral) measures (PVMs): a PVM is a POVM P

whose effects Pi = P(pi) are projection operators (P 2
i = Pi) for all i = 1, 2, . . . , N . All

other POVMs will be referred to as unsharp observables. For a POVM C with effects
{C1, . . . , CN}, the kth moment operator C[k], k ∈ N, is defined via

C[k] =
∑

i

ckiCi. (1)

Note that it will usually be the case that C[k] 6= C[1]k (unless C is sharp).
The case studies we will consider are given by so-called qubit systems, where

H = C
2. We will make use of the Bloch representation of operators acting on C

2: A
selfadjoint operator A can be expressed in the form

A =
1

2
(a0I + a · σ), (2)

where a0 ∈ R, a ∈ R
3 is the operator’s Bloch vector, and σ = (σ1, σ2, σ3) is the vector

composed of the Pauli matrices,

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

The eigenvalues of A are equal to 1
2 (a0 ± ‖a‖), and so A is an effect if and only if

‖a‖ ≤ a0 ≤ 2 − ‖a‖ (equivalently, ‖a‖ ≤ min{a0, 2 − a0}). Furthermore, A forms
a projection if and only if its Bloch vector is normalised, forcing a0 = 1. A density
operator ρ = 1

2 (I + r · σ) is characterised by 0 ≤ ‖r‖ ≤ 1.
We will focus predominantly on binary (±1-valued) POVMs, which possess two

effects. A binary qubit POVM C has effects C(±) =: C± of the general form

C± =
1

2

(

(1± γ)I ± c · σ
)

, (3)

where the positivity of the operators C± is equivalent to |γ|+ ‖c‖ ≤ 1.
The parameters γ and ‖c‖ (1 − |γ|) are measures of bias and sharpness of the

binary observable C. Intuitively, the effect C+ may be biased towards the unit effect I
or the null effect 0, depending on whether its probabilities in general tend to be closer
to 1 or 0; this corresponds to a positive or negative value for γ, respectively. The
effect is unbiased, or symmetric, if γ = 0, and we denote an unbiased observable via
a “0” subscript, e.g. C0. Similarly, we can quantify how close this effect is to being a
(nontrivial) projection, that is, a rank one projection (thereby excluding the trivial,
uninformative effects I, 0), by means of its sharpness ‖c‖ (1− |γ|). This quantity is 1
if and only if C± are rank-1 projections, i.e., when γ = 0 and ‖c‖ = 1, and 0 if they
are trivial, i.e., c = 0 and hence C± = 1

2 (1± γ)I. (Note that γ = ±1 implies c = 0).
As can be seen here, unbiasedness is a necessary condition for sharpness.

5
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These measures of bias and sharpness of an effect generalise naturally to
operational measures in arbitrary dimensions (see Theorem 2 and Corollary 2 in [11]):
the bias of an effect A can be defined as

B(A) = ‖A‖ − ‖A′‖ ,

where A′ := I − A is the complement effect of A, and ‖·‖ is the operator norm.
Similarly, we can define the sharpness of A as

S(A) = ‖A‖ + ‖A′‖ −
(

‖AA′‖ + ‖I −AA′‖
)

.

These quantities satisfy a set of natural requirements for measures of bias and
sharpness, as detailed in [11]. All terms in the definitions of these measures
correspond to the maximum possible probabilities of measurements of A,A′ or their
joint measurement, represented by AA′ and I −AA′.

In what follows we will only make use of the sharpness in the case of unbiased
binary qubit observables, and so S(C±) = ‖c‖. This allows us to conveniently define
the unsharpness U(C) of the observable C via

U(C)2 = 1− S(C±)
2 = 1− ‖c‖2 . (4)

We also highlight a special subset of unbiased (or symmetric) observables C that will
be used as approximations to a sharp observable A; these are the so-called smearings
of A, for which the defining Bloch vector c = ‖c‖ a. Such observables commute with A,
and the term smearing refers to the fact that they can be defined through a procedure
of mixing A with a trivial observable (whose effects are multiples of I):

C± =
1

2
(I ± ‖c‖ a · σ) = λ

1

2
(I ± a · σ) + (1− λ)

1

2
I, λ = ‖c‖ .

3. Joint measurability and unsharpness

For a general quantum system, two observables C and D with (finite) outcome sets ΩC

and ΩD, respectively, are said to be jointly measurable if there exists an observable J

(defined on ΩC × ΩD) such that

C(k) =
∑

ℓ∈ΩD

J(k, ℓ), D(ℓ) =
∑

k∈ΩC

J(k, ℓ), (5)

for any effects C(k),D(ℓ). Such a J is called a joint observable of C and D, and
equivalently C and D are marginal observables (or margins) of J.

The motivation for this definition of joint measurability, which is universally
adopted in the field, comes from the notion that it may be possible to devise a
measurement scheme that outputs a pair of values, (k, ℓ), the probabilities of which
are given by some observable (POVM) J via

pJρ(k, ℓ) = tr [ρJ(k, ℓ)] .

These distributions, which exist for every quantum state ρ that can be used to run
the experiment, give rise to two natural marginal distributions obtained by summing
either over ℓ or over k:

p(1)ρ (k) =
∑

ℓ

pJρ(k, ℓ) ≡ tr [ρC(k)] , p(2)ρ (k) =
∑

k

pJρ(k, ℓ) ≡ tr [ρD(ℓ)] ,

6
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Figure 2. Illustration of the concept of joint measurement: systems prepared
in a state described by the density operator ρ enter a measuring device labelled
J, which outputs a pair of values, (k, ℓ). Statistics are collected over many runs,
resulting in the histogram shown. The frequencies are intended to approximate
the predicted quantum probabilities obtained via the Born rule as pJρ(k, ℓ) =
tr [ρJ(k, ℓ)], where the J(k, ℓ) are positive operators (effects) adding to I. One
may extract two marginal distributions by summing either over ℓ or k, giving rise
to two marginal POVMs C,D, respectively, which are taken to be the observables
measured jointly by the scheme.

where the marginal observables C,D, as defined in (5), are taken to be the observables
measured jointly by the scheme. This consideration is illustrated in Fig. 2.

A sufficient condition for joint measurability of C and D is commutativity of their
effects, i.e., [C(k),D(ℓ)] = 0 for all k, ℓ; but this condition is not necessary unless at
least C or D is sharp. In that case the joint observable is unique and its effects are
J(k, ℓ) = C(k)D(ℓ) [2, Prop. 4.8].

The following result [12] illustrates the possibility of ensuring joint measurability
by a procedure of smearing: two noncommuting and incompatible observables A,B are
changed by performing suitable convex combinations with so-called trivial observables,
whose effects are multiples of the identity.

Proposition 3.1. Let A : k 7→ A(k), B : ℓ 7→ B(ℓ) be two (possibly noncommuting
and incompatible) observables with outcome spaces Ω1,Ω2. Then for any λ ∈ [0, 1]
and any pair of probability distritbutions p : k 7→ p(k) on Ω1 and q : ℓ 7→ q(ℓ) on Ω2,
the observables C,D are jointly measurable, where

C(k) = λA(k) + (1− λ)p(k)I, D(ℓ) = (1− λ)B(ℓ) + λq(ℓ)I, (6)

and a joint observable J on Ω1 × Ω2 is given by

J(k, ℓ) = λA(k)q(ℓ) + (1− λ)p(k)B(ℓ), (k, ℓ) ∈ Ω1 × Ω2. (7)

The proof is left as an exercise for the enthusiastic reader. The observables C,D
are more unsharp than A,B in an intuitive sense; this is certainly the case when A,B
are projection-valued. Moreover, if A,B do not commute and λ 6∈ {0, 1}, then C,D are
noncommuting but nevertheless compatible.

It is plausible to consider C,D as reasonable approximations to A,B, respectively.
However, we will not dwell on making these statements more quantitative here. Instead
we point out that the procedure of Proposition 3.1 is not optimal; it is easy to construct

7
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examples of compatible C,D with a parameter µ ∈ [0, 1] replacing 1 − λ (and 1 − µ
replacing λ) in the expression for D, such that µ > 1 − λ, making D sharper. This
possibility is contained in the following, much stronger result for binary unbiased qubit
observables.

Proposition 3.2 ([10]). For two symmetric binary qubit observables C,D to be jointly
measurable it is necessary and sufficient that the associated Bloch vectors c,d satisfy
the inequality

‖c+ d‖ + ‖c− d‖ ≤ 2. (8)

It is a simple exercise to verify that this condition is equivalent to both ‖c− d‖ ≤
1−c·d and ‖c+ d‖ ≤ 1+c·d. This implies that the following defines a joint observable
for C,D:

Jk,ℓ =
1

4
(1 + kℓc · d)I + 1

4
(kc+ ℓd) · σ, (9)

since the positivity of the operators Jk,ℓ is then equivalent to (8).
Given that in the qubit case commutativity is equivalent to proportionality of the

Bloch vectors, this example illustrates again that joint measurements of noncommuting
POVMs are possible. Furthermore, it demonstrates the sufficiency of the condition
(8) in ensuring this compatibility; for the sake of completeness, the necessity proof is
given in Appendix A.

We leave the proof of the following special case of Proposition 3.2 as an exercise.

