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SUMMARY

As predicted by the notion that sister chromatid

cohesion is mediated by entrapment of sister DNAs

inside cohesin rings, there is perfect correlation be-

tween co-entrapment of circular minichromosomes

and sister chromatid cohesion. In most cells where

cohesin loads without conferring cohesion, it does

so by entrapment of individual DNAs. However, co-

hesin with a hinge domain whose positively charged

lumen is neutralized loads and moves along chro-

matin despite failing to entrap DNAs. Thus, cohesin

engages chromatin in non-topological, as well as to-

pological, manners. Since hinge mutations, but not

Smc-kleisin fusions, abolish entrapment, DNAs may

enter cohesin rings through hinge opening. Mutation

of three highly conserved lysine residues inside the

Smc1 moiety of Smc1/3 hinges abolishes all loading

without affecting cohesin’s recruitment to CEN

loading sites or its ability to hydrolyze ATP. We sug-

gest that loading and translocation are mediated by

conformational changes in cohesin’s hinge driven

by cycles of ATP hydrolysis.

INTRODUCTION

Smc/kleisin complexes facilitate chromosome segregation in

bacteria as well as eukaryotes (Schleiffer et al., 2003). The latter

have three types: condensin, cohesin, and the Smc5/6 complex

(Haering and Gruber, 2016). Though initially identified as being

essential for holding the sister chromatids together, cohesin

shares with condensin an ability to organize DNA into chroma-

tids. While condensin does this during mitosis (Hirano et al.,

1997), cohesin does so during interphase (Tedeschi et al.,

2013). It has been suggested that both types of complexes cap-

ture small loops of DNA and then extrude them in a processive

manner (Nasmyth, 2001), a concept that has recently been

embellished to explain the pattern of intra-chromosomal interac-

tions during interphase as well as the process by which interac-

tions between enhancers and distant promoters are regulated by

the insulation factor CTCF (Fudenberg et al., 2016; Sanborn

et al., 2015).

At cohesin’s core is a heterotrimeric ring containing a pair of

SMC proteins, Smc1 and Smc3, and an a-kleisin subunit Scc1.

Smc1 and Smc3 are rod-shaped proteins containing 50-nm-

long intra-molecular anti-parallel coiled coils with a hinge/dimer-

ization domain at one end and an ABC-like ATPase head domain

composed of the protein’s N- and C-terminal sequences at the

other. They bind each other via their hinges to form V-shaped

heterodimers whose apical ATPases are interconnected by a

single Scc1 polypeptide (Gruber et al., 2003). Scc1’s N-terminal

domain (NTD) forms a four helical bundle with the coiled coil

emerging from Smc3’s ATPase (Gligoris et al., 2014), while its

winged helical C-terminal domain (CTD) binds to the base of

Smc1’s ATPase (Haering et al., 2004). Bacterial Smc/kleisin

complexes form similar structures, suggesting that asymmetric

ring formation is a universal feature (Bürmann et al., 2013).

This structure raises the possibility that Smc/kleisin com-

plexes associate with chromosomal DNAs by entrapping them

inside their rings (Haering et al., 2008). Several types of such to-

pological engagement have been envisaged for cohesin. Entrap-

ment either of individual DNAs or loops of DNA might constitute

the mechanism by which it associates with chromatin per se. On

the other hand, sister chromatid cohesion could be conferred

either by co-entrapment of sister DNAs inside the same ring

(ring model) or through an association between two rings, each

topologically engaged with DNA (handcuff model). Hitherto

only entrapment of individual DNAs or of a pair of sister DNAs in-

side what appears to be a single cohesin ring has proven

amenable to detection (Gligoris et al., 2014; Haering et al., 2008).

If cohesin associates with chromatin by entrapping DNA, then

loading and release must involve passage of DNA through entry

and exit gates, respectively. More is known about the mecha-

nism of release. Cohesin dissociates from chromosomes after
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cleavage of Scc1 by separase at theonset of anaphase (Uhlmann

et al., 1999) but at other stages of the cycle in a manner involving

dissociation of the Smc3/Scc1 interface (Beckouët et al., 2016).

This separase-independent releasing activity depends on a pro-

tein called Wapl (Kueng et al., 2006) that binds to a pair of hook-

shaped proteins, associated with Scc1, namely, Scc3 and Pds5.

Release also depends on a pair of highly conserved lysine resi-

dues (K112 and K113) on Smc3’s ATPase, whose modification

by the acetyl transferase Eco1 during S phase abolishes release

(Beckouët et al., 2016; Unal et al., 2008), thereby helping tomain-

tain cohesion until the onset of anaphase.

The mechanism by which cohesin loads onto chromosomes is

less well understood. It requires engagement of Smc1 and Smc3

ATPase heads aswell as subsequent ATP hydrolysis (Arumugam

et al., 2003). Neither Pds5 nor Wapl are necessary (Petela et al.,

2017) but instead a separate complex containing Scc4 bound to

the NTD of another Hawk protein called Scc2 is essential (Ciosk

et al., 2000; Hu et al., 2015). Unlike release, which is blocked by

fusion of Smc3’s ATPase to Scc1’s NTD, loading is not abolished

by fusion of Smc3 or Smc1 ATPases to Scc1’s NTD or CTD,

respectively, a finding that has led to the suggestion that DNAs

enter via cohesin’s Smc1/Smc3 hinge domain (Gruber et al.,

2006). Individual hinge domains have crescent shapes, and their

interaction creates a pseudo-symmetric torus whose small

lumen is invariably positively charged, even in fully symmetric

bacterial hinges (Kurze et al., 2011).

In this study, we addressed the nature of cohesin’s association

with DNA in cells at different stages of the cell cycle or with a

variety ofmutations that affect loading and/or cohesion.We found

that co-entrapment of sister DNAs within cohesin rings invari-

ably accompanies sister chromatid cohesion. On the contrary,

although entrapment of individual DNAs normally accompanies

loading, we describe a situation where this does not apply,

namely, a cohesin mutant with a hinge whose positively charged

lumenhasbeenneutralizedbyfivemutations (smc1DDsmc3AAA).

The anomalous behavior of this hinge mutant implies that

cohesin is able to load onto and move along chromosomes

without associating with them in a topological manner.

During the course of mutating the inner surface of the hinge’s

lumen, we discovered a triple mutation, replacing by aspartic

acid three highly conserved lysines in Smc1, that greatly reduces

cohesin’s association with chromosomes despite associating

with Scc2 at CEN loading sites and being fully active as an

ATPase. The behavior of this smc1DDD mutation implies that

changes in the conformation of cohesin’s hinge that normally

accompany ATP hydrolysis are essential for completion of the

loading reaction as well as DNA entrapment. We suggest that

both topological and non-topological modes of chromatin asso-

ciation depend on changes in cohesin’s Smc1/3 hinge domain

that respond to changes in the state of its ATPase.

RESULTS

Entrapment of Sister DNA Molecules by Hetero-trimeric

Cohesin Rings

To measure DNA entrapment by cohesin, we created a pair

of strains containing 2.3 kb circular minichromosomes: a 6C

strain with cysteine pairs at all three ring subunit interfaces

(Smc1G22C K639C, Smc3E570C S1043C, Scc1A547C C56)

and a 5C strain lacking just one of these (Scc1A547C) (Figure 1A).

Exponentially growing cells were treated with the cysteine-reac-

tive homobifunctional crosslinker bismaleimidoethane (BMOE),

which circularizes 20%–25% of 6C cohesin rings (Figure S1A)

(Gligoris et al., 2014) and DNAs associated with cohesin

immunoprecipitates separated by agarose gel electrophoresis

following SDS denaturation. Southern blotting revealed two

forms of DNAunique to 6C cells: one thatmigrates slightly slower

than monomeric supercoiled DNAs (CMs) and a second that mi-

grates slower than DNA-DNA concatemers (CDs) (Figures 1A

and 1B). Little if any minichromosome DNA is detected in cells

lacking the affinity tag on cohesin (Figure 1B). Importantly, elec-

trophoresis in a second dimension following proteinase K

treatment confirmed that both forms consist of monomeric

supercoiled DNAs: CMs are single DNA molecules trapped

within cohesin rings, while CDs contain a pair of sister DNAs

trapped within tripartite cohesin rings (Figure S1C).

To address whether CMs and CDs correspond to loading and

cohesion, respectively, we measured CM and CD formation in a

variety of mutants and cell-cycle states. We first asked whether

mutants defective in loading fail to create CMs andCDs. Accord-

ingly, scc2-45 cells failed to co-precipitateminichromosomes af-

ter undergoing DNA replication in the absence of functional Scc2

loader (Figure 1C). Likewise, a version of 6Ccohesin that canbind

but not hydrolyze ATP (Smc3E1155Q) and a version that cannot

even bind ATP (Smc3K38I) failed to co-precipitate minichromo-

somes (Figure 1D). The formation of CMs and CDs therefore de-

pends on both Scc2 and ATP hydrolysis. It is important to note

that Smc3E1155Q cohesin associates with centromeres (CENs)

with a very high efficiency, whether measured by live imaging

(Hu et al., 2011) or by calibrated chromatin immunoprecipitation

sequencing (ChIP-seq) (Hu et al., 2015), and yet it largely fails to

immunoprecipitate CEN-containing minichromosome DNAs.

