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Do healthcare services behave as complex
systems? Analysis of patterns of attendance
and implications for service delivery
Christopher Burton1* , Alison Elliott2,4, Amanda Cochran2 and Tom Love3

Abstract

Background: The science of complex systems has been proposed as a way of understanding health services and

the demand for them, but there is little quantitative evidence to support this. We analysed patterns of healthcare

use in different urgent care settings to see if they showed two characteristic statistical features of complex systems:
heavy-tailed distributions (including the inverse power law) and generative burst patterns.

Methods: We conducted three linked studies. In study 1 we analysed the distribution of number of contacts per
patient with an urgent care service in two settings: emergency department (ED) and primary care out-of-hours

(PCOOH) services. We hypothesised that these distributions should be heavy-tailed (inverse power law or log-

normal) in keeping with typical complex systems. In study 2 we analysed the distribution of bursts of contact
with urgent care services by individuals: correlated bursts of activity occur in complex systems and represent

a mechanism by which overall heavy-tailed distributions arise. In study 3 we replicated the approach of study

1 using data systematically identified from published sources.

Results: Study 1 involved data from a PCOOH service in Scotland (725,000) adults, 1.1 million contacts) and

an ED in New Zealand (60,000 adults, 98,000 contacts). The total number of contacts per individual in each

dataset was statistically indistinguishable from an inverse power law (p > 0.05) above 4 contacts for the
PCOOH data and 3 contacts for the ED data. Study 2 found the distribution of contact bursts closely followed

a heavy-tailed distribution (p < 0.008), indicating the presence of correlated bursts. Study 3 identified data

from 17 studies across 8 countries and found distributions similar to study 1 in all of them.

Conclusions: Urgent healthcare use displays characteristic statistical features of large complex systems. These

studies provide strong quantitative evidence that healthcare services behave as complex systems and have

important implications for urgent care. Interventions to manage demand must address drivers for consultation
across the whole system: focusing on only the highest users (in the tail of the distribution) will have limited

impact on efficiency. Bursts of attendance — and ways to shorten them — represent promising targets for

managing demand.
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Background

Managing demand for healthcare is a global problem.

The science of complex systems [1, 2] has been pro-

posed as a way of understanding health services [3, 4],

but there has been little quantitative evidence to support

this notion. The idea that healthcare services can be

considered as complex systems is not new [4–7] and re-

mains current [3, 8], but it has rarely been tested, par-

ticularly in ways that use large-scale data. Healthcare

self-evidently possesses many of the characteristics of a

complex system [1, 2, 5] in that there are many compo-

nent parts (patients, clinicians, services) with many in-

teractions (consultations) which occur in the context of

prevailing social attitudes and norms (e.g. ideas about

when it is appropriate to seek healthcare). Because of

the interactions and the way that characteristics of the

system emerge from these interactions, complex systems

are different from conventional systems in several ways

[1, 9]. Some of these differences are listed in Table 1.

Much current health services research and innovation

addresses healthcare as a conventional system rather

than as a complex one, with important implications for

the development and implementation of complex inter-

ventions to change health and healthcare [1, 3, 9, 10].

Despite the resemblance of healthcare to a complex

system and the wide recognition that complex systems

display characteristic statistical properties [11, 12], there

have been very few studies which have sought to test this

by comparing the statistical properties of healthcare use

with known properties of complex systems [13–15].

However, robust methods are available for this [11]

which have been widely used in many other areas of sci-

ence (examples include the size distributions of ava-

lanches, forest fires and human settlements and patterns

of Internet activity) [16].

One aspect of healthcare which is well suited to being

examined as a complex system is the use of urgent care

[17, 18]. Urgent care (emergency department (ED) and

primary care out-of-hours (PCOOH) services) represents

a relatively open system in which use is driven by pa-

tients rather than controlled by the service. It also in-

cludes the particular problem of high-using, or

frequently attending, patients [17]. These patients take

up a disproportionate amount of resources including

professional time and treatment costs and are frequently

portrayed as problematic individuals for whom initiatives

are developed to identify and manage individual frequent

attenders [19, 20]. This action at the level of the individ-

uals carries the implication that tackling these extreme

cases will resolve the pressure on urgent care services

[21]. However, frequent attenders comprise a very het-

erogeneous group [22], including both patients who ap-

pear to need multiple attendances because of severe or

complex medical conditions and others who attend for

conditions that could be managed elsewhere [23] or to

an extent which is disproportionate to their medical

conditions [19, 24–26]. While interventions to tackle

specific problems for some frequent attenders are suc-

cessful at the individual level, there is little evidence that

they lead to a substantial reduction in overall demand.