Corollary 3.3. Two symmetric binary qubit observables C,D with perpendicular Bloch
vectors c,d are jointly measurable if and only if

‖c‖2 + ‖d‖2 ≤ 1. (10)

In particular, we may choose ‖c‖ = ‖d‖ = 1/
√
2, which saturate the inequality.

Then, putting λ = µ = 1/
√
2 and ĉ = c/ ‖c‖, d̂ = d/ ‖d‖, we have

C(±) = 1
2 (I ± λĉ · σ) = λ 1

2 (I ± ĉ · σ) + (1− λ) 1
2I,

D(±) = 1
2

(

I ± µd̂ · σ
)

= µ 1
2 (I ± d̂ · σ) + (1− µ) 1

2I.

Comparing with Eq. (6), we see that λ = 1/
√
2 in the definition of C whilst for D,

the same value takes the place of 1 − λ. Clearly, the choice for D made in (6) is
less favourable than the present choice, which gives a sharper observable that is still
compatible with C.

Further analysis of the condition (8) shows that it is equivalent to

‖c‖2 + ‖d‖2 ≤ 1 + (c · d)2, (11)

which can in turn be rewritten as
(

1− ‖c‖2
)(

1− ‖d‖2
)

≥ ‖c× d‖2 . (12)

Recalling the measure of unsharpness, U(C)2 = 1−‖c‖2, and observing that the right

hand side can be expressed as 4
∥

∥[C+, D+]
∥

∥

2
, we obtain the following.

Corollary 3.4. Two symmetric binary qubit observables C and D are joint measurable
if and only if they satisfy the following unsharpness tradeoff:

U(C)2U(D)2 ≥ 4
∥

∥[C+, D+]
∥

∥

2
. (13)
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This inequality is a third type of uncertainty relation in addition to preparation
and measurement uncertainty. It describes the degree of unsharpness the observables
C,D must possess in order to be jointly measurable given their degree of
noncommutativity.

Surprisingly, a generalisation of Proposition 3.2 to include biased binary qubit
observables turned out much harder to prove, with several equivalent, rather
complicated formulations reported in [13, 14, 15].

4. Quantifying measurement error

One way of comparing two observables A,C is to see how much their statistical
distributions deviate from each other. This comparison makes operational sense in
the context of error estimation, as it reflects the direct comparison between acquired
and expected experimental data. One such distribution-comparing measure, defined in
[6], is the probabilistic distance D(C,A) which measures the largest statistical deviation
between any two effects of C and A (where we assume the same outcome space,
ΩA = ΩC). The probabilistic distance is given by

D(C,A) = 2max
i

sup
ρ

∣

∣tr [ρAi]− tr [ρCi]
∣

∣ = 2max
i

‖Ai − Ci‖ , (14)

where the supremum is taken over all density operators ρ. (The factor 2 is introduced
for later convenience.) This measure forms a metric [6], and we will refer to D
interchangeably as the probabilistic distance and metric error.

For binary observables A : ±1 7→ A±, C : ±1 7→ C± the probabilistic distance
reduces to

D(C,A) = 2‖A+ − C+‖. (15)

Using Equation (3) we have the probabilistic distance D(C,A) between an arbitrary
binary approximating observable C and a binary sharp target observable A in the
qubit case:

D(C,A) = |γ|+ ‖a− c‖ . (16)

We also note that with respect to this measure the optimal class of approximating
observables are unbiased.

An alternative to defining the approximation error in terms of the supremum
over all states is given by the well-known procedure of calibration: the accuracy of
a new measuring device is generally assessed by testing it on systems with a precise
value of the target observable the device is intended to measure or estimate. This
corresponds to taking the supremum not over all states but over the eigenstates of the
target observable. From this we obtain the calibration error :

Dcal(C,A) = 2max
i

sup
ρ∈S(A)

∣

∣tr [ρAi]− tr [ρCi]
∣

∣, (17)

where S(A) = {ρ : Aiρ = ρ for some i} is the set of eigenstates of A. In the case of
binary qubit observables, A(±) = 1

2 (I±a ·σ), C(±) = 1
2 ((1±γ)I±c ·σ), this becomes:

Dcal(C,A) = |γ|+ 1− a · c. (18)

Note that this still has some properties of a distance, particularly Dcal(C,A) = 0
implying C = A. There is also monotonicity in the sense that Dcal(C,A) grows with

9

Page 9 of 34 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-109475.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



the angle between c and a. But Dcal is not a metric since the triangle inequality is
not satisfied.

There are many other ways of quantifying the degree by which two observables
differ, which are all suitable measures of approximation error. One example is a metric,
∆, that is a quantum adaptation of the classic Gaussian root-mean-square error based
on the so-called Wasserstein-2 distance of probability measures [4]. In the qubit case
this amounts to [9]

∆(C,A)2 = sup
ρ

2 |−γ + r · (a− c)| = 2 |γ|+ 2 ‖a− c‖ = 2D(C,A). (19)

An alternative to taking the supremum over all states in (19) is again to consider
just the eigenstates of A, i.e, r = ±a, where the target probability distributions are
point-like. This again gives a measure of calibration error ∆cal:

∆cal(C,A)
2 = 2 |γ|+ 2(1− a · c) = 2Dcal(C,A). (20)

As for the metric error, the optimal approximating observables for minimising the
calibration error are unbiased.

Being a form of root-mean-square deviation, the metric ∆ is defined so as to scale
with the dimensions of the target and approximating observables in question. This is
not the case with the probabilistic distance D or its calibration variant Dcal – these
quantities are defined without reference to the values of the observables; this results
in their proportionality to the squared Wasserstein-2 measures in (19) and (20).

We mention some further alternative error measures that have been proposed and
used to introduce new forms of measurement uncertainty relations. Some (but not all)
of these are metric (e.g., [16, 17]). Examples of non-metric calibration error measures
are given by the error bar width [18, 19] and an entropic measure of an average
deviation of probability distributions across all eigenstates of a target observable [20].

The error measures defined above provide worst-case error estimates in that their
values give upper bounds within the set of all states (or all eigenstates), for the
deviations of the distributions of A and C. Such error measures serve as figures of merit
of the C measurement as an approximation of A: one can be sure that the deviation
between the statistics will always lie within the bounds given by this measure, whatever
the state being measured. However, the worst-case error value will be realised on
different states for different target observables. Hence, if a joint measurement of C,D
is performed in a state that realises the worst-case A error, then the actual statistical
deviation of D from B may be smaller than the worst-case B error measure suggests.
This observation has led to calls for state-dependent quantifications of measurement
errors, but this turns out highly problematic since in generic situations it appears
difficult to disentangle measurement imperfection from preparation uncertainty.

The first attempt at deducing generic measurement uncertainty relations is due
to Ozawa (e.g., [21]). It is based on a state-dependent measure of the deviation
between two observables, which is also cast as a quantum generalisation of the root-
mean-square error. This quantity, called measurement noise, gives rise to a form of
measurement uncertainty relation that was claimed to constitute a demonstration of
a violation of Heisenberg’s error-disturbance relation. This claim, which was brought
into the limelight by experimental confirmations of Ozawa’s inequality in 2012, was
scrutinised and shown to be unfounded in [4]. However, as we shall show, there
is a close connection between measurement noise and our calibration error in the
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qubit case, which leads to a reinterpretation of the experiments testing the associated
tradeoff relations for measurement noise. This will be elucidated further below.

The measurement noise quantity can be expressed as follows,

ε(C,A, ρ)2 = tr
[

ρ(C[1]− A[1])2
]

+ tr
[

ρ
(

C[2]− C[1]2
)]

. (21)

It is immediately evident that unless the observables C and A are compatible
(hence unless they commute), the measurement noise cannot be determined from the
measurement statistics of A and C in the state ρ. It requires the measurement of other
quantities—in the above formulation of ε the operator (C[1]−A[1])2—which do not, in
general, commute with A and C and hence require an entirely different measurement
setup that has nothing to do with the error estimation. In response to this criticism,
Ozawa proposed what has become known as the three-state method [5]. However,
this still does not allow for a comparison of the theoretical quantity ε(C,A, ρ) with an
error estimate obtained from the statistics of measurements of A and C on the state ρ.
Moreover, the three-state approach undermines the intended virtue of ε being specific
to the state ρ.

The measurement noise thus does not match its intended interpretation as
measurement error unless, possibly, when the approximating measurement C is
compatible with A. If this requirement is not met, the quantity ε is generally found
to become unreliable as an error measure [4].

However, it has been pointed out already by Ozawa (e.g., [5, Eqs. 124, 125]) that
the quantity ε(C,A, ρ)2 represents an operational squared deviation if the state ρ is
an eigenstate of A. Moreover, it was noted that in such calibration situations this
quantity may agree with the calibration error based on the Wasserstein-2 deviation
[22, 4]. We illustrate this connection in the qubit case.