Cohesin Entraps Individual DNAs before DNA

Replication

If cohesion were mediated by co-entrapment of sister DNAs

within cohesin rings, then CDs should be detected only in cells

that have undergone DNA replication. Likewise, if cohesin

loading involved entrapment of individual DNAs, then CMs

should be detected in cells that load cohesin onto chromosome

prior to replication. Expression of a non-degradable version of

the Cdk1 inhibitor Sic1 or inactivation of the F-box protein

Cdc4, which is necessary for Sic1 degradation, prevents cells

from entering S phase. In both cases, the failure to degrade

Sic1 was accompanied by CM but not CD formation (Figures

1E and 1F). Expression of a version of Scc1A547C C56 that

cannot be cleaved by separase in a factor-arrested G1 cells

also led to formation of CMs but not CDs (Figure 1G). Thus,

DNA replication is required for CDs but not for CMs and the latter

are not merely a byproduct of CDs.

Sister Chromatid Cohesion Is Accompanied by

Entrapment of Sister DNAs within Individual

Cohesin Rings

Though necessary, DNA replication is insufficient for CD forma-

tion. Thus, CDs fail to form in ts eco1-1 cells when they undergo
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S phase at 37�C (Figure 2A). Loading is known to take place with

high efficiency in such cells despite their failure to create stable

cohesion (Chan et al., 2013), and indeed CM formation was un-

affected (Figure 2A). The lack of CDs in eco1 mutants is due to

their failure to suppress releasing activity because wpl1D re-

stores efficient CD formation (Figures 2A and 2B). The correlation

between CDs and cohesion was strengthened by analysis of

pds5 mutants. While essential for maintaining cohesion, Pds5

is not required for loading (Panizza et al., 2000; Petela et al.,

2017). Accordingly, pds5-101 cells that undergo DNA replica-

tion at 37�C form CMs but no CDs (Figure 2C). Interestingly,

CM accumulation was marginally elevated in pds5-101 cells,

possibly because of reduced releasing activity (Figure 2C).

It has been suggested that loss of cohesion caused by inacti-

vation of Pds5 during G2/M despite persistence of cohesin on

chromosomes is evidence that cohesin cannot hold sister

DNAs together by entrapping them within a single cohesin ring

(Tong and Skibbens, 2014). To address this, we arrested 6C

pds5-101 cells in G2/M at the permissive temperature and

then shifted the cells to the restrictive temperature, which is

known to destroy cohesion (Panizza et al., 2000). This led to a

reduction of CDs (by 70%; 3 biological replicates) but not CMs

(Figure 2D). Thus, loss of cohesion during G2/M in pds5mutants

is accompanied by loss of CDs, extending yet again the correla-

tion between cohesion and CDs. The persistence of cohesin on

chromosomes in pds5 mutants does not therefore refute the

notion that cohesion is mediated by CDs.

To address in a more definitive fashion whether individual het-

ero-trimeric rings or versions containing two or more kleisin sub-

units hold CDs together, we created two tetraploid strains that

either contain four copies of covalently circularizable cohesin

(436C), or three copies of 5C (lacking 1 of the 6 cysteine residues

needed for complete circularization) and one copy of 6C cohe-

sin. If individual cohesin rings held CDs together, the ratio of

CDs to CMs should be unaltered by any reduction in the fraction

of circularizable cohesin. However, if CDs were mediated by

oligomeric cohesin containing two (or more) Scc1 subunits

then the fraction should be one quarter (or less) in the case of

6C/5C/5C/5C tetraploids, compared to 436C controls. In fact,

the ratio of CDs to CMs in both these strains was very similar

A

B

C

D E F G

Figure 1. Entrapment of Single and Sister

DNA Molecules by Hetero-trimeric Cohesin

Rings

(A) Procedure for detecting entrapment of DNAs

by cohesin. 6C strains with cysteine pairs at all

three ring subunit interfaces (2C Smc3: E570C

S1043C, 2C Smc1: G22C K639C and 2C Scc1

C56 A547C) and 5C strains lacking just one

of these cysteines (Scc1 A547C) and carrying a

2.3 kb circular minichromosome were treated

with BMOE. DNAs associated with cohesin

immunoprecipitates (Scc1-PK6) were denatured

with SDS and separated by agarose gel electro-

phoresis. Southern blotting reveals supercoiled

monomers and nicked and supercoiled con-

catemers along with two forms of DNA unique to

6C cells, termed CMs and CDs.

(B) CMs and CDs in exponentially growing strains

K23644 (5C), K23889 (6C), and K23890 (5C, no

cohesin tag). Quantification of the bands (per-

centage of total) from the 6C crosslinked sample

from 3 biological replicates is shown (data are

represented as mean ± SD). See also Figure S1B.

(C) CMs and CDs in WT (K23889) and scc2-45

(K24267) 6C strains arrested in G1 with a factor at

25�C in YPD medium and released into nocoda-

zole at 37�C. See also Figure S1D.

(D) CM and CDs in exponentially growing 6C

strains containing ectopically expressed versions

of 2C Smc3-PK6: K24173 (WT Smc3), K24174

(smc3 E1155Q), and K24175 (smc3 K38I).

(E) CMs and CDs in strains K23644 (5C), K23889

(6C), and those arrested in late G1 by expressing

galactose-inducible nondegradable Sic1 K23971

(5C) and K23972 (6C). See also Figure S1E.

(F) CMs and CDs in WT (K23889) and cdc4-1

(K24087) 6C strains arrested in G1 at 25�C in YPD

medium and released into YPD medium contain-

ing nocodazole at 37�C. See also Figure S1F.

(G) CMs in a factor-arrested cells expressing non-

cleavable 2C Scc1 (K24695). See also Figure S1G.

See also Figure S1.
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in 3 biological replicates (Figure 2E; CD=ð CMÞ4x6C=
�

CD=ð

CMÞ1x6C;3x5CÞ= 1:01; SD= 0:100). The same was true in diploid

cells analyzed in a similar fashion (Figure S1H), implying that

rings containing only a single copy of Scc1 hold the two DNAs

within CDs together.

Cohesin Rings Collaborate to Form CDs

In the course of exploring the relationship between CDs

and cohesion, we analyzed cells expressing an scc1 mutant

(V137K) that is defective in binding Pds5 (Chan et al., 2013) and

therefore lethal. To do this, we constructed a 6C V137K mutant

strain thatwas kept alive by an untaggedcopy of the endogenous

SCC1 gene. Due to its inability to recruit Pds5, we expected that

cohesin containing Scc1V137K would be able to form CMs but

not CDs. To our surprise, scc1V137K caused only a slight if any

reduction inCDs (Figure 2F). This could be either becauseCD for-

mation is insufficient for cohesion, or wild-type cohesin, which

cannot actually be part of the CDs associated with V137K cohe-

sin, facilitates formation of CDs by the mutant complexes. To

test the latter possibility, we replaced the endogenous wild-

type SCC1 with the temperature-sensitive scc1-73 allele and

measured whether V137K is still capable of forming CDs when

cells underwent S phase at the restrictive temperature. Under

these conditions, scc1V137K supported CM but not CD forma-

tion (Figure 2G). We conclude that wild-type cohesin helps CD

formation and/or maintenance by V137K cohesin.

Complementation betweenmutant scc1 alleles had previously

indicated that different cohesin complexes might interact func-

tionally (Eng et al., 2015), and this observation was cited as evi-

dence that cohesion is instead mediated by a pair of cohesin

complexes. Our demonstration that wild-type Scc1 enables

Scc1V137K to form CDs provides an alternate interpretation;

namely, that two or more cohesin rings collaborate to produce

cohesive structures that contain sister DNAs held within individ-

ual rings.

DNA Entrapment Is Necessary for Cohesion, but Not for

Loading or Translocation

In a final attempt to refute the notion that CMs and CDs reflect

loading and cohesion, respectively, we analyzed a quintuple

mutant that neutralizes the hinge lumen’s positive charge

(Figure 3A). smc1K554D K661Dsmc3R665A K668A R669A

(smc1DDsmc3AAA) cohesin loads onto and moves along chro-

mosomes in a similar manner to wild-type but fails to generate

cohesion and is only poorly acetylated by Eco1 (Kurze et al.,

2011). As expected, a 6C version of smc1DDsmc3AAA failed

to produce CDs. More surprising, it also largely failed to form

CMs (reduced to approximately 20% of 6C wild-type (WT) levels

in the fraction of immunoprecipitated DNA; Figures 3B and S2A)

despite forming tripartite rings (Figure S2B). Crucially, the level

of minichromsome DNAs in smc1DDsmc3AAA immunoprecipi-

tates was similar to WT, showing that the mutant protein

A B

C D

E F G

Figure 2. Sister Chromatid Cohesion Is Generated by Entrapment of

Sister DNAs within Individual Cohesin Rings

(A) CMs and CDs inWT (K23889), eco1-1 (K23579), and eco1-1 wplD (K23578)

strains arrested in G1 at 25�C in YPD medium and released into YPD medium

containing nocodazole at 37�C.

(B) CMs and CDs in exponentially growing WT (K23889) and eco1D wplD

(K25287) 6C strains.

(C) CMs and CDs inWT (K23889) and pds5-101 (K24030) 6C strains arrested in

G1 at 25�C in YPD medium and released into YPD medium containing noco-

dazole at 37�C.

(D) CMs and CDs in exponentially growing WT (K23889) and pds5-101

(K24030) 6C strains arrested in G2 by addition of nocodazole at 25�C and

shifted to 37�C. Data are shown from the same Southern blot, with irrelevant

lanes removed.

(E) CMs and CDs in exponentially growing tetraploid cells containing 4 copies

of 6C cohesin with a tag on just one of the 2C Scc1 copies (K24561) and

tetraploid cells containing 3 copies of 5C cohesin and one copy of 6C cohesin

with a tag on just the 2C Scc1 (K24560). See also Figures S1H and S1I.