In contrast to the view of frequent attendance as a

problem of a few individuals, a complex system perspec-

tive could argue that (1) frequent attenders might repre-

sent the “black swans [27]” occurring in the natural

heavy-tailed distribution of events [11], (2) patterns of

consultation by individuals over time should show the

bursts typically seen in complex systems [12] and (c)

there should be plausible social mechanisms which drive

the behaviour of individuals across all levels of attend-

ance from least to most frequent. While social mecha-

nisms have been documented in several qualitative

studies of healthcare seeking [28–32], there have been

no studies, to our knowledge, which have examined the

statistical properties of complex systems in urgent

healthcare use. The closest to this have been some re-

ports of the overall population distribution of urgent

Table 1 Comparison of features between a complex system and a conventional system

Conventional system Complex system

Relationship of individual to system System comprises discrete individuals, who are
considered as distinct and statistically independent
from each other, but who share the system
environment

System comprises individuals, each interacting
with others in the system; characteristics of the
whole system emerge from these interactions

Context and culture Context or culture seen as separate from the
individuals and may be externally directed or
imposed. Treated as a confounder or covariate
in analysis

Context or culture seen as emergent properties
of the system. In turn, these properties condition
the interactions of individuals within the system

Predictability of response to events Multiple independent responses to change
produce a coherent average value response and
an approximately normal distribution

Changes to the system are usually buffered by
local interaction (so have minimal effect), but
sometimes events spread through the system with
unexpectedly large effects

Statistical Distributions Normal distribution for continuous measures,
Poisson distribution for events

Heavy-tailed distributions for events: typically inverse
power law or log-normal
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care use which described non-normal distributions [33,

34]; however, none have carried out more detailed statis-

tical analyses.

In this study we tested the hypothesis that patterns of

attendance at urgent care services should display two

typical statistical characteristics of complex systems.

Specifically we hypothesised first, that the overall distri-

bution of consultations per individual would follow a

power law [2, 11] and second, that individuals’ consulta-

tions would occur in correlated bursts (sequences of

consultations clustered in time), with the distribution of

burst lengths also approximating to a power law [12].

The implication of these hypotheses is that if urgent care

services do behave as complex systems, then interven-

tions to influence their use need to act in a system-wide

fashion rather than focus on problematic individuals.

Methods

We conducted three linked studies to compare the stat-

istical properties of urgent healthcare use with the typ-

ical properties of a complex system. First, we defined the

total number of contacts per person and compared this

to two heavy-tailed distributions, the inverse power law

and the log-normal. Second, we used the same data to

examine the pattern of bursts of attendance. Third, we

conducted a systematic search for and analysis of re-

ports, from other centres, of the distribution of number

of contacts per person to compare these results with the

findings from our primary data sources.

Data sources

We analysed primary data from two sources: PCOOH

data from a study of NHS 24, the service which provides

out-of-hours primary care services throughout Scotland

(population 5.6 million (M)) [35] and ED data supplied

by Canterbury District Health Board in New Zealand.

The data was for the ED of Christchurch Hospital, serv-

ing a population of approximately 500,000 people. Both

datasets were derived from routine management data

and thus included all cases handled by the respective

services.

In the PCOOH service, all calls were initially managed

through a nurse-based triage system with a range of op-

tions including telephone advice by the nurse, consult-

ation with a general practitioner (GP), either at a

treatment centre or in the patient’s home, and direct

ambulance transfer to an ED. The data included all calls

to the NHS 24 service throughout 2011. We excluded

calls during office hours (08.00 to 18.00 weekdays except

public holidays) because the vast majority of urgent care

requests during these hours go directly to the patient’s

GP practice. All data was anonymised and handled

under a data-sharing agreement between the University

of Aberdeen and NHS 24; as no patient-identifiable data

was involved, additional research ethical permission was

not required. The ED data comprised anonymised data

of adult attendance for the period July 2011 to June

2013. Since no identifying patient information was in-

volved, research ethical permission was not required

under New Zealand’s Standard Operating Procedures for

Health and Disability Ethics Committees.

Definitions of attendance

For both datasets, the unit of analysis was a contact —

defined as one or more attendances or phone calls with

the service on a given day. While some patients had

more than one attendance or call on the same day, we

limited data to one contact per day, since most repeated

calls on the same day related to the same episode of care

(e.g. escalation of a contact from telephone advice to

consultation). PCOOH contacts included episodes of

care which were managed by telephone, in the urgent

care department or at home, and by any healthcare pro-

fessionals. ED contacts included emergency attendances

by any route.