For binary qubit observables, the measurement noise quantity assumes the
following form:

ε(C,A, ρ)2 = 2(1− a · (c+ γr)). (22)

Interestingly, in the unbiased case, C = C0, the noise measure is state-independent; in
fact, we then see the connection with the calibration error (this observation was also
noted in [23]):

ε(C0,A, ρ)
2 = 2(1− a · c) = ∆cal(C0,A)

2 = 2Dcal(C0,A). (23)

Specialising further the set of approximating observables C to those that are smearings
of A and thus commute, c = ‖c‖ a, we finally obtain

D(C,A) = ‖c− a‖ = 1− ‖c‖ = 1− c · a = Dcal(C,A) =
1
2ε(C0,A, ρ)

2. (24)

5. Approximate joint measurements: general considerations

5.1. Joint measurability

Joint measurements of compatible observables C,D can be utilised to simultaneously
obtain information about a pair of incompatible sharp (target) observables A and B,
in the sense that the statistics of C and D provide estimations of the statistics of A
and B, respectively. The degree of inaccuracy in these estimates will be quantified by
a given choice of error measure. This strategy is illustrated in Figure 1.
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For C, D to be good approximations to A, B, respectively, it is natural to assume
that the approximating observable has the same value set as the target observable.
In the qubit case, A and B are necessarily binary observables, and hence we will
assume that both C and D are also binary, so the joint observable J : (k, ℓ) 7→ J(k, ℓ),
k, ℓ ∈ {−1,+1}, satisfies

Ck = J(k,+1) + J(k,−1), Dℓ = J(+1, ℓ) + J(−1, ℓ).

5.2. Error region

We now turn to the task of determining the optimal error bounds. This amounts to
specifying the lower boundary of the error region, that is, the set of pairs of error
values that can be attained through a joint measurement of compatible observables C
and D approximating incompatible observables A and B, respectively.‡ Our aim is not
merely to solve this mathematical problem but to elucidate how the optimal errors
are determined as an interplay between the unsharpness of the approximators and the
incompatibility of the target observables. Before we discuss the solution for the metric
and calibration errors, we make some general observations that serve to simplify the
problem [6].

For both errors D,Dcal, the error region is a subset of the closed square
[0, 2] × [0, 2]. Indeed, from the form of the errors, D(C,A) = |γ| + ‖a− c‖ and
Dcal(C,A) = |γ| + 1 − a · c, one can see that these expressions are bounded above
by |γ|+ 1 + ‖c‖, and since the positivity of a general effect C+ = 1

2 (1 + γ)I + 1
2c · σ

is equivalent to |γ| + ‖c‖ ≤ 1, the ultimate upper bound is 2. Moreover, for
either error measure, any value above 1 can be realised by a trivial observable with
effects λI, (1 − λ)I, which has c = 0 and λ = 1

2 (1 + γ) ∈ [0, 1]. Since a trivial
observable is compatible with any other observable, this means that the complement
of [0, 1)× [0, 1) is included in the error regions. We can therefore focus on determining
the lower boundary of the error region, which will be found to be a convex curve
within [0, 1] × [0, 1]. In the remainder of this section, C,D will denote symmetric
approximators. We will assume the target observables A,B to have Bloch vectors with
an angle θ ∈ (0, π/2] between them.

The optimisation problem at hand is simplified by the fact that given our error
measures, the best approximators can be found within a suitably reduced family of
observables.

5.3. Reducing the search space

In [6] it was shown that the optimal compatible approximators C,D for ±1 valued qubit
observables A,B are to be found among the symmetric qubit POVMs characterised
above. To be precise, we have the following result.

Proposition 5.1. Let C,D be compatible binary qubit observables used to approximate
the sharp binary observables A,B. Then C0,D0, the symmetric binary observables with
the same Bloch vectors c,d, are also compatible and their approximation errors with
respect to A,B are not greater:

D(C0,A) ≤ D(C,A), Dcal(C0,A) ≤ Dcal(C,A). (25)

‡ An illustration for obtaining these bounds is provided in the authors’ Wolfram demonstration
Optimal Joint Measurements of Qubit Observables at http://demonstrations.wolfram.com/

OptimalJointMeasurementsOfQubitObservables/.
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For the proof we need the following lemma, here simply formulated for the case
of observables with identical finite outcome sets.

Lemma 5.2. If the pairs of observables C,D and C′,D′ are compatible and λ ∈ (0, 1),
then the pair C(λ),D(λ) is compatible, where C(λ)(k) = λC(k) + (1 − λ)C′(k) and
D(λ)(ℓ) = λD(ℓ) + (1− λ)D′(ℓ) for all k, ℓ.

The proof follows simply from the fact that if J, J′ are joint observables for
C,D and C′,D′, respectively, then J(λ) is a joint observable for C(λ),D(λ), where
J(λ)(k, ℓ) = λJ(k, ℓ) + (1− λ)J′(k, ℓ).

Now, for C± = 1
2 (1± γ)I ± 1

2c · σ, D± = 1
2 (1± δ)I ± 1

2d · σ, we define C′,D′ via

C
′
± =

1

2
(1∓ γ)I ± 1

2
c · σ, D

′
± =

1

2
(1∓ δ)I ± 1

2
d · σ.

Note that C0 = 1
2C + 1

2C
′ and D0 = 1

2D + 1
2D

′, and it follows immediately from (16)
and (18) that (25) holds. Furthermore, we claim that if C,D are compatible, then so
are C′,D′, and therefore, by Lemma 5.2, C0,D0 are compatible. To see this, we note
that observables C′,D′ consist of the same effects as C̃, D̃, where C̃(k) = UC(k)U∗,
D̃(ℓ) = UD(ℓ)U∗, with U = e · σ and e is a unit vector perpendicular to both c,d.
(Then U is a unitary that flips both c · σ 7→ −c · σ and d · σ 7→ −d · σ.) Now the
compatibility of C,D entails that of C̃, D̃ since a joint observable, (k, ℓ) 7→ J(k, ℓ) for
the former pair gives rise to a joint observable (k, ℓ) 7→ UJ(k, ℓ)U∗ for the latter pair.
We leave it as an exercise to verify that by rearrangement of the effects UJ(k, ℓ)U∗ a
joint observable for C′,D′ is obtained.

We can restrict the set of compatible approximators further such that the
associated Bloch vectors c,d are in the plane spanned by a, b whilst ensuring that
this smaller set still contains optimal compatible approximators.

Proposition 5.3. Let A,B be a pair of incompatible sharp binary qubit observables,
with (non-collinear) Bloch vectors a, b. Let C,D be compatible symmetric binary qubit
observables with Bloch vectors c,d. There are compatible symmetric binary qubit
observables C0,D0 with Bloch vectors c0,d0 in the plane spanned by a, b such that

D(C0,A) ≤ D(C,A), Dcal(C0,A) ≤ Dcal(C,A). (26)

To prove this, let c0,d0 be the projections of c,d onto the plane spanned by a, b.
We can write c = c0 + c′ and d = d0 + d′. Note that c′ and d′ are perpendicular to
the plane spanned by a, b. Given that C,D are compatible, then the symmetric binary
observables C̃, D̃ are compatible, where the associated Bloch vectors are c̃ = c0 − c′

and d̃ = d0 − d′. This follows from the fact that the compatibility inequality (11) is
satisfied (since ‖c̃‖ = ‖c‖, ‖d̃‖ = ‖d‖, and c̃ · d̃ = c · d):

‖c̃‖2 + ‖d̃‖2 ≤ 1 + (c̃ · d̃)2 ⇐⇒ ‖c‖2 + ‖d‖2 ≤ 1 + (c · d)2.

Moreover, we have

D(C̃,A) = ‖c0 − c′ − a‖ =

√

‖c0 − a‖2 + ‖c′‖2 = D(C,A),

D(D̃,B) = ‖d0 − d′ − b‖ =

√

‖d0 − b‖2 + ‖d′‖2 = D(D,B),

and similarly

Dcal(C̃,A) = 1− a · c0 = Dcal(C,A), Dcal(D̃,B) = 1− b · d0 = Dcal(D,B).

13

Page 13 of 34 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-109475.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



By Lemma 5.2, C0,D0 are compatible, where C0 = 1
2C + 1

2 C̃, D0 = 1
2D + 1

2 D̃. These
are symmetric binary observables with associated Bloch vectors c0,d0. It is then easy
to verify that

D(C0,A) ≤ D(C,A), D(D0,B) ≤ D(D,B),

Dcal(C0,A) = Dcal(C,A), Dcal(D0,B) = Dcal(D,B).

6. Error bounds for qubits: metric error region

6.1. The optimisation problem

The error optimisation consists of finding the smallest possible value of D(D,B) =
‖b− d‖ for a given value of D(C,A) = ‖a− c‖, subject to the compatibility condition
(8). Thus, to be specific, one restricts the class of compatible approximators C,D to
those with a fixed given value of D(C,A), and must identify the pairs C,D for which
D(D,B) is then minimal. This mathematical problem was solved in [8].§ Here we
provide an operational interpretation of the boundary of the error region, describing
it as an error tradeoff that is governed by the unsharpness of the approximating
observables, their mutual noncommutativity, and the degree of incompatibility of the
target observables.

The geometric significance of the constraint (8) is readily determined: if we fix the
vector c, say, then this inequality defines an ellipsoid within which the end points of all
possible vectors d must lie for the corresponding observable D to be jointly measurable
with C. The semimajor axis of this ellipsoid is the diameter in the direction given by
c in the Bloch sphere.‖ Similarly, there is an “admissible” ellipsoid for the vectors c
for any fixed d.

For a given fixed value of D(C,A), take any c that realises this value; the best
choice of d then is the one whose endpoint is on the smallest circle centred at (the
end point of) b that still intersects with the ellipsoid of allowed vectors d described
by (8). Hence the end point of d lies on the surface of the ellipsoid, and the vector
b− d is found to be normal to that surface.

The optimisation is complete only when c is also found simultaneously so that its
end point lies on the surface of the corresponding ellipsoid of “allowed” vectors c for
the given d, with a− c normal to that surface (Figure 3).