(F) CMs and CDs in exponentially growing 6C strains containing ectopically

expressed versions of 2C Scc1, K24205 (WT), and K26413 (V137K) arrested in

G2/M with nocodazole.

(G) CMs and CDs in 6C strains with ts scc1-73 allele at the endogenous locus

and either WT (2C) Scc1 (K26600) or (2C) Scc1 V137K mutant (K26591) at an

ectopic locus. Cells were arrested in G1 at 25�C in YPD medium and released

into YPD medium containing nocodazole at 37�C. See also Figure S1J.

See also Figure S1.
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associates stably with chromatin, even though it does not entrap

it (Figure 3B). Calibrated ChIP-seq confirmed this result: loading

of smc1DDsmc3AAA cohesin throughout the genome was

similar, if not greater, than that of WT cohesin both in the pres-

ence (Figure 3C) or absence (Figure S3A) of endogenous un-

tagged WT complexes. Calibrated ChIP-seq also showed that

mutant complexes loaded at CENs migrate into neighboring se-

quences like WT resulting in similar distributions of the WT and

mutant complexes (Figure 3C). Because loading and possibly

also subsequent movement from loading sites require stimula-

tion of cohesin’s ATPase activity by Scc2, we purified WT

(SMC1 SMC3 SCC1 SCC3) and mutant (smc1DD smc3AAA

SCC1 SCC3) tetramers and compared their ATPase activity in

the presence of Scc2 and in the presence and absence of

DNA. Crucially, smc1DDsmc3AAA had no effect on ATPase ac-

tivity (Figure 3D).

Four important conclusions can be drawn from the behavior

of smc1DDsmc3AAA cohesin. First, smc1DDsmc3AAA causes

a highly specific defect in entrapping DNA. Remarkably, it

causes this defect without affecting loading or in the case of

centromeres migration away from CEN loading sites. Second,

the Smc1/3 hinge must be intimately involved in the entrapment

process. Third, because the entrapment defect is accompanied

by a failure to build sister chromatid cohesion, entrapment is

presumably necessary for cohesion. Last but not least, cohesin

can load onto, move along, and remain stably associated

with chromatin in the absence of DNA entrapment. Hitherto,

topological entrapment has been the only explanation for

loading as well as release through separase-mediated Scc1

cleavage or Wapl-mediated dissociation of the Smc3/Scc1

interface. We now know that, although entrapment clearly

does take place, it cannot be the only mechanism of DNA

association. Interestingly, the non-topological chromosomal

smc1DDsmc3AAA cohesin is still removed by separase during

anaphase (Figure S2D).

Organization of DNA into Chromatid-like Threads Does

Not Require Entrapment of DNA by Cohesin Rings

We next addressed whether smc1DDsmc3AAA cohesin is still

active in organizing chromosome topology. The tandem array of

rDNA repeats assembles into threads during M phase, albeit

ones that are much thinner than those of conventional mitotic

chromosome. Importantly, formation of these threads depends

on cohesin (Guacci et al., 1994). Because thread formation is

not dependent on sister chromatid cohesion in mammalian cells,

it is possible that thesamemight be trueofmitotic rDNA threads in

yeast. If so, and if smc1DDsmc3AAA cohesin still possesses this

thread-making activity, then post-replicative smc1DDsmc3AAA

cells should contain not one but two rDNA threads.

To test this, cells whose SMC3 gene had been replaced by a

33 miniAID-tagged version (smc3-AID), expressing smc1DD

from the endogenous locus and smc3AAA from an ectopic one

were allowed to undergo DNA replication in the presence of

auxin, which induces degradation of the AID-tagged endoge-

nous Smc3 protein (Li et al., 2017). Their behavior was compared

to smc3-AID cells with a WT SMC1 gene and expressing SMC3

from an ectopic locus (the WT control) as well as to cells lacking

an ectopic SMC3 gene (the smc3 mutant control). As expected

most WT cells contained a single rDNA thread, which forms a

distinct loop connected to but separate from the rest of chromo-

some XII, which is situated within an amorphous mass of chro-

matin containing all 15 other chromosomes. Cells that had

undergone S phase without Smc3 lacked discernable rDNA

loops (Figures 3E and S4). Remarkably, cells that had undergone

S phase expressing only smc1DDsmc3AAA cohesin frequently

(47%) contained a pair of thin rDNA loops (Figures 3E and S4).

This implies that smc1DDsmc3AAA cohesin can organize indi-

vidual rDNA into threads but not hold sister rDNA threads

together.

Highly Conserved Lysine Residues inside Smc1/3

Hinges Are Required for All Types of Cohesin Loading

To address whether cohesin’s hinge might be involved in

all aspects of cohesin’s chromosome organization and not

merely the DNA entrapment intrinsic to sister chromatid cohe-

sion, we undertook a more systematic analysis of the role of

basic residues within cohesin’s hinge. Smc1K554 and K661

are in fact part of a triad of highly conserved lysine residues,

including K650, residing within the Smc1 moiety of the

hinge’s lumen (Figures 4A and S5). All double-mutant combi-

nations involving lysine to aspartate substitutions, namely,

smc1K554D K650D, smc1K554D K661D, and smc1K650D

K661D, are viable (Figure 4B). Indeed, calibrated ChIP-seq

showed that neither smc1K554D K650D nor smc1K650D

K661D had any appreciable effect on cohesin’s association

with the genome, either around centromeres or along chromo-

some arms (Figure 4C).

In contrast, the smc1K554D K650D K661D triple mutant

(smc1DDD) was lethal (Figure 4D), greatly reduced cohesin’s as-

sociation with chromatin throughout the genome (Figure 4E), and

abolished co-precipitation of minichromosome DNA with cohe-

sin as well as formation of CMs and CDs when present as a 6C

version (Figure 4F). Treatment of cells with the 6C version of

smc1DDD showed that chemical circularization of the triple

mutant was identical to WT, demonstrating that the triple muta-

tion does not adversely affect Smc1/3 hinge dimerization or

indeed association between Smc1 and Smc3 ATPase domains

with CTDs and NTDs of Scc1, respectively (Figure S2B).

Because smc1DDsmc3AAA reduces the off-rate of isolated

Smc1/3 hinge complexes (Kurze et al., 2011), a competition

crosslinking assay was used to measure this property, which

showed that smc1DDD had no effect (Figure S2E).

Analysis of mutations like smc1E1158Q and smc3E1155Q that

block ATP hydrolysis has revealed two steps in the loading reac-

tion atCENs. The first is association withCENs of cohesin whose

ATPase heads have engaged in the presence of ATP while its

kleisin subunit binds Scc2 instead of Pds5. A subsequent step

involves conversion of this unstable intermediate into a complex

that moves up to 30 kb into neighboring peri-centric sequences,

while remaining stably associated with chromatin. Formation of

the unstable Scc2-bound intermediate at CENs can be detected

using calibrated ChIP-seq by measuring enhancement by

smc1E1158Q of Scc2’s association with CENs (Petela et al.,

2017). Importantly, the enhanced recruitment of Scc2 to

CENs in smc1DDD smc1E1158Q-expressing cells was identical

to that in smc1E1158Q-expressing cells (Figure 5A), which
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suggests that smc1DDD affects the second and not the first

step in the loading reaction. Because smc1DDD has no effect

on ATPase activity induced by Scc2 in vitro (Figure 5B), we

conclude that smc1DDD does not affect the ATP hydrolysis

cycle per se but instead a change in cohesin’s conformation

that normally accompanies hydrolysis of ATP bound to its

ATPase heads, presumably involving the hinge and the associ-

ated coiled coils.

To address why smc1DDsmc3AAA merely blocks entrapment

while smc1DDD hinders all types of loading including entrapment,

Figure 3. DNA Entrapment Is Necessary

for Cohesion but Not for Loading or Translo-

cation

(A) Structure of the mouse hinge domain, high-

lighting positively charged residues in its central

channel neutralized by smc1K554D K661D

smc3R665A K668A R669A mutations (DDAAA).

(B) CMs and CDs in exponentially growing K23644

(5C) and two 6C strains (K26210 with an ectopic

WT 2C SMC1 and K26215 with endogenous 2C

smc3AAA and ectopic 2C smc1DD (DDAAA)).

Over three biological replicates, the intensities of

CM and CD bands in the DDAAA mutant were

reduced to around 20% and 3% of the WT levels,

respectively.

(C) Exponentially growing strains WT (K15426,

Smc3-HA) and DDAAA mutant (K15424,

smc3AAA-HA) were analyzed by calibrated ChIP-

sequencing. ChIP profiles along chromosomes II

and VIII are shown. See also Figure S2C.

(D) ATPase activity of purified WT and DDAAA

mutant tetramer stimulated by Scc2. The rate of

ATP hydrolysis was measured either in the pres-

ence or absence of DNA.

(E) Strains K26797 (containing endogenous 33

miniAID-tagged SMC3 and ectopic WT SMC3),

K26611 (containing endogenous 33 miniAID tag-

ged-SMC3 and endogenous smc1DD and ectopic

smc3AAA), and K26767 (33 miniAID-tagged

SMC3 and no ectopic SMC3) were arrested in G1

and synthetic auxin (indole-3-acetic acid) added to

1 mM 30 min before release. Cultures were

released into YPD containing 1 mM auxin and no-

codazole. 60 min after release from the G1 arrest,

cultures were harvested and chromosomes

spread (STAR Methods). Micrographs of chromo-

some masses of the two strains were quantified

from three independent experiments (n = 100) and

categorized as ‘‘1 loop’’ (showing fully condensed

rDNA loops), ‘‘2 loops’’ (showing fully condensed

rDNA loops that are split because of loss of

cohesion), and ‘‘puffed’’ (showing unstructured,

puffed rDNA morphology). See also Figure S4.