Heavy-tailed statistical distributions and correlated bursts

of activity

Heavy tails are a feature of a number of statistical distri-

butions, including the inverse power law and the

log-normal, which have been repeatedly observed in

large, naturally occurring systems [11]. The term refers

to the long, or thick, “tail” of the distribution, in contrast

to the shorter tails of distributions such as the normal,

where data points cluster close to the mean (and almost

always within a few standard deviations of it). One of

the first described heavy-tailed distributions was the Pa-

reto principle whereby 80% of the wealth is held by 20%

of the population (and of that wealth, 80% is held by

only 20% of the 20%, and so on) [16]. This observation

is mathematically related to the inverse power law. The

result of such a distribution is that the range of wealth

from poorest to richest is much greater than would

occur if individuals were normally distributed around a

mean. While plots of the normal distribution produce

the familiar bell curve, conventional plots of heavy-tailed

distributions are difficult to interpret because of the

much larger range of values. A simple solution to this is

to plot cumulative distributions with logarithmic axes.

Using this format an inverse power law will describe a

straight line (from top left to bottom right). Heavy-tailed

distributions are typically seen in theoretical complex

systems and have been held to be a typical feature, or

fingerprint, of complex systems [11].

While there are many possible explanations for the oc-

currence of heavy-tailed distributions [36], and their

presence alone is not proof of the presence of a complex

system, the more recent description of correlated bursts
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of activity within a complex system leading to heavy-

tailed overall distributions [12] means that identifying

both in the same data strengthens the evidence for the

presence of a complex system. Correlated bursts of ac-

tivity represent clusters of activity in time, with the dis-

tribution of burst lengths also following a heavy-tailed

distribution [12]. This distribution of bursts means that

long bursts arise more often than would occur by

chance, and furthermore that bursts undergo a kindling

process, whereby the longer a burst has gone on, the

more likely it is to continue.

Study 1: analysis of total contacts per patient

We conducted this analysis using the total number of

contacts per patient in 1 year of data from each dataset.

We plotted the complementary cumulative distribution

function (CDF), defined as the proportion of patients

whose total number of contacts was equal to or greater

than each number of contacts between 1 and the largest

recorded. This is preferable to plotting the probability

distribution function, as the CDF is more robust against

fluctuations in the tail of the distribution due to finite

sample sizes [11]. Plots of the CDF were made with

logarithmic axes, on which a power law distribution dis-

plays a straight line. The slope of this line is equal to

one minus the scaling parameter of the power law distri-

bution (for example, a scaling parameter of 3 produces a

slope of − 2). We fitted inverse power law and log-nor-

mal functions to each dataset using maximum likelihood

fitting with the poweRlaw package in R 3.3.2. We exam-

ined the closeness of fit of the data to a power law distri-

bution, using the Kolmogorov-Smirnoff (KS) test. Where

data was deemed different from a power law distribution

(p value < 0.05) we examined whether the data was

closer in fit to a power law or log-normal distribution

using the Vuong test for non-nested distributions [37] at

a significance level of 0.01. As naturally occurring distri-

butions often include a power law only above a certain

threshold [11], we repeated this analysis with a range of

minimum values for the number of contacts per patient.

Subgroup and sensitivity analysis

We conducted a subgroup analysis of the PCOOH data

with data split by sex and by age using the median value.

For each subgroup we repeated the plotting and

model-fitting procedure described above, with the

addition of 95% confidence intervals (CIs) derived from

a non-parametric bootstrapping procedure (1000 itera-

tions). We did not conduct a subgroup analysis of the

ED data because of the smaller number of patients.

We conducted two post hoc sensitivity analyses to test

for artefacts arising from the fact that each dataset con-

tained a calendar year but that patients might have their

first consultation at any point during the year and thus

have different durations of follow-up. In the first sensi-

tivity analysis we limited data to patients consulting

within the first half of the year and censored each pa-

tient’s data 6 months after their first contact. In the sec-

ond sensitivity analysis we considered that some patients

consulting in the first few weeks of the year would be

doing so within a burst of contacts. We thus split the

PCOOH data into patients whose first contact was be-

fore the 15th day of the time period and those whose

first contact was on or after the 15th day. In each of the

sensitivity analyses we used the same method for plot-

ting and analysing distributions as described for the

whole dataset.