This reasoning anticipates what is obtained by application of the method of
Lagrange multipliers, where one needs to find the stationary points (∇dLB = 0) of
the functional

LB(d) := ‖b− d‖ + λ
(

‖c+ d‖ + ‖c− d‖ − 2
)

,

and similarly for LA(c). The Euler-Lagrange equations then give

a− c ∝ c+ d

‖c+ d‖ +
c− d

‖c− d‖ , b− d ∝ c+ d

‖c+ d‖ − c− d

‖c− d‖ .

In the case of incompatible A,B, with non-collinear vectors a, b, is not hard to see
from the geometry of the ‘admissible’ ellipsoids that an optimising vector d cannot

§ A more detailed presentation of the proof including steps that were not given explicitly in that
paper can be found in [24].
‖ Note that this means that the inequality (8) entails that both vectors c,d must have lengths not
greater than 1.
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Figure 3. Constellation of Bloch vectors c,d giving jointly minimal metric errors.

be collinear to c, so that the denominators ‖c± d‖ 6= 0. Since the vectors on the
right-hand sides are mutually perpendicular, it follows that a − c and b − d are
perpendicular.

There are two spheres centred at the end point of b with surfaces tangent to
the ellipsoid of admissible vectors d given a fixed c, corresponding to a minimal and
maximal distance ‖b− d‖. Similarly there will be a minimal and maximal distance
‖a− c‖ within the ellipsoid of “admissible” vectors c. Hence there will be four
stationary constellations for the optimisation problem at hand. In the following we
describe the constellation of joint minima.

When c and d have thus been found to minimise the distance D(D,B) for given
value of D(C,A) (and vice versa), then the compatibility condition (8) is saturated,
giving the equation

‖c‖2 + ‖d‖2 = 1 + (c · d)2 = 1 +M2, M = c · d. (27)

6.2. Specification of metric error bounds and their operational interpretation

Evaluation of the Euler-Lagrange equations yields the Bloch vectors associated with
the optimal approximators:

c =
(D(D,B) + (1−M2) cosϕ) sinϕa+MD(C,A) cosϕ b

sin θ
,

d =
(D(C,A) + (1−M2) sinϕ) cosϕ b+MD(D,B) sinϕa

sin θ
,

(28)

where

sinϕ =

√

1− ‖d‖2
1−M2

, cosϕ =

√

1− ‖c‖2
1−M2

. (29)

As noted above, optimising c,d cannot be collinear, so M2 6= 1 and hence sinϕ, cosϕ
are well-defined.

The corresponding optimal (minimal) values for D(C,A) and D(D,B) are found

15

Page 15 of 34 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-109475.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



to be

D(C,A) =
sinϕ+ sin θ cosϕ√
1 + sin θ sin 2ϕ

− sinϕ,

D(D,B) =
cosϕ+ sin θ sinϕ√
1 + sin θ sin 2ϕ

− cosϕ.

(30)

We next provide an operational interpretation of this solution and the relevant
quantities involved. First note that the parameter sin θ is a measure of the
incompatibility of the target observables A,B, given by

sin2 θ = ‖a× b‖2 = 4 ‖[A+, B+]‖2 = 1
4 ‖[a · σ, b · σ]‖2 . (31)

Using the unsharpness measures, U(C)2 = 1−‖c‖2, U(D)2 = 1−‖d‖2, we can rewrite
the compatibility equation (27) in the equivalent forms

1−M2 = U(C)2 + U(D)2, (32)

U(C)2U(D)2 = ‖c× d‖2 = 4 ‖[C+, D+]‖2 . (33)

Using the above relations, we can determine ϕ solely in terms of the unsharpness
of the two approximating observables:

sinϕ =
U(D)

√

U(C)2 + U(D)2
, cosϕ =

U(C)
√

U(C)2 + U(D)2
, (34)

and further

sin 2ϕ =
2U(C)U(D)

U(C)2 + U(D)2
. (35)

Substituting these identities in (30) we can express the bounds in terms of the
unsharpness measures of C and D and the degree of noncommutativity A,B; we obtain:

D(C,A) =
U(D) + U(C) sin θ

√

(U(D) + U(C) sin θ)2 + U(C)2 cos2 θ
− U(D)

√

U(C)2 + U(D)2
,

D(D,B) =
U(C) + U(D) sin θ

√

(U(C) + U(D) sin θ)2 + U(D)2 cos2 θ
− U(C)

√

U(C)2 + U(D)2
.

(36)

These equations describe the desired error tradeoff, showing the dependency on the
degrees of unsharpness of the approximators C,D and on the degree of incompatibility
of the target observables A,B.

The quantity M2 can be expressed as

M2 =
cos2 θ

1 + sin θ sin 2ϕ
. (37)

Reading M2 together with sin 2ϕ as functions of the unsharpness measures via (32),
(35), this yields an implicit functional relation between U(C) and U(D):

sin θ = − 1
2M

2 sin 2ϕ+
√

1
4M

4 sin2 2ϕ+ (1−M2). (38)

At this point it is instructive to revisit the case M2 = 1, for which both
approximators are sharp and must therefore coincide: we now see that this entails
sin θ = 0, confirming that sharp approximators can only be optimal if the target
observables coincide. In this case one has A = C = D = B, so that the optimal errors
are both zero, as is expected.

Figure 4 shows the unsharpness tradeoff for some target observables with different
degrees of incompatibility. In general, the shape of the bound described by (30) is
determined by the angle θ that quantifies the incompatibility between A and B.
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Figure 4. How the tradeoff between U(C) and U(D) described by (38) varies
with θ. The angle parameter ϕ introduced in the text is also highlighted.

6.3. Linear lower bound estimates to the metric error boundary curve

We can use equations (37) and (30) to obtain a delination of the optimal error
boundary curve by means of a family of tangential straight lines:

D(C,A) sinϕ+D(D,B) cosϕ =
cos θ

M
− 1. (39)

Putting ϕ = π/4 gives D(C,A) + D(D,B) =
√
2
[√

1 + sin θ − 1
]

. At this value of ϕ,
Eq. (30) gives

D(C,A) = D(D,B) =
1√
2

[√
1 + sin θ − 1

]

(40)

as an optimising error pair. This means that all points in the error region satisfy the
inequality

D(C,A) +D(D,B) ≥
√
2
[√

1 + sin θ − 1
]

, (41)

with equality achieved at D(C,A) = D(D,B) =
[√

1 + sin θ − 1
]

/
√
2. This inequality

was first proven in [6]. We sketch a simple graphical proof using Figure 5, which allows
us to highlight the geometrical significance of the compatibility condition. The idea is
to verify that the straight line described by equality in (41) is a tight approximation
that becomes exact at the point with coordinates given in Eq. (40). The geometric
construction will yield these values and makes it evident at the same time that these
are among the optimal error pairs (since the associated straight line is tangent to the
convex boundary curve at this point).

In the figure we consider sharp target and unbiased approximating observables
whose Bloch vector pairs a, c and b,d are arranged mirror symmetrically with respect
to the vertical line through the origin. Recall that a, b are unit vectors. Choosing c,d
of equal length ensures that D(C,A) = D(D,B). Optimal compatible approximators
will satisfy ‖c+ d‖ + ‖c− d‖ = 2. Since ‖c‖ = ‖d‖, the vectors c + d and c − d

are vertically and horizontally oriented, hence perpendicular. This entails that the
endpoints of c and d lie on the lines x + y = 1 and y − x = 1, respectively. The
circles around the endpoints of a, b that are respectively tangent to these lines define
the points (vectors c,d) of best approximation (smallest error). The corresponding
vectors c,d are thus determined by the condition that a − c is perpendicular to the
line x+y = 1 and b−d is perpendicular to the line y−x = 1. (Incidentally this shows
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Figure 5. Symmetric approximators yielding equal optimal error values. The
optimal approximating compatible observables C,D do not commute with their
target observables A,B unless the latter have perpendicular Bloch vectors a, b.

that the optimal approximators are not, in general, smeared versions of the target
observables: c,d are collinear to a, b, respectively, only when a, b are perpendicular.)

One can now easily work out that the optimal error values in this case are those
given in Eq. (40). The horizontal and vertical sides of the black equilateral triangles
are

1
2

[

‖a+ b‖ − ‖c+ d‖
]

= 1
2

[

‖a− b‖ − ‖c− d‖
]

= 1√
2
D(C,A) = 1√

2
D(D,B).

This gives:

D(C,A) = D(D,B) =
√
2
4

[

‖a+ b‖ − ‖c+ d‖
]

+
√
2
4

[

‖a− b‖ − ‖c− d‖
]

=
√
2
4

[

‖a+ b‖ + ‖a− b‖ − ‖c+ d‖ − ‖c− d‖
]

=
√
2
2

[

cos θ2 + sin θ
2 − 1

]

=
√
2
2

[
√
1 + sin θ − 1

]

.

Here we used the relations ‖a− b‖ = 2 sin θ
2 , ‖a+ b‖ = 2 cos θ2 , the compatibility

‖c+ d‖ + ‖c− d‖ = 2, and the identity sin(θ/2) + cos(θ/2) =
√
1 + sin θ.

It is interesting to observe that the optimal approximators C,D in this case are
not smearings of A,B and therefore do not commute with their target observables.