Data are represented as mean ± SD.

See also Figures S2, S3, and S4.

we created an smc1DDDsmc3AAA

sextuple mutant. Calibrated ChIP-seq re-

vealed that smc3AAA cannot ameliorate

smc1DDD’s loading defect (Figure 5C). In

other words, smc1K650D is epistatic to

smc3AAA in smc1K554D K661D cells. It

is remarkable that mutation of any one of

threeconserved lysines is sufficient to reduceWT levels of loading

indouble-smc1DDmutants to lethally low levels.Noneof the three

conserved lysines has a unique role and all make ‘‘equivalent’’

contributions. Positive charge per se and not precisely where

it is situated within the hinge’s lumen appears to be crucial.

Efficient Entrapment of DNAs when Smc and Kleisin

Subunits Are Fused

If co-entrapment of sister DNAsmediates sister chromatid cohe-

sion, then the cohesin ring must somehow open up, creating a
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gate through which DNAs can enter. A recent study suggested

that an entry gate is created by transient dissociation of the

Smc3/Scc1 interface (Murayama and Uhlmann, 2015). A prob-

lem with this claim is that it is inconsistent with the fact that

Smc3-Scc1 and Scc1-Smc1 fusion proteins are functional

(Gruber et al., 2006), casting doubt on either Smc-kleisin inter-

face being an obligatory entry gate.

It is known that Smc3-Scc1 fusion proteins are capable of

forming CDs but not how efficiently (Haering et al., 2008). To

address this, we compared the ability of WT 6C complexes

to form CMs and CDs with that of 4C complexes containing

an Smc3-Scc1 fusion protein with cysteine pairs at the

hinge and Scc1/Smc1 interfaces but not at the Smc3/

Scc1 interface. Smc3-Scc1 4C containing complexes were

capable of forming CMs and CDs with a similar efficiency

to that of WT 6C complexes (Figure 6A). Calibrated ChIP-seq

showed that Smc3-Scc1 fusion proteins load at CENs and

move into peri-centric sequences in a manner similar to

WT, albeit slight less efficiently (Figures 6B and S3B).

Because crosslinked Smc3-Scc1 complexes do not form

higher order multimers (Figure S2F), Smc3-Scc1 cohesin pre-

sumably entraps minichromosomes as a monomeric ring, as

in WT.

Figure 4. Residues within Its Hinge Domain

Dictate Cohesin’s Ability to Load onto Chro-

mosomes

(A) Structure of themouse hinge depictingmutated

Smc1 residues (smc1 K554D K650D K661D)

(DDD).

(B) Haploid segregants following tetrad dissection

of asci from diploid strains (ura3::smc1DD /ura3::

smc1DD smc1D/smc1D containing two mutations

of all possible combinations from K554D, K650D,

and K661D).

(C) Calibrated ChIP-seq of exponentially growing

strains with a deletion of the endogenous SMC1

gene and expressing ectopically either WT

SMC1 (K15324), smc1K554D K661D (K15322), or

smc1K650D K661D mutant (K15226).

(D) Haploid segregants following tetrad dissection

of asci from diploid strains (SMC1/smc1D ura3::

SMC1/ura3::SMC1) and (SMC1/smc1D ura3::

smc1DDD/ura3::smc1DDD).

(E) Calibrated ChIP-seq of exponentially growing

strains K24327 (ectopic SMC1), K26756 (ectopic

smc1DDD), and K699 (untagged control).

(F) Minichromosome IP assay of exponentially

growing strains K24327 (expressing ectopic WT

2C SMC1) and K26610 (expressing ectopic 2C

smc1DDD).

See also Figures S2, S3, S5, S6, and S7.

Because neither CMs nor CDs would

be possible in 4C Smc3-Scc1 cells if the

linker connecting Smc3 and Scc1 were

cleaved, these results confirm that the

Smc3/Scc1 interface cannot be an oblig-

atory entry gate for the DNA. They do not,

however, exclude the possibility that

loading can or indeed does take place

via this interface. 4C Scc1-Smc1 strains behaved similarly,

proving that DNAs can also enter rings without opening the

Scc1/Smc1 interface (Figure 6C).

Covalent Closure of Cohesin’s Hinge Interface Fails to

Block Loading in Xenopus Extracts

Havingestablished that neitherSmc/kleisin interface is obligatory

for cohesin loading or DNA entrapment in yeast, we addressed

whether hinge opening is required. We therefore sought to test

the effect of crosslinking Smc1 and Smc3 moieties of the hinge

using bi-functional thiol-specific reagents such as BMOE and

bBBr. However, this approach cannot be applied to yeast cells

for two reasons. Both BMOE and bBBr are lethal to yeast and

any reductionofCMsorCDscouldbeattributable to non-specific

toxicity aswell as any topological barrier createdby thecrosslink-

ing. Even if these crosslinkers were not toxic and permitted CM

and/or CD formation, it would be impossible to exclude the

possibility that any CMs and CDs detected had been created

by crosslinking of complexes already associated with chromatin.

We therefore studied loading onto chromatin in vitro of

a Xenopus Smc1/Smc3/Scc1/Scc3 (SA1) tetramer purified

from insect cells (Figure 7A). To distinguish exogenous and

endogenous complexes, the former’s Smc3 subunit was tagged
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at its C terminus with Halo (Smc3-Halo), while its Scc1 subunit

contained three tandem TEV protease cleavage sites. Addition

of sperm chromatin to low-speed supernatant (LSS) interphase

egg extracts leads to chromatin assembly, cohesin loading,

acetylation of Smc3, and eventually DNA replication (Lafont

et al., 2010; Takahashi et al., 2004). Like endogenous Smc3,

Smc3-Halo association with chromatin dependented on Scc2

(Figure 7B) and was abolished by TEV-induced Scc1 cleavage

(Figure 7C). Importantly, inhibition of pre-replication complex as-

sembly by geminin addition greatly reduced association with

chromatin as well as acetylation of both versions of Smc3 (Fig-

ure 7D) (Takahashi et al., 2008).

To address whether this loading requires opening of the hinge,

we produced a version of the complex containing Smc1D566C

and Smc3R626C, whose cysteines at the hinge interface can

be crosslinked with 40% efficiency using bBBr (Figure 7E). After

crosslinking, the reaction was quenched with DTT and the puri-

fied complexes added to extracts. Importantly, the crosslinking

reaction, which will modify all surface cysteines, did not

adversely affect loading of exogenous WT complex. Strikingly,

Smc1D566C/Smc3R626C complexes whose hinges had been

crosslinked were loaded onto chromatin (Figure 7F) and acety-

lated (Figure 7G) with similar efficiency to that of uncrosslinked

complexes. Furthermore, the crosslinked and acetylated com-

plexes were resistant to 0.3 M KCl, which abolishes most of

the Orc2-DNA interaction (Figure 7H). This suggests that com-

plexes whose hinges cannot open are capable of loading onto

chromatin in Xenopus extracts in a manner that permits their

subsequent acetylation by Esco2.
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Figure 5. smc1DDD Mutation Does Not Affect Scc2-Stimulated ATP

Hydrolysis Cycle

(A) Calibrated ChIP-seq of exponentially growing strains each containing

Scc2-PK6, K26839 (ectopic SMC1), K26840 (ectopic smc1DDD E1158Q), and

K25646 (ectopic smc1 E1158Q).

(B) ATPase activity of purified WT and DDD mutant tetramer stimulated by

Scc2. ATP hydrolysis was measured with and without DNA.

(C) Exponentially growing strains K26756 (expressing the WT Smc3 from the

endogenous locus and the smc1DDD mutant from an ectopic locus), K26757

(expressing smc1 DDD mutant from an ectopic locus and smc3AAA mutant

from the endogenous locus), and K24327 (expressing WT Smc1 and Smc3)

were analyzed by calibrated ChIP sequencing (Smc1-PK IP). The ChIP profiles

are showing the number of reads at each base pair away from the CDEIII

element averaged over all 16 chromosomes.

See also Figures S2, S5, and S7.
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Figure 6. Entrapment of DNAs When Smc and Kleisin Subunits Are

Fused Together

(A) CMs and CDs in an exponentially growing 6C WT (K23889) strain and a

strain containing 2C SMC1 and expressing an SMC3-SCC1 fusion containing

cysteines in Smc3’s hinge and Scc1’s C terminus (K24838) as the sole source

of Smc1 and Scc1. Data are shown from the same Southern blot, with one

irrelevant lane removed. The fractions of CD and CM of the total DNA immu-

noprecipitates from WT and fusion strains across 3 biological replicates are

shown (data are represented as mean ± SD).

(B) Calibrated ChIP-seq of exponentially growing WT (K23889) and Smc3-

Scc1 fusion strain (K24838). Calibrated ChIP-seq profiles of representative

chromosomes I and X are shown. See Figure S3B for a representation of the

average of all 16 chromosomes.

(C) CMs and CDs in exponentially growing 6C WT (K23889) strain and a 4C

strain (containing an Smc3-Scc1 fusion protein with cysteine pairs at the hinge

and Scc1/Smc1 interfaces but not at the Smc3/Scc1 interface) expressing a

PK3-Scc1-Smc1 fusion as the sole source of Scc1 and Smc1 (K25696).