Study 2: analysis of bursts of contacts

We examined bursts of contacts using the method de-

veloped by Karsai [12]. We defined a burst as a sequence

of contacts in which the interval between each pair of

consecutive contacts is less than a specified time window

∆t. We used a range of values for ∆t of 4 and 7 days for

the PCOOH data and 4, 7 and 10 days for the ED data.

For each burst we counted the number of contacts

within the burst. We pooled the burst patterns across all

individuals and limited the analysis to patients with be-

tween 4 and 52 contacts in order to exclude data with

too few contacts to display bursts, or so many contacts

that bursts were inevitable because the PCOOH data

comprised only 1 year. We conducted the burst analysis

on the PCOOH dataset (1 year) and on the whole ED

dataset (2 years).

For each dataset and value of ∆t we plotted the CDF.

As for the distribution of total contacts, we plotted the

CDFs using logarithmic axes, so that an inverse power

law would display as a straight line. In order to assess

whether the burst patterns could have arisen by chance,

we conducted a bootstrapping procedure in which we

compared the actual data with a set of surrogate datasets

in which the temporal structure of bursts was broken by

randomly allocating the number of contacts for each pa-

tient to dates within the time between their first contact

and the end of the study period. These surrogate data-

sets were thus identical to the original dataset except

that the bursts they contained arose at random. We con-

ducted this bootstrapping procedure with 250 iterations,

meaning that the probability of any observed distribu-

tion lying wholly above the bootstrapped range by

chance was less than 0.008.

Study 3: review of data from published reports

We systematically identified papers reporting numbers

of patients attending EDs, using a structured search of

the MEDLINE and Embase databases (Table 2 lists the

search terms). Titles, abstracts and full manuscripts were

screened by two authors independently to identify usable
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data. We followed references from, and citations of, eli-

gible papers to identify additional studies.

Inclusion and exclusion criteria

We included studies which reported urgent care attend-

ance data either in EDs or PCOOH services. We re-

quired reports to include all of the following: setting

(time and place), an unselected population (e.g. “all at-

tenders” or “all adults”, but not “adults with asthma”)

and a continuous or categorical (binned) distribution of

individual patient attendances over 1 year which in-

cluded all attenders. We excluded studies which re-

ported less than four categories or where the lower

threshold of the highest category was less than 10 epi-

sodes of care, in order to ensure a spread of data points

and include at least one order of magnitude for the

number of episodes of care. Where a study reported

more than 1 year or more than one site for care separ-

ately, we used the most recent year or the largest site.

Where studies reported several sites together, we did not

attempt to separate them. Studies varied in the categor-

ies they used to report attendance (individual numbers

of attendances, ranges of attendances or a mixture of the

two). In most cases we kept data in the original format;

where studies reported many categories, each with small

numbers (< 10) of individuals, we aggregated them into

category ranges containing 10 or more individuals. We

did not restrict studies on the basis of healthcare system

or level of economic development.

Quality assessment of included studies

All studies were observational studies describing similar

retrospective data collection of a complete sample. Pro-

vided studies met our stringent inclusion and exclusion

criteria we did not apply further quality assessments, as

the topics for evaluation in common tools (e.g. com-

pleteness of sample, sources of bias, etc.) are designed

for studies which make inferences based on samples

from populations, whereas the studies we included re-

ported on counts of attendance for entire services.

Distributions of attendance per patient in review data

For each study we plotted the complementary CDF: the

proportion of patients whose total number of atten-

dances was equal to or greater than the lower boundary

of each category. Plots used logarithmic axes to facilitate

the display of heavy-tailed data. We plotted data for ED

and PCOOH studies separately. In addition, we selected

a subset of studies which contained at least 8 data bins,

with the highest data bin threshold set ≥ 20. As most

studies provided heavily aggregated data with wide cat-

egories, we did not attempt to fit distributions to this

data.

Results

Analysis of total contacts per patient

Primary data was available from 724,921 PCOOH pa-

tients (1,085,796 contacts) and 60,106 ED patients

(98,228 contacts). The age and sex characteristics and

number of contacts per patient are listed in Table 3.

Plots of total number of contacts per individual are

shown in Fig. 1a (PCOOH data) and 1b(ED data). Both

plots show a heavy-tailed distribution, which approxi-

mates to an inverse power law (straight line) for the

whole distribution in the ED data and from approxi-

mately 5 contacts to 30 contacts in the PCOOH data.

Above 30 contacts in the PCOOH data (Fig. 1a) the tail

of the distribution can be seen to deviate from the power

law; there were more patients than expected with very

high numbers of contacts: 225 patients (0.03%) had

more than 30 contacts. This represents approximately

Table 2 Search terms

Emergency department

1) Emergency Service, Hospital/

2) ((emergency or casualty) adj1 department).mp.