6.4. Circular outer bound for the metric error region

Finally we remark that the exact convex boundary curve lies slightly above a circular
segment of radius sin θ centred at (sin θ, sin θ). Thus, any point in the error region
with D(C,A),D(D,B) ≤ sin θ satisfies

(

D(C,A)− sin θ
)2

+
(

D(D,B)− sin θ
)2 ≤ sin2 θ, (42)

with equality achievable at the endpoints of the circular boundary segment,
(

D(C,A),D(D,B)
)

= (sin θ, 0) (at ϕ = 0) and
(

D(C,A),D(D,B)
)

= (0, sin θ) (at
ϕ = π/2). Figure 6 shows the shape of the exact boundary of the error region and
the circular outer estimate for different values of θ. Inequality (42) shows how the
error pairs are bounded away from the origin by the measure of incompatibility of the
target observables A,B, namely, the quantity sin θ = 1

2

∥

∥[a · σ, b · σ]
∥

∥.
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Figure 6. Boundary of metric error region (blue) together with (outer) circular
bound (orange) for different degrees of incompatibility (θ = π

6
, π
4
, π
2
). In the

maximally incompatible case, the two curves coincide.

6.5. Minimal metric errors for maximally incompatible qubit observables

As an important special case we consider the error tradeoff for maximally incompatible
target observables, for which θ = π

2 . In this case we have M2 = 0, hence the

compatibility condition becomes U(C)2 + U(D)2 = 1, that is, ‖c‖2 + ‖d‖2 = 1, with
c,d perpendicular. Eq. (28) gives:

c = sinϕa = U(D)a, d = cosϕ b = U(C)b. (43)

The optimal approximators C and D are thus smeared versions of the sharp target
observables A and B, respectively, with associated errors given by Eq. (30),

D(C,A) = 1− sinϕ, D(D,B) = 1− cosϕ, (44)

For the domain that we are considering, ϕ ∈ [0, π/2], this defines the lower left
quadrant of a unit circle centred at (1, 1); hence the full error region is given by
all value pairs

(

D(C,D),D(D,B)
)

with either D(C,A) ≥ 1 or D(D,B) ≥ 1, or else,
when both D(C,A) ≤ 1, D(D,B) ≤ 1, then

(D(C,A)− 1)2 + (D(D,B)− 1)2 ≤ 1. (45)

The limiting case of equality defining the exact lower boundary curve.
We are now in a position to observe a remarkable concurrence of preparation

uncertainty, measurement uncertainty, and the unsharpness required by compatibility
in the case of a maximally incompatible pair of sharp qubit observables A,B. First we
note a simple form of preparation uncertainty relation for such a pair.

The variances of A,B are ∆(A, ρ)2 = 1 − (a · r)2, ∆(B, ρ)2 = 1 − (b · r)2; then,
since a, b are perpendicular, we have (a · r)2 + (b · r)2 ≤ ‖r‖2, and so

∆(A, ρ)2 +∆(B, ρ)2 ≥ 2− ‖r‖2 ≥ 1. (46)

This determines the (preparation) uncertainty region of A,B as the subset of [0, 1] ×
[0, 1] that is the complement of the intersection with the open unit ball centred at
(0,0):

PUR∆(A,B) =
{

(∆A,∆B) : ∆A
2 +∆B

2 ≥ 1
}

∩
(

[0, 1]× [0, 1]
)

. (47)

We then have the following.
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Theorem 6.1. Let A,B be a pair of maximally incompatible sharp observables with
perpendicular Bloch vectors a, b. Let C,D be a pair of compatible symmetric binary
observables with Bloch vectors c,d aligned with a, b, respectively, c = ‖c‖ a,d = ‖d‖ b.
The following statements are equivalent.

(a) C,D are jointly measurable.

(b) C,D satisfy the unsharpness tradeoff:

‖c‖2 + ‖d‖2 ≤ 1 that is: U(C)2 + U(D)2 ≥ 1. (48)

(c) J given in (9) is a joint observable for C,D, and it assumes the form

Jkℓ =
1

2
ρkℓ =

1

4

(

I + (kc+ ℓd) · σ
)

. (49)

(d) C,D satisfy the measurement uncertainty tradeoff:

(D(C,A)− 1)2 + (D(D,B)− 1)2 ≤ 1. (50)

(e) The operators ρkℓ in Eq. (49) are positive and of trace 1 and hence satisfy the
preparation uncertainty tradeoff:

∆(A, ρkℓ)
2 +∆(B, ρkℓ)

2 ≥ 1. (51)

These equivalences are due to the fact that ∆(A, ρkℓ)
2 = 1 − ‖c‖2, ∆(B, ρkℓ)

2 =

1 − ‖d‖2, and D(C,A) = ‖c− a‖ = 1 − ‖c‖, D(D,B) = ‖d− b‖ = 1 − ‖d‖. They
show that optimal approximations are achieved exactly at the onset of compatibility
and precisely when the state operators generating the associated joint observable have
minimal preparation uncertainty for the target observables. This connection was found
to be rooted in the Z2 × Z2-covariance of the joint observable J [9, 25].

It is possible to express the correspondence between preparation uncertainty and
measurement uncertainty emerging in the above theorem even more explicitly. To
this end we note that we may define a measure of uncertainty that is more directly
adapted to the metric error measure. We put

δ(A, ρ) = 1− |a · r| = 1−
√

1−∆(A, ρ)2, δ(B, ρ) = 1− |b · r| = 1−
√

1−∆(B, ρ)2.

For the states ρkℓ and c = ‖c‖ a, d = ‖d‖ b, this gives:

δ(A, ρkℓ) = 1−a · c = 1−‖c‖ = D(C,A), δ(B, ρkℓ) = 1− b ·d = 1−‖d‖ = D(D,B).

Corollary 6.2. Let C,D be a compatible pair of symmetric binary observables as
characterised in Theorem 6.1. Then the observable J and the states ρkℓ given there
trace out the nontrivial part of the metric error region and the full uncertainty region
for A,B, respectively, and we have the following (easily verifiable) result.

MURD(A,B) ∩
(

[0, 1]× [0, 1]
)

= PURδ(A,B), (52)

where

MURD(A,B) =
{(

D(C,A),D(D,B)
)

: C,D are compatible binary observables
}

,

PURδ(A,B) =
{(

δ(A, ρ), δ(B, ρ)
)

: ρ is any state
}

.
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6.6. Summary: the incompatibility-unsharpness-error tradeoff for metric error

In [8], a thorough discussion of the boundary curve of the admissible region of
points

(

D(C,A),D(D,B)
)

is given with ϕ as the parameter, including, in particular,
its characterisation via the family of equations (39). Here we have added the
interpretation in terms of the degrees of unsharpness of C and D, and established
a functional relation between these parameters. We have seen that the optimal
approximations strike a balance between the necessary degrees of unsharpness required
to ensure compatibility and the magnitude of the approximation errors, and this
balance is governed by the degree of incompatibility of the target observables.
It becomes evident that a certain degree of noncommutativity of C,D is usually
favourable for improving the approximations, but too much noncommutativity requires
more unsharpness (for compatibility), which drives the errors up again.

7. Error bounds for qubits: calibration error region

We now turn to the similar task of determining the lower boundary curve of the
admissible region of the calibration error pairs,

(

Dcal(C,A),Dcal(D,B)
)

, under the
constraint of compatibility for the approximators C,D. As before, the optimising
pairs of compatible approximators can be chosen to be symmetric binary observables.

Thus, fixing an error value Dcal(C,A) = 1− a · c and an associated Bloch vector
c, we wish to determine the smallest Dcal(D,B) = 1 − b · d subject to c and d

satisfying inequality (8). Optimality is again to be obtained by vectors c,d pointing
to the surfaces of their respective compatibility ellipses (in the plane spanned by a, b),
thereby saturating (8).

Using the Lagrange multiplier method, we need to find the stationary points
(∇dL̃B = 0) of the functional

L̃B(d) := 1− b · d + λ
(

‖c+ d‖ + ‖c− d‖ − 2
)

,

and similarly for L̃A(c), the Euler-Lagrange equations give

a ∝ c+ d

‖c+ d‖ +
c− d

‖c− d‖ , b ∝ c+ d

‖c+ d‖ − c− d

‖c− d‖ . (53)

This is well-defined if d 6= ±c. Then, since the vectors on the right-hand sides are
mutually perpendicular, it follows that a local extremum can only exist in the case
of orthogonal vectors a, b, that is, maximally incompatible target observables A,B.
Otherwise, if a 6⊥ b, the optimiser pairs, represented by Bloch vector pairs (c,d),
must lie on the boundary of the Bloch sphere, so that compatibility requires d = ±c

(since C,D are sharp). We treat both cases separately.