See also Figures S2 and S3.
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We next asked whether chromatin bound crosslinked com-

plexes were bound to sororin. While Smc3 acetylation is

sufficient to counteract releasing activity in yeast, in higher eu-

karyotes sororin association with acetylated cohesin during

S phase is necessary to counteract Wapl activity and to maintain

cohesion (Lafont et al., 2010; Nishiyama et al., 2010). Sororin’s

association with chromatin becomes salt-resistant following

replication (Figure S6). We therefore assembled chromatin using

bacterial artificial chromosomes (BACs), which can replicate in

egg extract (Aze et al., 2016), and loaded the hinge crosslinked

cohesin in interphase extracts supplemented with recombinant

sororin. Chromatin pellets were then isolated, subjected to a

salt wash and digested by benzonase. Sororin immunoprecipita-

tion (IP) followed by detection of the associated acetylated Smc3

revealed that, while endogenous Smc3 and the uncrosslinked

recombinant Smc3 were associated with sororin, hinge cross-

linked complexes were not (Figure 7I). If salt-resistant sororin

binding reflects cohesion, then hinge crosslinking would appear

to abrogate cohesion establishment.

DISCUSSION

Re-evaluation of the Ring Model

Elucidation of cohesin’s basic geometry led to the notion that

sister DNAs are held together by co-entrapment inside a

tripartite ring formed by pairwise interactions among Smc1,
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Figure 7. Covalent Closure of Cohesin’s

Hinge Interface Fails to Block Loading

(A) Coomassie-stained gel showing the Xenopus

cohesin tetramer purified from baculovirus-in-

fected Sf-9 cells.

(B) Mock- and Scc2-depleted interphase low-

speed supernatants (LSS) Xenopus egg extracts

were supplemented with the recombinant Xen-

opus tetramer and sperm nuclei and incubated at

23�C for 90 min. The isolated chromatin fraction

and the soluble extracts were analyzed by western

blotting using indicated antibodies.

(C) Recombinant Xenopus tetramer was treated

with TEV protease or buffer for 60 min at 16�C.

The reaction was then mixed with LSS inter-

phase Xenopus egg extracts and treated as

in (B); the chromatin and soluble fractions were

analyzed by western blotting using indicated

antibodies.

(D) LSS interphase extract was treated with either

purified recombinant geminin (60 nM) or buffer for

15 min on ice. The extracts were then supple-

mented with recombinant Xenopus tetramer and

sperm chromatin and treated as in (A). The chro-

matin and soluble fractions were analyzed by

western blotting using indicated antibodies.

(E) Recombinant WT cohesin and cohesin com-

plex containing cysteine substitutions in the hinge

domain (Hinge Cys) were treated with DMSO (–),

125 mM bBBr (+), or 125 mM bBBr with 10 mMDTT

(+/�). Samples were also supplemented with tet-

ramethylrhodamine (TMR) HaloTag ligand and

incubated on ice for 10 min and then run on a

3%–10% gradient gel. The crosslinking efficiency

was quantified via TMR fluorescence.

(F) WT and hinge substituted Xenopus tetramer

was treated with DMSO or bBBr on ice for 10 min,

and excess crosslinker was then quenched by

adding 10 mM DTT. The reactions were then

supplemented with interphase extracts, TMR

ligand, and sperm chromatin and treated as in (B).

The soluble and chromatin fractions were

analyzed by TMR fluorescence and indicated

antibodies.

(G) Crosslinking reactions described in (F) were supplemented with extracts pre-treated with buffer or recombinant geminin and western blots performed as

described in (D).

(H) Hinge substituted cohesin was crosslinked and supplemented with interphase extracts and 3 ng BAC DNA/mL. After a 90 min incubation, chromatin fractions

were isolated, and the chromatin pellets were washed with buffer containing indicated amounts of KCl and analyzed by western blotting.

(I) Hinge substituted Xenopus tetramer was crosslinked and loaded onto chromatin as in (F). The isolated chromatin pellet washed with buffer containing 300mM

KCl. The pellet was then re-suspended in Xenopus B (XB) buffer supplemented with anti-V5 antibody and benzonase (1 U/mL) and incubated at 12�C overnight.

The immunoprecipitates were analyzed by western blot. See also Figure S6.
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Smc3, and Scc1. This is known as the ring model. We

describe here the first systematic attempt to test a key predic-

tion of the ring model, namely, that dimeric DNAs catenated

by cohesin rings in this manner (CDs) should invariably be

found in post-replicative cells that have generated cohesion

while individual DNAs catenated by cohesin rings (CMs)

should always be formed when cohesin is known to load

onto chromosomes.

With the creation of a wide variety of cohesin mutations, this

undertaking had become timely. This approach was both power-

ful and rigorous as only a single counter-example would be suf-

ficient to disprove either hypothesis. Our results reveal a perfect

correlation between formation of CDs and cohesion in vivo.

In contrast, despite a strong correlation between cohesin

loading in vivo and CM formation, our approach revealed a

counter-example, namely, cohesin complexes with multiple mu-

tations (smc1DDsmc3AAA) that reduced the positive charge of

the small lumen within the Smc1/3 hinge. smc1DDsmc3AAA co-

hesin loads onto and moves along chromatin as well if not better

thanWT and yet it largely fails to formCMs. This finding suggests

that when cohesin associates with chromatin without forming

cohesion it can do so in two ways: one involving strict ‘‘topolog-

ical’’ entrapment of individual chromatin fibers within cohesin

rings (as detected by CMs) and another that does not. It seems

implausible to imagine that the non-topological association is an

artifact caused uniquely by smc1DDsmc3AAA. The most parsi-

monious explanation is that WT cohesin uses both non-topolog-

ical and topological modes and that smc1DDsmc3AAA can

perform the former but not the latter. Though proficient in

loading, smc1DDsmc3AAA cohesin cannot support sister chro-

matid cohesion, emphasizing the importance of topological

entrapment for this process.

What is the nature of cohesin’s non-topological association

with chromatin? One possibility is that it involves entrapment

of DNA loops instead of individual DNA segments inside

cohesin rings. If loop extrusion extended such loops sufficiently,

then the non-topological association would still be topological in

nature, though our minichromosome assay would not detect

this. Nevertheless, it is equally possible that the non-topological

mode does not involve any kind of entrapment of DNA within

cohesin rings. It might instead involve association of DNA with

Scc3 bound to Scc1 in manner similar to that observed with

condensin’s Ycg1 subunit (Kschonsak et al., 2017).

Functional Interactions between Cohesin Rings

Our demonstration that WT Scc1 enables a version that cannot

bind Pds5 (Scc1V137K) to form CDs implies that two or more

cohesin rings interact in a functional manner to create cohesive

structures. Complementation between different defective scc1

alleles points to the same conclusion (Eng et al., 2015). If, as

our results suggest, cohesion is mediated by entrapment of sis-

ter DNAs within individual cohesin rings, it is not obvious why an

interaction between rings would be necessary. We cannot at this

juncture exclude the possibility that WT cohesin facilitates CD

formation by V137K cohesin rings merely because the former

hold sister DNAs together. In other words, the suppression of

V137K’s cohesion defect need not imply any direct functional

interaction between WT and mutant rings.

Topological Entrapment, but Not Loading, Requires a

DNA Entry Gate

If cohesion is mediated by co-entrapment, then the cohesin ring

must transiently open up to permit DNA entry. If we assume that

there is only a single-entry gate, then it cannot be situated at

either of the two Smc-Scc1 interfaces because, as we show

here, DNAs still enter cohesin rings containing either Smc3-

Scc1 or Scc1-Smc1 fusion proteins. This leaves the Smc1/3

hinge interface.

Unlike the Smc/kleisin interfaces, it is impossible to block

hinge opening by making gene fusions, and we therefore ad-

dressed the issue using two different approaches. First, it should

be possible to inactivate the gate by mutating residues within it.

We suggest that the simplest explanation for the phenotype of

the smc1DDsmc3AAA hinge allele is that it prevents entrapment,

either by blocking opening or passage of DNA through it. The

second approach involved testing the effect of thiol-specific

crosslinks across the Smc1/3 hinge interface of Xenopus com-

plexes. Consistent with the smc1DDsmc3AAA phenotype, this

had no effect on loading but blocked association between chro-

mosomal cohesin and sororin. If sororin association is a mark of

cohesive complexes, then it would appear that sealing the hinge

interface is sufficient to prevent their formation.

Another important implication of the smc1DDsmc3AAA

phenotype is that the whole notion of a DNA entry gate being

necessary for cohesin loading may be fundamentally miscon-

ceived. If loading is not usually accompanied by DNA’s topolog-

ical entrapment, then there is simply no need for an entry gate.

The Hinge Is Required for Loading, as well as DNA

Entrapment

One of our most unexpected findings is that the hinge has a key

role in loading cohesin onto chromosomes as well as DNA

entrapment. A remarkable aspect of the loading function is its

disruption through substitution by acidic residues of three

highly conserved Smc1 lysine residues inside the hinge’s lumen

(smc1DDD). Because loading is unaffected by mutating two out

three residues, all three must have equivalent roles, including

one, namely, K650, that unquestionably points inside the

hinge’s lumen. Because smc1DDD cohesin forms normal rings

in vivo and is fully active as an ATPase in vitro, we suggest that

its loading defect arises because it fails to execute an action

that normally accompanies the ATP hydrolysis cycle during

the loading process. We therefore propose that the three ly-

sines act through their transient exposure to a negatively

charged substrate, such as DNA. Thus, a change in the hinge’s

conformation may be required for loading as well as DNA

entrapment.