3) (accident adj2 emergency).mp.

4) 1 or 2 or 3

5) (frequen$ adj2 attend$).mp.

6) “high use$”.mp.

7) (hig$ adj (utiliz$ or utilis$)).mp.

8) “frequent flier”.mp.

9) (frequen$ adj3 use$).mp.

10) 5 or 6 or 7 or 8 or 9

11) 4 and 10

Primary care out-of-hours service

1) General Practice/

2) Primary Health Care/

3) “General Practi$”.mp.

4) “GP”.mp.

5) “primary care”.mp.

6) 1 or 2 or 3 or 4 or 5

7) (out adj2 hours).mp.

8) “out-of-hours”.mp.

9) “unscheduled”.mp.

10) 7 or 8 or 9

11) (frequen$ adj2 attend$).mp.

12) “high use$”.mp.

13) (hig$ adj (utiliz$ or utilis$)).mp.

14) “frequent flier”.mp.

15) (frequen$ adj3 use$).mp.

16) 11 or 12 or 13 or 14 or 15

17) 6 and 10 and 16
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twice as many as would have been expected if the data

followed a power law distribution. This pattern is sug-

gestive of more than one overlapping distribution. Fig-

ure 1c shows the result of the sensitivity analysis in

which the PCOOH data was split into patients whose

first contact occurred within the first 14 days of the year

and those whose first contact came later. The rationale

was that patients consulting in the first 14 days might be

within a burst of consultations at the start of the data

collection and thus might be more likely to have repeat

consultations than those starting their first burst after at

least 14 days of no contact. The two resulting distri-

butions in Fig. 1c both showed close approximation

to a power law. Finally, Fig. 1d shows the analysis re-

peated with censoring of data at 6 months after the

first consultation, indicating that this had no adverse

influence on the observed distribution’s approximation

to a power law.

Statistical model fitting

Table 4 lists the statistical parameters from the fitting of

inverse power law and log-normal distributions to the

data. Values for PCOOH (first contact after the first

14 days) and ED data were broadly similar, and for pa-

tients with 5 or more contacts both distributions showed

good fit to a power law (KS test p value > 0.05) with

similar exponents of 3.8 and 3.7.

The good fit of the power law (and log-normal) distri-

butions to the whole population supports the hypothesis

that urgent healthcare systems show one of the typical

statistical characteristics of complex systems. Despite the

occurrence of extreme frequent attenders (the maximum

number of contacts was 266 and 94 in the PCOOH and

ED data respectively), the proximity of these extreme

points to the fitted curves shows that these events oc-

curred with the expected frequency for their respective

distributions. This suggests that frequent attenders are

indeed the “black swans” which naturally occur in com-

plex systems [27].

Subgroup analysis

The subgroup analysis, by age and sex, is reported in

Table 5 and Fig. 2. The figures and data indicate that the

distributions were heavy-tailed in each subgroup, but

that the scaling parameter was larger (a steeper gradient

on the plots) in younger than older adults. There was

less difference between the sexes.

Analysis of bursts of contacts

Plots of the distribution of burst length are shown in

Fig. 3a and b for both the PCOOH data and ED data.

Both plots use a 7-day window for inclusion of contacts

within bursts. Both distributions are clearly heavy tailed,

approximating to a straight line indicative of an inverse

power law. None of the 250 surrogate datasets, in which

the temporal structure of bursts was disrupted, showed

this distribution, suggesting that it was unlikely to have

arisen in the data by chance. Similar patterns were seen

from the PCOOH data with a 4-day window (Fig. 3c)

and from the ED data with 4- and 10-day windows (Fig.

3d). This similarity across different time windows makes

it unlikely that the observed results were due to an

Table 3 Characteristics of patients in PCOOH and ED datasets

PCOOH patients (N = 724,921) % ED patients (N = 60,106) %

Age

< =5 119,611 16.5 7482 14.5

6–17 78,757 10.9 6414 12.4

18–45 263,234 36.3 17,905 34.6

46–70 154,826 21.4 12,361 23.9

71+ 108,486 15.0 7524 14.6

Not recorded 7 – 8420 –

Sex

Female 420,663 58.0 – –

Male 304,258 42.0 – –

Number of contacts

1 532,807 73.5 40,011 66.6

2–5 181,906 25.1 18,965 31.6

6–10 8105 1.1 951 1.6

11–50 2002 0.3 177 0.3

51–100 79 0.01 2 0.003

101+ 22 0.003 0 –
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artefact of the measurement parameters and more likely

that these new findings represent real phenomena

present in the data.