7.1. Minimal calibration errors for maximally incompatible qubit observables

In this case, a · b = 0, Eq. (53) entails that the optimising Bloch vectors c,d (with
d 6= ±c) lie in the interior of the equatorial circle containing a, b. Evaluating the
Euler-Lagrange equations we obtain (noting that M2 < 1)

a =
c−Md

(1−M2) sinϕ
, b =

d−Mc

(1−M2) cosϕ
, (54)
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with M and ϕ of the form given above. In view of (27), the vectors of the right-
hand sides are easily confirmed to be mutually orthogonal. The Bloch vectors for the
optimising approximators C,D are

c = sinϕa+M cosϕ b, d =M sinϕa+ cosϕ b, (55)

yielding the optimal calibration error values,

Dcal(C,A) = 1− a · c = 1− sinϕ, Dcal(C,A) = 1− b · d = 1− cosϕ. (56)

The compatibility condition (11), ‖c‖2 + ‖d‖2 = 1+M2, is readily verified. It can be
written as a tradeoff for the unsharpness parameters:

U(C)2 + U(D)2 = 1−M2. (57)

While we originally excluded the caseM2 = 1, the optimal error values do not depend
on M and the form of the solution (55) does allow for M = ±1 to be included. This
gives two pairs of extremal (unit vetor) solutions, c1 = d1 = m and c−1 = −d−1, and
it is found that there is no constraint on the unsharpness of the optimal approximators
as the bound in (57) is 0.

The parameter ϕ can be eliminated, giving an explicit relation between the errors
as a description of the boundary of the calibration error region:

(

Dcal(C,A)− 1
)2

+
(

Dcal(D,B)− 1
)2

= 1. (58)

The boundary is thus given as the segment of the unit circle with centre (1,1) within
the square [0, 1]× [0, 1]. We summarise:

Proposition 7.1. The calibration error region for a pair of maximally incompatible
sharp qubit observables A,B is fully described by a single measurement uncertainty
relation, given by the conditional inequality

(

Dcal(C,A)− 1
)2

+
(

Dcal(D,B)− 1
)2 ≤ 1 if Dcal(C,A) ≤ 1, Dcal(D,B) ≤ 1. (59)

The observant reader will immediately notice that inequalities (59) and (45) are
indeed identical and hence the metric and calibration error regions actually coincide
in the case of maximally incompatible target observables (a · b = 0). This is most
easily understood by noting that for both error measures, the sets of optimising
approximations contain the observables C,D that are smearings of A,B, that is,
c = ‖c‖ a, d = ‖d‖ b, with ‖c‖2 + ‖d‖2 = 1. For these approximations, the metric
and calibration errors coincide, as noted in Eq. (24).

It is also interesting to visualise the variety of compatible pairs C,D realising
one and the same point

(

Dcal(C,A),Dcal(D,B)
)

on the lower boundary of that region,
hence satisfying Eq. (58) (Figure 7). Put m = a∗ + b∗, where

a∗ = (a ·m)a = sinϕa. b∗ = (b ·m)b = cosϕ b.

Then we observe that both pairs C0,D0, with c0 = a∗, d0 = b∗, and C1,D1, with
c1 = d1 = m, are compatible pairs realising the optimal error values (56). In general,
the family of vector pairs cM ,dM of (55), with M ∈ [−1, 1] constitute compatible
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Figure 7. Pairs of compatible observables CM ,DM that saturate the bound given
in (62) in the case a ⊥ b. The associated vectors cM and dM are related such
that cM − dM and c0 − d0 are collinear. This includes the pair c

−1,d−1.

approximating observables CM ,DM with the same optimal error values; these vectors
can be written as convex combinations of a∗ + b∗,±(a∗ − b∗),

cM = 1
2 (1 +M)(a∗ + b∗) + 1

2 (1−M)(a∗ − b∗),

dM = 1
2 (1 +M)(a∗ + b∗) + 1

2 (1−M)(b∗ − a∗),
− 1 ≤M ≤ 1. (60)

Thus, remarkably, the calibration error selects an infinity of compatible approximating
pairs of observables for each error pair on the optimal boundary of the error region
when the target observables are maximally incompatible. Among these it allows,
according to Eq. (57), an optimal approximator pair with vanishing unsharpness,
c1 = d1 = m.

7.2. Minimal calibration errors for non-maximally incompatible qubit observables

In the case of non-maximally incompatible target observables, a ·b 6= 0, the optimisers
must have Bloch vectors on the boundary of the Bloch sphere. In order to see
this, consider Figure 8. Fix a value Dcal(C,A), with some c pointing to the line
segment perpendicular to a that contains the endpoint of a(a ·c) = a

(

1−Dcal(C,A)
)

.
The ellipse of admissible vectors d has a tangent perpendicular to b, thus fixing
the smallest error value to be Dcal(D,B) = 1 − b · m = ‖b− b∗‖ such that C,D
are compatible for the given c. This minimum value of Dcal(D,B) given the value
Dcal(C,A) = 1−a ·m = ‖a− a∗‖ is reached where the line segment perpendicular to
b inside the Bloch sphere hits the endpoint, m, nearest to b of the given line segment
perpendicular to a inside the Bloch sphere. The associated vectors d0 = c0 = m

realise commuting sharp observables, D0 = C0. This is the unique solution to the
optimisation problem at hand if a, b are not perpendicular.

The calibration error values are

Dcal(C,A) = 1− a ·m = ‖a− a∗‖ = 1− cosφ,

Dcal(D,B) = 1− b ·m = ‖b− b∗‖ = 1− cos(θ − φ),
(61)

where φ is the angle between a and m. It is straightforward to show that this equation
determines Dcal(D,B) as a decreasing and convex function of Dcal(C,A). Indeed,
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Figure 8. Realising minimal calibration error Dcal(D,B) for fixed Dcal(C,A) in
the case a 6⊥ b. The smallest possible value for Dcal(D,B) occurs when d0 = m,
giving D0, in which case the unique choice c0 = m gives an observable C0 that is
trivially compatible with D0 = C0.
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Figure 9. Lower boundary of the calibration error region for different degrees
of incompatibility (θ = π

6
, π
4
, π
2
).

the following explicit functional relation between the optimal errors can be proven
(Appendix B); we put da = Dcal(C,A), db = Dcal(D,B) for simpler notation:

da(2− da) + db(2− db) + 2
√

da(2− da)
√

db(2− db) cos θ = sin2 θ. (62)

This is a closed equation for the lower boundary of the calibration error region,
describing the error tradeoff in relation to the incompatibility of A,B. Noting that
the left hand side expression, seen as a function f(da, db), is increasing separately in
each of its variables as long as da, db ≤ 1, we obtain the following description of the
calibration error region (see also Figure 9).

Proposition 7.2. The calibration error region for a pair of maximally incompatible
sharp qubit observables A,B is fully determined by a single measurement uncertainty
relation, given by the conditional inequality

da(2− da) + db(2− db) + 2
√

da(2− da)
√

db(2− db) cos θ ≥ sin2 θ

if da = Dcal(C,A) ≤ 1, db = Dcal(D,B) ≤ 1.
(63)

Note that in the maximally incompatible case (θ = π
2 ), the calibration and metric

error regions coincide; their boundary curves are given by the same circular segment
as (63) reduces to the same form as (45).

24

Page 24 of 34AUTHOR SUBMITTED MANUSCRIPT - JPhysA-109475.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



We may now use the relationship (23) between measurement noise and calibration
error, valid for symmetric approximators, to see the connection between the above
relation and an inequality for measurement noise due to Branciard [7]. Putting
ε2a = ε(A,C, ρ)2 = 2(1− a · c) = 2da, ε

2
b = 2db, inequality (63) turns into Branciard’s

inequality,

ε2a

(

1− ε2a
4

)

+ ε2b

(

1− ε2b
4

)

+ 2εaεb

√

(

1− ε2a
4

)(

1− ε2b
4

)

cos θ ≥ sin2 θ. (64)

This shows that any experimental qubit test for Branciard’s inequality also serves as
a test of the calibration error boundary.

8. Testing measurement uncertainty relations

We proceed to a brief survey of recent experimental tests of measurement uncertainty
relations. We focus on three methodologies that have been applied and consider the
question of which of these qualify as direct tests in the sense defined in [26].

8.1. The quest for direct tests

Generally, a quantum mechanical relation can be tested by experimentally determining
the expectation values occurring in it. This may involve performing measurements
of different, possibly incompatible, observables. For instance, testing the standard
(preparation) uncertainty relation for two incompatible quantities A,B with first
moment operators A,B, ∆(A, ρ)∆(B, ρ) ≥ 1

2 |tr [ρ [A,B]]|, requires separate runs
of three measurements to obtain the statistics and standard deviations of A and B

in a given quantum state, and the expectation value of their commutator. Hence,
three (generally) incompatible measurements must be performed. This procedure is
in accordance with the interpretation of the given uncertainty relation: one obtains
measurement statistics and computes the resulting standard deviations from the data;
this enables one to compare these numbers with the theoretical values calculated for
the given state. It is understood that the experimenters know which preparation
procedures are to be applied to realise the state of interest.

In the case of a measurement uncertainty relation, the task is to compare the
theoretical error values and the tradeoff relation they satisfy according to the theory
with the result of the error estimation procedure associated with the approximate
joint measurement in question. Where this happens, we speak of a direct test of a
measurement uncertainty relation. By contrast, in an indirect test, one may take
any other suitable measurement that allows one to determine the expectation value(s)
involved in the mathematical expression of the error quantity under consideration.
We will identify examples of both direct and indirect tests below. We argue that it is
only the former that lead to a theory-independent test (see also [26, 4]).

8.2. Indirect tests of calibration error tradeoff relations using tests of measurement
noise relations

The first generation of tests of measurement uncertainty relations were concerned with
Ozawa’s inequality for measurement noise [27, 28]. The values of the noise quantities
were determined using the so-called 3-state method [5] and weak measurement method
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[29], respectively. These early approaches are analysed in [4, 9], where it is noted that
the measurements to be made for obtaining the values of ε(A,C, ρ), ε(B,D, ρ) are not
related to error estimation schemes for the approximators C,D.