An important clue as to the nature of this change is that

smc1K554D K661D complexes, which behave like WT, are con-

verted to ones that cannot load at all by smc1K650D but to ones

that can load but not entrap by smc3R665A K668A R669A. The

implication is that there is something in common between

the hinge conformational changes necessary for loading and

the process of entrapment. If the latter involves hinge opening,

then the former might involve a more modest change that merely

exposes Smc1K554 K650 K661 to their substrate. We speculate

that, being normally hidden inside the hinge’s lumen, these
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lysines are only exposed to their substrate (possibly DNA) tran-

siently, at a certain stage of the ATP hydrolysis cycle mediated

by Scc2. In other words, the inside surface of the cohesin’s hinge

may act as a DNA binding pocket whose access is regulated by

its ATPase.

We note that the lumen within condensin’s hinge also contains

highly conserved basic residues (Figure S7). One of these corre-

sponds to Smc1K650 (Smc4R806) while the other four are unique

to condensin. A role for Smc hinges in the loading and migration

may therefore apply to all Hawk-containing Smc/kleisin com-

plexes (Wells et al., 2017). This could conceivably extend to

Kite-containing complexes (Palecek and Gruber, 2015). There is

a striking similarity between the phenotype caused by smc1DDD

and thatbyalterations in the lengthofSmccoiledcoils inB.subtilis

(Bürmann et al., 2017). Both affect loading and translocation

withoutadversely affectingATPaseactivity in vitroor indeedasso-

ciation of E1158Q mutation (EQ) complexes with loading sites.

Thus, they are both specifically ‘‘defective in coupling ATP hydro-

lysis to essential DNA transactions on the chromosome’’ (Bür-

mann et al., 2017). It is therefore conceivable that the event that

is disrupted by smc1DDD shares features with that disrupted by

altering the phase of Smc coiled coils in B. subtilis.

If DNAs associate with Scc3 and/or with ATPase heads (Liu

et al., 2016) as well as with Smc1/3 hinges, then ATP-driven

changes in the relative position of hinges and heads could lie

behind cohesin’s ability to move along chromatin. Elucidating

the mechanism by which ATP binding/hydrolysis bring about

conformational changes in the hinge and coiled coils has the po-

tential to reveal the universal enzymatic principle that organizes

chromosomal DNA in most organisms on this planet.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-FLAG Sigma Cat# F1804

Anti-H3 Rob Klose lab N/A

Anti-HA Roche Cat# 11867423001

Anti-MCM7 SantaCruz Cat# 47DC141

Anti-MYC Millipore Cat# 05-419

Anti-Orc2 Julian Blow lab N/A

Anti-Scc1/Rad21 Abcam Cat# ab154769

Anti-Smc3 Bethyl Laboratories Cat# A300-060A

Anti-Smc3AC Katsu Shirahige lab N/A

Anti-Sororin JM Peters lab N/A

Anti-V5 BioRad Cat# MCA1360

Bacterial and Virus Strains

Escherichia coli Rosetta (DE3) pLysS Merck Cat# 70954

MAX Efficiency DH10Bac Competent Cells ThermoFisher Cat# 10361012

Biological Samples

Xenopus egg extracts This study N/A

Chemicals, Peptides, and Recombinant Proteins

Acid-washed glass beads Sigma Cat# G8722

Aphidicolin Sigma Cat# A0781

ATP a-32P Hartmann Analytic Cat# SRP-203

Bismaleimidoethane (BMOE) ThermoFisher Cat# 22323

Calcium ionophore Sigma Cat# A23187

Chorionic gonadotropin Sigma Cat# CG10

Complete EDTA free protease inhibitor cocktail Roche Cat# 4693132001

Dibromobimane (bBBr) Sigma Cat# 34025

Dithiothreitol Fluka Cat# BP172

DMSO Sigma Cat# D8418

Immobilon Western ECL Millipore Cat# WBLKS0500

Indole-3-acetic acid (auxin) Sigma Cat# I3750-5G-A

Nocodazole Sigma Cat# M1404

PMSF Sigma Cat# 329-98-6

Potassium chloride Sigma Cat# P5405

Proteinase K Roche Cat# 03115836001

RNase A Roche Cat# 10109169001

Sodium sulfite Sigma Cat# 71988

TMR ligand Promega Cat# G8251

Trisodium citrate Sigma Cat# W302600

VectaShield with DAPI Vector Labs Cat# H-1200

a-factor peptide CRUK Peptide Synthesis

Service

N/A

Human geminin Costanzo Lab N/A

Saccharomyces cerevisiae cohesin This study N/A

Saccharomyces cerevisiae cohesin hinge domain This study N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Saccharomyces cerevisiae Scc2 This study N/A

Xenopus laevis cohesin tetramer This study N/A

Critical Commercial Assays

AxyPrep Mag PCR Clean up Kit Appleton Woods Cat# AX402

ChIP Clean and Concentrator Kit Zymo Research Cat# D5205

E-Gel SizeSelect II Agarose Gels, 2% ThermoFisher Cat# G661012

EnzChek phosphate assay kit Invitrogen Cat# E6646

HiTrap TALON column GE Healthcare Cat# 28-9537-67

Library Quantification Kit Ion Torrent Platforms KAPA Biosystems Cat# KR0407

Microcon YM-100 columns Sigma Cat# Z648094

NEBNext Fast DNA library prep set for Ion Torrent NEB Cat# E6270L

NuPAGE 3-8% Tris-Acetate Protein Gels, 1.5 mm, 10-well ThermoFisher Cat# EA0378BOX

NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 mm, 10-well ThermoFisher Cat# NP0321BOX

Prime-it II Random Primer Labeling Kit Agilent Cat# 300385

Protein G dynabeads ThermoFisher Cat# 10003D

Slide-a-lyzer dialysis units (3.5kDa) ThermoFisher Cat# 66330

StrepTrap HP column GE Healthcare Cat# 28-9075-48

Superdex 200 16/60 GL GE Healthcare Cat# 17-1069-01

Superose 6 10/300 GL GE Healthcare Cat# 17517201

TALON Superflow metal affinity resin Clontech Cat# 635670

Deposited Data

GEO accession number This study GEO: GSE105005

Experimental Models: Cell Lines

Sf9 cells in Sf-900 II SFM ThermoFisher Cat# 11496015

Experimental Models: Organism/Strains

Xenopus laevis females Nasco LM00535MX

Xenopus laevis males Nasco LM00715MX

S. cerevisiae MATa ade2-1 trp1-1 can1-100 leu2-3,112

his3-11,15 ura3 GAL psi+ All following strains are based on

this background

This study K699

S. cerevisiae MATa smc1::kanMX4 ura3::smc1(K554D,

K661D)-pk12

Kurze et al., 2011 K15322

S. cerevisiae Mata smc1::kanMX4 ura3::SMC1-pk12 Kurze et al., 2011 K15324

S. cerevisiae Mata smc1::kanMX4 ura3::SMC1(K650D,

K661D)-pk12

Kurze et al., 2011 K15326

S. cerevisiae Mat a smc1::HIS leu2::smc3(R665A,

K668A, K669A)-HA3::LEU2 ura3::smc1(K554D, K661D)-

myc9::URA3

Kurze et al., 2011 K15424

S. cerevisiae Mat a smc1::HIS leu2::SMC3-HA3::LEU2

ura3::SMC1-myc9::URA3

Kurze et al., 2011 K15426

S. cerevisiae MATa/a SMC1-EGFP::HIS3 Mtw1-

RFP::KanMX ADE2

This study K17660

S. cerevisiae MATa/a SCC1-EGFP::HIS3 Mtw1-

RFP::KanMX ADE2

This study K18194

S. cerevisiae MATa smc1(G22C,K639C)::NatMX4 smc3(E570C,

S1043C)::ADE2 scc1(A547C)-PK6::KanMX rad61::hphMX4

leu2::Gal1p-Sic1(9 m)/His3p-Gal1/His3p-Gal2/Gal1p-Gal4

(single copy) 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K23451

S. cerevisiae MATa eco1-1(G211H) smc1(G22C,K639C)::

NatMX4 smc3(E570C,S1043C)::ADE2 scc1(A547C)-PK6::

KanMX rad61::hphMX4 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K23578

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

S. cerevisiae MATa eco1-1(G211H) smc1(G22C,K639C)::NatMX4

smc3(E570C,S1043C)::ADE2 scc1(A547C)-PK6::KanMX 2.3 kb

Trp1-ARS1-Cen4 plasmid

This study K23579

S. cerevisiae MATa Scc1-PK9::KanMX

smc1(G22C,K639C)::NatMX4,

smc3(E570C,S1043C)::ADE2 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K23644

S. cerevisiae MATa scc1(A547C)-PK6::KanMX smc3(E570C,

S1043C)::ADE2 smc1(G22C,K639C)::NatMX 2.3 kb

Trp1-ARS1-Cen4 plasmid

This study K23889

S. cerevisiae MATa smc3(E570C,S1043C)::ADE2 smc1(G22C,

K639C)::NatMX leu2::Gal1p-Sic1(9 m)/His3p-Gal1/His3p-Gal2/

Gal1p-Gal4 (single copy) 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K23890

S. cerevisiae MATa SCC1-PK9::KanMX smc3(E570C,S1043C)::

ADE2 smc1(G22C,K639C)::NatMX leu2::Gal1p-Sic1(9 m)/His3p-

Gal1/His3p-Gal2/Gal1p-Gal4 (single copy) 2.3 kb Trp1-ARS1-

Cen4 plasmid

This study K23971

S. cerevisiae MATa scc1(A547C)-PK6::KanMX smc3(E570C,

S1043C)::ADE2 smc1(G22C,K639C)::NatMX leu2::Gal1p-Sic1

(9 m)/His3p-Gal1/His3p-Gal2/Gal1p-Gal4 (single copy)