Systematic analysis of data from published reports

Included studies

We identified 883 titles from the search of ED attend-

ance, from which 15 studies contained data suitable for

analysis. We also identified 25 titles relating to out-

of-hours primary care, resulting in two studies with data

suitable for analysis. Flowcharts of the selection process

are shown in Fig. 4. Characteristics of the included stud-

ies are summarised in Table 6. Briefly, studies dated

from between 1999 and 2015. Eight were from single

EDs (range of sample size 22,492–95,170) [19, 33, 38–

43]; six from multiple departments in the same city

Fig. 1 Plots of the distribution of contacts per patient for (a) Primary Care Out of Hours Service (PCOOH); (b) Emergency Department (ED); (c)

PCOOH split by date of first contact to separate those with at least 14 days of no contact before their first contact (d) PCOOH censoring data so

all patients had 26 weeks data after their first contact

Burton et al. BMC Medicine  (2018) 16:138 Page 7 of 15



(range 13,959–212,959) [34, 44–48]; and one from a net-

work of departments (N = 930,712) [49]. Eight ED stud-

ies were from the USA [39, 40, 42, 43, 46–49], two from

the UK [19, 33] and one each from Canada [45],

Australia [44], Singapore [41], the Netherlands [34] and

Ireland [38]. One PCOOH study was from the

Netherlands (44,953 patients) [50] and one from Italy

(17,657) [51].

Distribution of contacts per patient from included studies

Figure 5 shows data from the 15 ED studies. In each

plot, the distribution was typical of a heavy-tailed dis-

tribution, and for all but one study (which included

pooled patient data from multiple sites [49]) followed

an approximately straight line above 3 episodes, sug-

gesting a power law. Figure 6a shows a subset of four

studies which met more stringent criteria of reporting

at least 8 data bins and with a threshold for the high-

est bin of at least 20 attendances. These studies all

show distributions similar to those in our primary

data. Finally, Fig. 6b shows the two primary care

studies.

The similarity of the distributions across location,

healthcare type (free at the point of delivery, paid/in-

sured) and time (almost 20 years) suggests that the pat-

terns we observed are consistently present and represent

a characteristic property of urgent care systems. While

we did not fit statistical models to the data (because the

effect of binning meant that the data was too sparse),

the data in Fig. 6 can be compared with the more de-

tailed data in Fig. 1. Simple visual comparison of the

plots indicates that for the ED data in Fig. 1b, 1 in

Table 4 Power Law scaling parameter and tests of fit for selected distributions by minimum value of contacts included in analysis

PCOOH primary care out-ofhours (service), ED emergency department

Alpha represents the scaling parameter of the power law probability distribution p(x) ∝ x−α

KS Kolmogorov-Smirnoff test for fit of data to power law, reported as p value (value > 0·05 indicates no difference between data and power law)

Vuong Better fitting distribution to the data by Vuong test (p values in blue indicate that the power law was the better fitting distribution, p values in red that the

log-normal was the better fit

Table 5 Power law scaling parameter (alpha) by minimum value of contacts included in analysis in subgroups of patients split by

sex and by median age

Inclusion Subgroup Minimum number of contacts per individual for inclusion

Minimum 3 contacts Minimum 5 contacts

Alpha 95% CI Alpha 95% CI

Younger male 3.35 3.28–3.41 3.05 2.94–to 3.16

All patients Younger female 3.42 3.38–3.46 3.29 3.21–3.38

Older male 3.13 3.09–3.17 3.31 3.22–3.39

Older female 3.19 3.15–3.22 3.24 3.17–3.31

Patients with first contact after 14th day Younger male 3.60 3.52–3.67 3.42 3.28–3.57

Younger female 3.62 3.57–3.67 3.65 3.55–3.75

Older male 3.30 3.26–3.35 3.64 3.54–3.74

Older female 3.37 3.34–3.41 3.58 3.50–3.67

Alpha: scaling parameter of the power law probability distribution p(x) ∝ x−α

95% confidence intervals (CIs) derived by non-parametric bootstrapping with 1000 iterations
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10,000 patients (y = 10− 4) had 30 or more contacts,

whereas in Fig. 6a, a similar proportion had between 20

+ and 30+ more contacts. This suggests that our detailed

dataset was broadly comparable to the other published

but less detailed series.