This observation applies also to subsequent tests of Branciard’s inequality for
the noise quantities (e.g., [30, 31]), which use the same methods. Specifically, the
three-state method is based on a decomposition of (say) ε(A,C, ρ)2 into a sum of three
terms, each of which is an expectation value of a moment of C in a different state.
No comparison of data for C and A is involved. Similarly, a detailed analysis of the
weak-measurement method given in [26] shows explicitly that the determination of the
so-called weak-valued (hence quasi) probabilities involved in the formula for ε(A,C, ρ)
equally fail to reflect any form of error analysis.

As demonstrated in [4], the noise measure generally fails to be reliable as an error
measure if it is applied to approximating observables C that do not commute with the
target observable A. However, the qubit relations for the noise quantities tested in
the experiments cited above show the intuitively expected behaviour of error tradeoff
relations. This apparent tension is resolved when we recall that in the qubit case, the
measurement noise coincides with the operational calibration error measure (Eq. (23))
for unbiased binary approximator observables. Accordingly, the above experiments at
once constitute indirect tests of the calibration error relation (63).

In revisiting the cited literature, the reader will notice that in some of the papers
the focus is on a tradeoff between the error in one measurement and the disturbance
this entails on a subsequent measurement. In [4] it has been explained in detail that
such a sequential execution of two measurements constitutes an instance of a joint
measurement, where the disturbance measure for the second component measurement
is naturally reinterpreted as an error measure. Hence we have here chosen the language
of error tradeoff for joint approximate measurements which encompasses instances of
error-disturbance tradeoff relations.

It is interesting to note that [28] unwittingly offers a realisation of an optimal
approximate joint measurement of maximally incompatible qubit observables A,B
(thus with perpendicular a, b): the joint observable they construct has margins C,D
that are smearings of A,B, respectively, such that the calibration errors satisfy the
bound (62). However, the optimality of this scheme was not known at the time. A
simplified and improved scheme for realising this type of joint observable [31] was later
used to demonstrate the Branciard bound (64). A fortiori, this confirms the calibration
tradeoff (63). We recall from our earlier analysis that this joint measurement is optimal
with respect to both calibration error and metric error.

Incidentally, the highly complicated formula of [29] used to determine the noise
quantities via weak measurements becomes independent of the strength parameter
when applied to this case of joint observables whose margins C,D are smearings of
A,B and therefore are compatible with their target observables. This goes along with
the fact that the so-called weak-valued probabilities appearing in this formula become
proper probabilities. This observation can be used to explore what happens if instead
of the weak limit, the maximum strength value is chosen. One finds [26] that this
turns the (previously weak) measurement scheme preceding the joint measurement
into a preparation of the eigenstates of one of the target observables, and one obtains
a direct test procedure for measurement noise, and hence for calibration error. Some
experimenters (e.g., [32, 23]) noticed that the Lund-Wiseman formula for the noise
quantities is independent of the strength parameter, and confirmed this experimentally
by performing the measurements also in the strong (projective) limit; however, it would
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be interesting to see whether it is possible to use the data they collected to apply the
much simpler, direct method proposed in [26] to determine the errors, namely, by way
of an explicit error analysis.

As is evident from Eq. (60), there is an infinity of optimal joint measurements with
respect to the calibration error measure if a ⊥ b. In [30], the case of an intermediate
sharp observable M is realised, corresponding to M = 1 in (60). Using both the three-
state and weak-measurement methods for the determination of the measurement noise
values, the bound (64) and hence (63) have been confirmed.

8.3. Direct test of calibration error bound

A simple realisation of an optimal joint measurement in the form of a sharp
intermediate observable M is obtained as follows. Let C be a sharp observable, and let
U be a unitary map that transforms the ±1 eigenstates of C into the ±1 eigenstates of
B. Then perform the measurement sequence that consists of a projective measurement
of C, followed by the application of U and finally by a projective measurement of B.
The associated sequence of non-selective operations (channels) is

ρ
C−→ C+ρC+ + C−ρC− = C+tr [ρC+] + C−tr [ρC−] = ρ′

U−→ B+tr [ρC+] +B−tr [ρC−] = ρ̃
B−→ B+tr [ρC+] +B−tr [ρC−] = ρ̃.

This sequential scheme constitutes a joint observable of a pair C, D, with joint
probability

tr [UCkρCkU
∗Bℓ] = tr [CkρCkCℓ] = δkℓtr [ρCk] .

It follows that the margins are given by

tr [ρD±] = tr [ρ̃B±] = tr [ρC±] ,

hence D = C, and Jkℓ = Ckδkℓ. Note that one could have obtained this equally well
by not introducing the basis rotation but measuring instead the observable C a second
time (or not at all). Importantly, this scheme yields a direct test insofar as it allows an
operational procedure for determining the calibration errors from the measured data.
To this end one feeds the device with the eigenstates either of A, ρ = A±, or of B,
ρ = B±. In either case one finds (noting that D = C):

2max
{

|tr [A±(A+ − C+)] |, |tr [A±(A− − C−)] |
}

= 1− c · a = Dcal(C,A),

2max
{

|tr [B±(B+ −D+)] |, |tr [B±(B− −D−)] |
}

= 1− d · b = Dcal(D,B).

8.4. Direct test of metric error bound

The qubit experiment reported in [33] tests the various forms of tradeoff relations
for metric errors deduced in Section 6. The qubit is realised in terms of two levels
of a trapped 40Ca+ ion. A joint observable of the form (9) is chosen such that the
compatibility inequalities are saturated, so that ‖c± d‖ = 1± c · d. This observable
has rank-1 effects Jkℓ =

1
4

[

(1+kℓM)I+(kc+ℓd) ·σ
]

, withM = c ·d. A measurement
of J is obtained by randomly choosing and measuring one of the sharp observables

L
(s) : k 7→ 1

2

[

I + k
c+ sd

1 + sM

]

, s = ±1.
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with probabilities ps =
1
2 (1+sM). The joint probability of choosing L(s) and obtaining

outcome k is
p(k, s) = 1

2 (1 + sM)tr
[

ρL(s)(k)
]

= tr
[

ρ 1
2

(

(1 + sM)I + (kc+ skd) · σ
)]

= tr [ρJ(k, ℓ)] , (ℓ = sk, s = kℓ).

Measurement of J in this way gives the distributions of C and D as the margins of J.
The optimising approximators are implemented by specifying the Bloch vectors c,d
according to Eqs. (28) and (30). This is done for various choices of A,B, where A is
taken to be the spectral measure of σ2 and B that of cos θσ2 + sin θσ3, for various
values of θ (such as θ = π/2, π/4, π/6). The distributions of A and B are determined
by separate measurements of these sharp target observables. The quantities D(C,A),
D(D,B) can thus computed directly from the relevant measurement statistics obtained
for the states known to yield the worst-case deviations in each case.

These quantities are plotted against the boundary curve of the theoretical error
region (Figure 6), and very good agreement is found. There are also plots of the data
against the curves given in (39) and (40), showing an excellent match.

We note that an analogous tight tradeoff relation for error and disturbance,
quantified with operational entropic measures, has been formulated and tested
experimentally in [34].

9. Concluding discussion

In this paper we revisited the fundamental problem of identifying the ultimate
quantum bounds for approximate joint measurements of incompatible observable,
exemplified for a pair of sharp qubit observables, such as spin-12 components. The
problem was posed for the case of the position and momentum of a particle by
Heisenberg in his landmark paper of 1927 introducing the uncertainty principle. He
offered an intuitive solution which lacked a rigorous formulation and was of limited
generality; but by restricting himself to approximately preparatory, or repeatable,
measurements he was able to quantify approximation errors (for which no general
definition was available at the time) in terms of preparation uncertainty, and thus
reduce measurement uncertainty relations to preparation uncertainty relations.

The connection between preparation uncertainty and measurement error in this
special case has led to a conflation of the two ideas. Indeed, one finds prominent
textbooks that present the standard (preparation) uncertainty relation mathematically
alongside the correct probabilistic interpretation, but then proceed to paraphrase it in
terms of the impossibility of accurate joint measurements of noncommuting quantities
or the necessary disturbance of one variable by the measurement of another (e.g.,
[35, 36, 37]).

There is, of course, some intuitive plausibility in the idea that one cannot
simultaneously measure some quantities any better than one can prepare them.
However, it was only after the advent of a theory of approximate joint measurements,
as reviewed here, that possible links between preparation and measurement
uncertainty could be investigated rigorously. In the case of position and momentum it
was found that the preparation uncertainty region and error region coincide exactly if
described in terms of appropriately matched choices of uncertainty and error measures
[38]. This exact correspondence cannot be expected for all pairs of observables, but it
is known to hold in the case of systems with a phase space structure and associated
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translation symmetry [25]; this includes the case of the phase spaces Zn × Zn and
hence, in particular, a pair of qubit observables like σx, σz. Here, in Theorem 6.1 and
Corollary 6.2, using the probabilistic distance as an error measure and an adapted
uncertainty measure, we established the coincidence of the uncertainty region and the
nontrivial part of the error regions for pairs of maximally incompatible binary qubit
observables (with perpendicular Bloch vectors).