2.3 kb Trp1-ARS1-Cen4 plasmid

This study K23972

S. cerevisiae MATa scc1(A547C)-PK6::KanMX smc3(E570C,

S1043C)::ADE2 smc1(G22C,K639C)::NatMX pds5::HIS3 pds5-

101::LEU2 2.3kb Trp1-ARS1-Cen4 plasmid

This study K24030

S. cerevisiae MATa scc1(A547C)-PK6::KanMX smc3(E570C,

S1043C)::ADE2 smc1(G22C,K639C)::NatMX cdc4-1::HIS3

2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24087

S. cerevisiae scc1(A547C)::His3MX6 smc3(S1043C,E570C)-

PK6::URA3 smc1(G22C,K639C)::NatMX 2.3 kb Trp1-ARS1-

Cen4 plasmid

This study K24173

S. cerevisiae scc1(A547C)::His3MX6 smc3(E1155Q,S1043C,

E570C)-PK6::URA3 smc1(G22C,K639C)::NatMX 2.3 kb Trp1-

ARS1-Cen4 plasmid

This study K24174

S. cerevisiae scc1(A547C)::His3MX6 smc3(K38I,S1043C,

E570C)-PK6::URA3 Smc1(G22C,K639C)::Nat 2.3 kb Trp1-

ARS1-Cen4 plasmid

This study K24175

S. cerevisiae MATa Smc3(E570C,S1043C)::ADE2

Smc1(G22C,K639C)::NatMX4 URA3::Pscc1-SCC1(A547C)-

Pk9 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24205

S. cerevisiae MATa Scc1(A547C)-pk6::KanMX Smc3(E570C,

S1043C)::ADE2 Smc1(G22c,K639C)::NatMX scc2-45::natMX

(L545P D575G) 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24267

S. cerevisiae MATa Scc1(A547C)::His3MX6 URA3::SMC1(G22C,

K639C)-PK12 Smc3(E570C,S1043C)::ADE2 2.3 kb Trp1-ARS1-

Cen4 plasmid

This study K24327

S. cerevisiae Tetraploid Smc3(E570C,S1043C)::ADE2 x4 Smc1

(G22c,K639C)::NatMX x4 Scc1 x3 Scc1(A547C)-PK6::KanMX

2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24560

S. cerevisiae Tetraploid Smc3(E570C,S1043C)::ADE2 x4

Smc1(G22c,K639C)::NatMX x4 Scc1(A547C) x3 Scc1(A547C)-

PK6::KanMX 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24561

S. cerevisiae Mata Smc1(G22C,K639C)::NatMX4 Smc3(E570C,

S1043C)::ADE2 leu2::Gal-Scc1(R180E,R268D,A547C)-PK6

2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24695

S. cerevisiae MATa Smc1(G22C,K639C)::NatMX4 Smc3(E570C,

S1043C)::ADE2 leu2::Gal-Scc1(R180E,R268D,A547C)-PK6

scc3(K404E)-HA3::HIS3 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24697

(Continued on next page)
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S. cerevisiae MATa Smc1(G22C,K639C)::NatMX4 ura3::Scc1P-

Smc3(E570C)-TEV3-Scc1(A547C)-PK9::KanMX (single integrant,

fusion linker: (GGGGS)x8+TEV3) 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K24838

S. cerevisiae MATa Smc1(G22C,K639C)::NatMX4 Smc3(E570C,

S1043C)::ADE2 Scc1(A547C)-PK6::KanMX rad61::hphMX4

eco1::HIS3 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K25287

S. cerevisiae MATa Scc2-PK6::KANMX6 URA3::smc1

(E1158Q)-myc9

This study K25646

S. cerevisiae MATa scc1::NatMX4 smc1::KANMX4 Smc3(E570C,

S1043C)::ADE2 Leu2::Scc1p-PK3-Scc1-(GGGGSx13+3xTEV)-

Smc1(K649C) 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K25696

S. cerevisiae MATa Smc3(E570C,S1043C)::HIS3MX6 Scc1

(A547C)-PK6::KanMX ura3::Smc1(G22C,K639C)-MYC9 2.3 kb

Trp1-ARS1-Cen4 plasmid

This study K26210

S. cerevisiaeMATa smc3(R665A,K668A,R669A,E570C,S1043C)::

HIS3MX6 Scc1(A547C)-PK6::KanMX ura3::smc1(G22C,K554D,

K639C,K661D)-Myc9 2.3 kb Trp1-ARS1-Cen4 plasmid

This study K26215

S. cerevisiae MATa Smc1(G22C,K639C)::NatMX4 Smc3(E570C,

S1043C)::ADE2 ura3::Pscc1-scc1(A547C,V137K)-PK9 2.3 kb

Trp1-ARS1-Cen4 plasmid

This study K26413

S. cerevisiae MATa Smc1(G22C,K639C)::NatMX4 Smc3(E570C,

S1043C)::ADE2 scc1(S525N)::His3MX6 (scc1-73) ura3::Pscc1-

SCC1(A547C,V137K)-PK92.3 kb Trp1-ARS1-Cen4 plasmid

This study K26591

S. cerevisiae MATa Smc1(G22C,K639C)::NatMX4

Smc3(E570C,S1043C)::ADE2 URA3::Pscc1-SCC1(A547C)-Pk9

scc1(S525N)::His3MX6 (scc1-73) 2.3 kb Trp1-ARS1-Cen4

plasmid

This study K26600

S. cerevisiae MATa Scc1(A547C)::His3MX6 URA3::smc1(G22C,

K554D,K639C,K650D,K661D)-PK12

This study K26610

S. cerevisiae MATa smc1(K661D,K554D) Trp1::smc3(R665A,

K668A,R669A)-HA3 smc3-3slAA::KanMX ura3::OSTIR1-2-9MYC

This study K26611

S. cerevisiae mata/a ADE2/ADE2 Mtw1-RFP::KanMX/Mtw1-

RFP::KanMX smc3(R665A,K668A,R669A)/smc3(R665A,

K668A,R669A) ura3::smc1(K554D,K661D)-EGFP/ura3::smc1

(K554D,K661D)-EGFP

This study K26700

S. cerevisiae MATa ura3::smc1(K554D,K650D,K661D)-PK12 This study K26756

S. cerevisiae MATa, ura3::Smc1(K554D, K650D, K661D)-

PK12::URA3

This study K26756

S. cerevisiae Mat a smc3(R665A, K668A, R669A) ura3::smc1

(K554D, K650D, K661D)-PK12::URA3

This study K26757

S. cerevisiae Mat a SMC3-3slAA::KAN ura3::OSTIR1-2-

9MYC::URA3

This study K26767

S. cerevisiae Mata SMC3-3sIAA::KanMX ura3::OSTIR1-2-9MYC

trp1::SMC3-HA

This study K26797

S. cerevisiae MATa ura3::Smc1-Myc9 Scc2-PK6::KANMX6 This study K26839

S. cerevisiae MATa ura3::smc1(K554D,K650D,K661D,E1158Q)-

Myc9 Scc2-PK6::KANMX6

This study K26840

Recombinant DNA

pAceBac1 6His-GFP-(D1-132)Scc2-Strep This study N/A

pAceBac1 6His-SMC1 SMC3 Petela et al., 2017 N/A

pAceBac1 6His-SMC1(K554D, K650D, K661D) SMC3 This study N/A

pAceBac1 6His-SMC1(K554D, K661D)

SMC3(R665A,K668A,R669A)

This study N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kim A.

Nasmyth (ashley.nasmyth@bioch.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast cell culture

All strains are derivatives of W303 (K699). Strain numbers and relevant genotypes of the strains used are listed in the Key Resource

Table. Cells were cultured at 25�C in YEP medium with 2% glucose unless stated otherwise. To arrest the cells in G1, a-factor was

added to a final concentration of 2 mg/L, every 30 min for 2.5 h. Cells were released from G1 arrest by filtration wherein cells were

captured on 1.2 mm filtration paper (Whatman� GE Healthcare), washed with 1 L YEPD and resuspended in the appropriate fresh

media. To inactivate temperature sensitive alleles, fresh media was pre-warmed prior to filtration (Aquatron, Infors HT).

To arrest cells in G2, nocodazole (Sigma) was added to the fresh media to a final concentration of 10 mg/mL and cells were incu-

bated until the synchronization was achieved (> 95% large-budded cells).

Cells were arrested in late G1 by galactose-induced overexpression of a non-degradable mutant of the Sic1 protein (mutation of 9

residues phosphorylated by Cdk1). To achieve this, cells were grown in YEP supplemented with 2% raffinose and arrested in G1 as

described above. 1 h before release from G1 arrest, galactose was added to 2% of the final concentration. Cells were released into

YEPD as described above, and incubated for 60 min at 25�C.