Discussion

This data provides original and robust evidence that

patients using urgent care do so in patterns typical

of individuals within a complex system. This evi-

dence is present in both the distribution of bursts of

contacts by individuals and in the overall distribu-

tion of contacts per individual. Finding both features

together is important, as bursts of contact are a

plausible generative mechanism for the overall

distribution [12]. Frequent attenders occurred with a

frequency which was in keeping with the hypothe-

sised statistical distributions.

Fig. 2 Plots of the distribution of contacts per patient for primary care out of Hours by age and sex subgroups
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Strengths and limitations

This study used large, recent and complete datasets from

two different urgent care settings in different healthcare

systems. The analysis used established techniques for

burst estimation [12] and model fitting [11]. We also ad-

justed for different lengths of follow-up by censoring

data and found it had no influence on the findings.

Examining the combination of both burst analysis and

overall distribution analysis is important, as bursts have

been identified as a generative mechanism for power

laws in other systems. Furthermore, bursts have been

identified in other healthcare research, such as the ten-

dency of exacerbations of chronic obstructive pulmonary

disease to cluster in time [52].

While the ED data showed a close fit to a power law

across the whole range of contact numbers, there was

Fig. 3 Distribution of burst lengths in original data and in bootstrapped surrogate data (250 iterations): (a) Primary Care Out of Hours (PCOOH)

data with time window Δt = 7 days; (b) Emergency Department (ED) data with Δt = 7 days; (c) PCOOH data with Δt = 4 days; and (d) ED data

with Δt = 10 days

Burton et al. BMC Medicine  (2018) 16:138 Page 10 of 15



some evidence that the PCOOH data contained more

very frequent attenders (above 30 contacts) than ex-

pected from the best fitting model. This may indicate

some excessive or inappropriate use, but the absolute

number of patients was small. When we restricted the

analysis to patients who did not use the service in the

first 2 weeks of the year (and so who were not currently

in a burst of consultations), the observed data showed a

closer fit to an inverse power law.

The inclusion of the systematic identification of second-

ary data adds strength to our findings of overall distribu-

tions, as heavy-tailed distributions of use, similar to those

seen in our primary data, were observed across very differ-

ent healthcare settings, with generally similar parameters

for the proportion of frequent consultation. We were not

able to conduct statistical analysis on these secondary

sources of data, as they did not have sufficient detail.

Relationship to other research

While complex systems have been hypothesised as a way

of describing healthcare services [3–5, 7, 13], this is the

first large-scale empirical examination of whether urgent

healthcare displays the typical statistical properties of a

complex system. No previous studies have reported the

population distribution of urgent care attendance in de-

tail; however, non-normal distributions of use have been

previously noted but not analysed in the ways we have

used in this study [33, 34].

To be plausible, our finding of the typical statistical

properties of a complex system must be compatible with

real-life mechanisms, which in modelling of social sys-

tems can be considered as rules [5, 53]. Qualitative stud-

ies have already suggested candidate rules: patients

simultaneously seek to balance being a prudent user of

services [29] with being “better safe than sorry” [30], and

this balance is influenced by societal processes and

norms [31, 32]. In turn, these rules may be mediated

through processes such as candidacy (seeing oneself as

an appropriate user of services) and recursivity (a ten-

dency to repeat patterns of help-seeking which have

been successful) [28]. Together, these processes — which

are socially mediated — can be seen as comprising

system-wide mechanisms which drive, and restrain, ur-

gent care use by individuals.

Titles Screened

883

598    Title excluded   12

Abstract 

assessed

285 

4     Not in English      2

180      No data           0

Full text 

assessed

101

47    No useable data    7

21 0

17      Categories not     2      

suitable.

1      No single year       0

Titles Screened

25

Abstract 

assessed

13 

Full text 

assessed

11

Data extracted

15

Data extracted

2

Database search 

882

Database search 

24

1      Other sources       1

EMERGENCY DEPARTMENT PRIMARY CARE OUT OF HOURS

Fig. 4 Flowchart for identification of studies for inclusion in secondary data analysis
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Frequent attendance is commonly regarded as abnor-

mal and taken to be a sign of an inefficient system, how-

ever many frequent attenders appear to use healthcare

appropriately [17], suggesting the system may in fact be

operating efficiently. Recent work in information theory

suggests that power law distributions may represent an

optimal configuration for a system to meet very variable

demands [54]: in the case of urgent care, systems must

deal with many patients with minor problems while

retaining the capacity to handle a few with intensive

ones. Heavy-tailed distributions of attendance may be a

feature of well-optimised urgent care rather than a sign

that something is wrong.