The formalisation of the concept of approximate joint measurability is based on
the idea of performing a joint measurement of a pair of compatible observables, either
of which is taken to represent an approximation of one of the two target observables.
For optimal approximations, we saw that the approximating pair of observables need
not commute. Their joint measurability is then accounted for by their being sufficiently
unsharp. With inequality (13) we provided an example of a novel form of uncertainty
relation, distinct from both preparation and measurement uncertainty: a tradeoff
between the degrees of unsharpness, to be obeyed by two observables in order to ensure
their joint measurability. Where the approximating observables are “smearings” of
the target observables (and hence commute with them), the unsharpness is at once a
measure of the approximation error. But we found that optimal approximations may
be realised by a compatible pair of observables that do not commute with their target
observables.

We carried out a comprehensive examination of two quantities that have recently
been proposed as measures of error in quantum mechanics, namely the metric
error D and the calibration error Dcal. We described the error regions for both
measures, that is, the optimal error bounds for joint approximate measurements of two
incompatible binary target observables A,B of a qubit system. We also characterised
the optimising compatible pairs C,D in each case, by identifying their associated Bloch
vectors. Finally, we reviewed implementations of experimental tests for associated
measurement uncertainty relations and considered which of these qualify as direct
tests.

The minimum error curves for approximating A and B by compatible C and
D, respectively, were found by solving the corresponding constrained optimisation
problems. In the case of the metric error, this was previously done by Yu and Oh
[8]; here we have added some minor technical clarification and provided a physical
interpretation of the associated tradeoff relation as an interplay between the errors,
the unsharpness of the approximating observables, and the degree of incompatibility
of the target observables. We reviewed an elementary proof for the simple special case
of a tangential straight line bound to the metric error region.

On attempting this optimisation problem for the calibration error, by using the
method of Lagrange multipliers, we find that a local solution is only possible in the case
where the target observables A,B have perpendicular Bloch vectors, that is, when they
are maximally incompatible. A simple geometric argument shows that the optimising
observables for the calibration error are the extremal (sharp) observables M whose
Bloch vectors lie on the surface of the circle spanned by the Bloch vectors of A and
B, regardless of the degree of incompatibility between the target observables.

However, in the case of maximally incompatible target observables (θ = π/2),
there is a continuous family (CM ,DM ) of compatible pairs of optimising observables,
the extremal ones included as M = C1 = D1 (see Figure 7). In this case the unique
pair of optimal approximating observables found for the metric error is also optimal
with respect to the calibration error; is is given by the pair (C0,D0).

There is a fundamental difference at this point: The errors D(CM ,A), D(DM ,B)
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increase monotonically with |M | ∈ [0, 1], reflecting the increasing dissimilarity of
the observables CM ,A and DM ,B, seen in their increasingly divergent statistics. In
contrast the calibration error values, Dcal(CM ,A), Dcal(DM ,B), are constant. This
constancy is related to the fact that the calibration error is less stringent, being a worst-
case deviation of distribution pairs only across eigenstates of the target observable
rather than across all states. We note that the definition of Dcal is asymmetric in its
arguments in that it requires the reference observable A to be sharp. It is only when
both A,C are restricted to the set of sharp binary observables that Dcal becomes a
metric.

The fortuitous coincidence of the calibration error with the noise measure on the
set of unbiased binary approximating observables for qubits explains why Branciard’s
inequality constitutes an error tradeoff with a sound operational interpretation: we
rederived this inequality, expressed in terms of calibration errors, as the solution of an
optimisation problem, thus exhibiting the lower boundary of the error region.
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Appendix A.

Necessity of the compatibility condition (8)
We show that the necessity of inequality (8) follows for the compatibility of a

general pair of binary qubit observables C,D, with C+ = 1
2 (c0I + c · σ), D+ =

1
2 (d0I + d · σ) (while sufficiency only holds in the symmetric case, c0 = d0 = 1);
cf. [6].

The joint measurability conditions (5) applied to two qubit observables C,D takes
the following form: there exists an operator J++ = 1

2 (g0I + g · σ) such that

J++ ≥ 0,

J+− = C+ − J++ ≥ 0,

J−+ = D+ − J++ ≥ 0,

J−− = I + J++ − C+ −D+ ≥ 0.

Expressing the positivity of these operators in terms of the positivity of their
eigenvalues, this set of inequalities is seen to be equivalent to the following:

‖g‖ ≤ g0;

‖c− g‖ ≤ c0 − g0;

‖d− g‖ ≤ d0 − g0;

‖c+ d− g‖ ≤ 2 + g0 − c0 − d0.
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Let B(x, r) denote the closed ball with centre x and radius r. Then it is seen that the
joint measurability of C,D is equivalent to the statement that there exists a number
g0 ≥ 0 such that the intersection of four balls is non-empty:

B(0, g0) ∩ B(c, c0 − g0) ∩ B(d, d0 − g0) ∩ B(c+ d, 2 + g0 − c0 − d0) 6= ∅. (A.1)

The criterion (A.1) immediately gives the following as a necessary condition for
joint measurability: the two pairs of balls diagonally opposite to each other must have
separations which are no greater than the sum of their radii; thus, there must be a
g0 ≥ 0 such that

‖c− d‖ ≤ c0 + d0 − 2g0,

‖c+ d‖ ≤ 2− c0 − d0 + 2g0,

or equivalently,

g1 := 1
2 ‖c+ d‖ + 1

2 [c0 + d0 − 2] ≤ g0 ≤ 1
2 [c0 + d0]− 1

2 ‖c− d‖ =: g2. (A.2)

This gives an interval for g0 to lie in which has to be nonempty. Therefore the following
is a necessary joint measurability condition:

g2 − g1 = 1− [ 12 ‖c+ d‖ + 1
2 ‖c− d‖] ≥ 0.

This completes the necessity proof. Returning to the symmetric case, c0 = d0 = 1,
the compatibility conditions reduce to

B(0, g0) ∩ B(c+ d, g0) ∩ B(c, 1− g0) ∩ B(d, 1− g0) 6= ∅. (A.3)

Now, assuming that ‖c+ d‖ + ‖c− d‖ ≤ 2 holds, and noting that this is equivalent
to both of the following inequalities,

1
2 (1 + c · d) ≥ 1

2 ‖c+ d‖ , 1
2 (1− c · d) ≥ 1

2 ‖c− d‖ , (A.4)

then the choice g0 = 1
2 (1 + c · d) (which also gives 1 − g0 = 1

2 (1 − c · d)) satisfies
g0 ≥ 1

2 ‖c+ d‖ and 1 − g0 ≥ 1
2 ‖c− d‖. Therefore we may choose g = 1

2 (c + d) to
see that all inequalities of (A.3) are satisfied. Hence, the choices g0 = 1

2 (1 + c · d),
g = 1

2 (c + d) gives rise to a joint observable J of the form (9), reconfirming the
sufficiency of the compatibility inequality (8).

To summarise, we observe that the compatibility condition (A.4) is satisfied if
and only if it is possible for the two pairs of diagonally opposite circles (Figure A1)
to be large enough so as to contain the point g = 1

2 (c+ d).
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Figure A1. Illustration of the geometric derivation of (A.4).

Appendix B.

Derivation of the optimal calibration error relation (62)
Here we provide a proof of (62) based on the fact that optimal error pairs

(da, db) =
(

Dcal(C,A),Dcal(D,B)
)

are realised by sharp approximating observables,
C = D, with c = d = m.

Figure B1. Illustrating the derivation of (63).

The outline for our proof is given in Figure B1. We begin by choosing a normalised
vector m that, due to the argument in Subsection 7.2, we know minimises the
calibration error when approximating a and b. We now rewrite m in the following
way:

m = a∗ + x = b∗ + y, (B.1)

where a∗ = (a ·m)a and b∗ = (b ·m) b. By construction, x ⊥ a and y ⊥ b, and from

(B.1) we can define the vector z = b∗−a∗ = x−y, so that ‖z‖2 = ‖x‖2+‖y‖2−2x·y.
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By rearranging (B.1) we can find the norms of x and y:

‖x‖2 = ‖m− a∗‖2 = 1− (a ·m)2 = da(2− da),

‖y‖2 = ‖m− b∗‖2 = 1− (b ·m)2 = db(2− db),

and noting that the angle between x,y is π − θ, we obtain

x · y = ‖x‖ ‖y‖ cos(π − θ) = −
√

da(2− da)
√

db(2− db) cos θ.

Hence,

‖z‖2 = da(2− da) + db(2− db) + 2
√

da(2− da)
√

db(2− db) cos θ. (B.2)

The proof is complete once we have shown that ‖z‖2 = sin2 θ. To see this, we make
use of the form z = b∗ − a∗:

‖z‖2 = ‖b∗ − a∗‖2

= (a ·m)2 + (b ·m)2 − 2(a ·m)(b ·m)(a · b)
= 1−

(

1− (a ·m)2
)(

1− (b ·m)2
)

+
(

(a ·m)(b ·m)− (a · b)
)2 − (a · b)2.

Recalling that
(a ·m)(b ·m)− (a · b) = (m× a) · (m× b),

and noting that the vectors m× a and m× b are collinear, we have

(

(m× a) · (m× b)
)2

= ‖m× a‖2 ‖m× b‖2 =
(

1− (a ·m)2
)(

1− (b ·m)2
)

,

and therefore
‖z‖2 = 1− (a · b)2 = ‖a× b‖2 = sin2 θ.
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