Implications for policy, practice and research

Our findings of striking similarity between data from urgent

care use and statistical features of typical complex systems

support the argument that services need to engage more

with a complex systems approach [3]. This means there

should be a greater focus on contextual matters across the

whole system and a recognition that the mechanisms driv-

ing processes such as demand both arise from, and influ-

ence, many individual interactions. In turn, this means

there is a need for interventions to influence these mecha-

nisms, which are social, both through information channels

and media, and through creating and sharing positive pa-

tient experiences. A second general consequence of consid-

ering healthcare systems as complex is that interventions to

change services must recognise that complex systems re-

spond unpredictably to interventions to change them [3,

5, 15], and that what works in one setting will not ne-

cessarily work in another. This dependence on context

is still under-acknowledged in the development of

“complex interventions” [3], which should be viewed as

“interventions in complex systems” [55].

In practice, the implication of our findings for front-

line care is that there must be a partial shift in thinking

from individual frequently attending patients to the

workings of the whole system. While each frequently at-

tending individual is unique, the consistent and math-

ematically predictable frequency with which they occur

is highly suggestive of overall system effects. In theoret-

ical models of complex systems, this dependence on sys-

tem effects means that even if extreme outliers (such as

individual frequent attenders) are removed (representing

action on individuals), new ones will arise to fill their

place [56]. This phenomenon can be seen in waiting lists

— whereby initiatives to shorten them (by bringing for-

ward treatment of individuals) generally lead to them

rapidly re-growing through system effects [57, 58].

Table 6 Characteristics of studies included in secondary data analysis

Author Year Location Number of
departments

Study Population Total
patients

Attendance
categories

Highest
category

Emergency department

Van der Linden [34] 2014 Netherlands 2 All 51,272 14 34

Billings [48] 2013 USA Multiple Medicaid, ages 18–62 212,259 7 15+

Capp [47] 2013 USA 1 + satellites Medicaid, all ages 13,959 4 18+

Doran [49] 2013 USA Network Veterans, Veterans Health
Administration insurance

930,712 5 26+

Liu [43] 2013 USA 1 All 65,201 4 19+

Martin [42] 2013 USA 1 All 95,170 5 20+

Minassian 2013 USA 2 All 39,249 20 41+

Doupe [45] 2012 Canada 6 Age 18+ 105,688 12 18+

Paul [41] 2010 Singapore 1 All — if has not attended
the ED in past 12 months

82,172 6 10+

Moore [19] 2009 UK 1 All 82,812 6 10+

Locker [33] 2007 UK 1 All 75,141 16 16+

Jelinek [44] 2008 Australia 9 Age 15+ 186,069 6 40+

Ruger [40] 2004 USA 1 All 50,850 5 21+

Riggs [39] 2003 USA 1 All 22,492 17 35

Murphy [38] 1999 Ireland 1 All 34,908 13 21+

Primary care out of hours

Buja [51] 2015 Italy 1 All 17,657 11 11+

Den Boer-Wolters [50] 2010 Netherlands 1 All 44,953 10 10+
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Services thus need to provide care which is simultan-

eously person-centred and system-aware.

For research, our identification of bursts represents a

potential target for interventions to identify and respond

to individuals with high need. Interventions should be

developed to prevent, or shorten, bursts. These interven-

tions must be safe, while addressing the mechanisms by

which patients rationalise decisions to consult, such as

candidacy and recursivity [28]. This may involve forms

of explanation or sign-posting which make patients

more likely to use alternative management the next time

a situation occurs rather than more likely to re-attend

the urgent care service, as currently happens. A focus on

recognising bursts at an early stage may also permit

identification of individuals at high risk of frequent at-

tendance. In our ED data, among people who attended

at least four times in a year, a burst of 3 consultations

each separated by no more than 7 days represented only

1% of bursts. In the PCOOH setting, bursts of 4 consul-

tations each separated by no more than 7 days

accounted for 1% of bursts. These may represent useful

“early warnings” of emerging problems, and these and

other potential signals of ongoing high use should be

tested in further analyses.

Fig. 5 Cumulative distribution function of urgent care episodes per patient in individual study reports: all emergency department studies
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Conclusions

We have demonstrated new and widespread evidence of

typical complex system behaviour in urgent care use,

particularly in the links between bursts of attendance

and overall demand. Interventions to address demand

must reflect this, by addressing systemic processes

across all levels of use and by safely reducing

re-attendance to shorten bursts of contacts which act as

a major driver of heavy use.
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