For auxin induced degradation of proteins, cells were arrested in G1 as above and 1 h prior to release auxin (indole-3-acetic acid

sodium salt; Sigma) was added to a final concentration of 1 mM. Cells were released from G1 arrest into YEPD medium containing

1 mM auxin and 10 mg/mL nocodazole.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pET28 SMC3 hinge (494-705, E570C), SMC1 hinge (486-696,

K554D, K650D, K661D)-His6

This study N/A

pET28 SMC3 hinge (494-705, E570C), SMC1 hinge (486-696,

K639C)-His6

Haering et al., 2008 N/A

pET28 SMC3 hinge (494-705, E570C), SMC1 hinge

(486-696)-His6

Haering et al., 2008 N/A

piDC SCC1-twinstrep SCC3 Petela et al., 2017 N/A

pFastBac Dual XSCC1-TEV XSA1 This study N/A

pFastBac Dual XSMC3-HALO XSMC1 This study N/A

pMAL MBP-SMC1 hinge (503-681, K639C)-His6 This study N/A

Software and Algorithms

Galaxy platform Giardine et al., 2005 https://usegalaxy.org

FastQC Galaxy tool version 1.0.0 https://usegalaxy.org

Trim sequences Galaxy tool version 1.0.0 https://usegalaxy.org

Filter FASTQ Galaxy tool version 1.0.0 https://usegalaxy.org

Bowtie2 Langmead and Salzberg,

2012; Galaxy tool version 0.2

https://usegalaxy.org

Bam to BigWig Galaxy tool version 0.1.0 https://usegalaxy.org

Samtools Li et al., 2009 http://samtools.sourceforge.net/

IGB browser Nicol, Helt, Blanchard, Raja, &

Loraine, 2009

http://bioviz.org/igb/

Filter SAM or BAM Li et al., 2009 Galaxy tool

version 1.1.0

https://usegalaxy.org

chr_position.py This study https://github.com/naomipetela/

nasmythlab-ngs

filter.py This study https://github.com/naomipetela/

nasmythlab-ngs

bcftools call Li et al., 2009 N/A
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Xenopus laevis frogs

Eggs derived from Xenopus laevis frogs were used as experimental model system. Collection of eggs from the female frogs was per-

formed in a non-invasive way following chorionic gonadotropin (Sigma, CG10) injections. Occasional surgical procedures were per-

formed on themale frogs to harvest sperm nuclei. Experimental protocols were approved by IFOMAnimalWelfare committee and the

Italian Ministry of Health. The number of animals used was kept to a minimum and was calculated taking into account the number

eggs required to obtain the cytoplasmic extract needed for the experiments described.

The animals were kept in highly regulated and monitored conditions with room and water temperature at 19�C. Basic husbandry

requirements were provided by the IFOM Xenopus facility.

METHOD DETAILS

In vivo chemical crosslinking

Strains were grown in YEPD at 25�C to OD600nm = 0.5-0.6. 12 OD units were washed in ice-cold PBS and re-suspended in 1 mL ice-

cold PBS. The suspensions were then split into 2 3 500 mL and 20.8 mL BMOE (stock: 125 mM in DMSO, 5 mM final) or DMSO was

added for 6 min on ice. Cells were washed with 2 3 2 mL ice-cold PBS containing 5 mM DTT, resuspended in 500 mL lysis buffer

(25 mM HEPES pH 8.0, 50 mM KCl, 50 mM MgSO4, 10 mM trisodium citrate, 25 mM sodium sulfite, 0.25% triton-X, freshly supple-

mented with Roche Complete Protease Inhibitors (2X) and PMSF (1 mM), lysed in a FastPrep-24 (MP Biomedicals) for 3 3 1 min at

6.5m/s with 500 mL of acid-washed glass beads (425-600 mm, Sigma) and lysates cleared (5min, 12 kg). Protein concentrations were

adjusted after Bradford assay and cohesin immuno-precipitated using anti-PK antibody (AbD Serotec, 1 h, 4�C) and protein G dy-

nabeads (1 h, 4�C, with rotation). Beads were washed with 23 1mL lysis buffer, resuspended in 50 mL 2x sample buffer, incubated at

95�C for 5 min and the supernatant loaded onto a either 3%–8% Tris-acetate or 4%–12% Bis-Tris gradient gels (Life Technologies).

Minichromosome IP

Strains containing a 2.3 kb circular minichromosome harboring the TRP1 gene were grown overnight in –TRP medium at 25�C and

sub-cultured in YEPD medium for exponential growth (OD600nm = 0.6). 30 OD units were washed in ice-cold PBS and processed for

in vivo crosslinking as described above with the following modification: after cohesin immuno-precipitation protein G dynabeads

were washed with 2 3 1 mL lysis buffer, resuspended in 30 mL 1% SDS with DNA loading dye, incubated at 65�C for 4 min and

the supernatant run on a 0.8% agarose gel containing ethidium bromide (1.4 V/cm, 22h, 4�C). After Southern blotting using alkaline

transfer, bands were detected using a 32-P labeled TRP1 probe.

Calibrated ChIP-sequencing

Cells were grown exponentially to OD600 = 0.5 and the required cell cycle stage where necessary. 15 OD600nm units of S. cerevisiae

cells were then mixed with 5 OD600nm units of C. glabrata to a total volume of 45 mL and fixed with 4 mL of fixative (50 mM Tris-HCl,

pH 8.0; 100 mM NaCl; 0.5 mM EGTA; 1 mM EDTA; 30% (v/v) formaldehyde) for 30 min at room temperature (RT) with rotation.

The fixative was quenched with 2 mL of 2.5 M glycine (RT, 5 min with rotation). The cells were then harvested by centrifugation at

3,500 rpm for 3 min and washed with ice-cold PBS. The cells were then resuspended in 300 mL of ChIP lysis buffer (50 mM HEPES-

KOH, pH 8.0; 140 mM NaCl; 1 mM EDTA; 1% (v/v) Triton X-100; 0.1% (w/v) sodium deoxycholate; 1 mM PMSF; 2X Complete pro-

tease inhibitor cocktail (Roche)) and an equal amount of acid-washed glass beads (425-600 mm, Sigma) added before cells were

lysed using a FastPrep�-24 benchtop homogenizer (M.P. Biomedicals) at 4�C (3 3 60 s at 6.5 m/s or until > 90% of the cells

were lysed as confirmed by microscopy).

The soluble fraction was isolated by centrifugation at 2,000 rpm for 3min then sonicated using a bioruptor (Diagenode) for 30min in

bursts of 30 s on/30 s off at high level in a 4�C water bath to produce sheared chromatin with a size range of 200-1,000 bp. After

sonication the samples were centrifuged at 13,200 rpm at 4�C for 20 min and the supernatant was transferred into 700 mL of ChIP

lysis buffer. 30 mL of protein G Dynabeads (Invitrogen) were added and the samples were pre-cleared for 1 h at 4�C. 80 mL of the

supernatant was removed (termed ‘whole cell extract [WCE] sample’) and 5 mg of antibody (anti-PK (Bio-Rad) or anti-HA (Roche))

was added to the remaining supernatant which was then incubated overnight at 4�C. 50 mL of protein G Dynabeads were then added

and incubated at 4�C for 2 h before washing 2x with ChIP lysis buffer, 3x with high salt ChIP lysis buffer (50 mMHEPES-KOH, pH 8.0;

500 mM NaCl; 1 mM EDTA; 1% (v/v) Triton X-100; 0.1% (w/v) sodium deoxycholate; 1 mM PMSF), 2x with ChIP wash buffer (10 mM

Tris-HCl, pH 8.0; 0.25 M LiCl; 0.5% NP-40; 0.5% sodium deoxycholate; 1 mM EDTA; 1 mMPMSF) and 1x with TE pH7.5. The immu-

noprecipitated chromatin was then eluted by incubation in 120 mL TES buffer (50 mM Tris-HCl, pH 8.0; 10 mM EDTA; 1% SDS) for

15 min at 65�C and the collected supernatant termed ‘IP sample’. The WCE samples were mixed with 40 mL of TES3 buffer (50 mM

Tris-HCl, pH 8.0; 10 mM EDTA; 3% SDS) and all samples were de-crosslinked by incubation at 65�C overnight. RNA was degraded

by incubation with 2 mL RNase A (10mg/mL; Roche) for 1 h at 37�C and protein was removed by incubation with 10 mL of proteinase K

(18 mg/mL; Roche) for 2 h at 65�C. DNA was purified using ChIP DNA Clean and Concentrator kit (Zymo Research).

Preparation of sequencing libraries

Sequencing libraries were prepared using NEBNext� Fast DNA Library Prep Set for Ion Torrent Kit (New England Biolabs) according

to the manufacturer’s instructions. Briefly, 10-100 ng of fragmented DNAwas converted to blunt ends by end repair before ligation of
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the Ion Xpress Barcode Adaptors. Fragments of 300 bp were then selected using E-Gel� SizeSelect 2% agarose gels (Life Technol-

ogies) and amplified with 6-8 PCR cycles. The DNA concentration was then determined by qPCR using Ion Torrent DNA standards

(Kapa Biosystems) as a reference. 12-16 libraries with different barcodes could then be pooled together to a final concentration of

350 pM and loaded onto the Ion PI V3 Chip (Life Technologies) using the Ion Chef (Life Technologies). Sequencing was then

completed on the Ion Torrent Proton (Life Technologies), typically producing 6-10million reads per library with an average read length

of 190 bp.

Data analysis, alignment, and production of BigWigs

Unless otherwise specified, data analysis was performed on the Galaxy platform (Giardine et al., 2005). Quality of reads was as-

sessed using FastQC (Galaxy tool version 1.0.0) and trimmed as required using ‘trim sequences’ (Galaxy tool version 1.0.0). Gener-

ally, this involved removing the first 10 bases and any bases after the 200th, but trimming more or fewer bases may be required to

ensure the removal of kmers and that the per-base sequence content is equal across the reads. Reads shorter than 50 bp were

removed using Filter FASTQ (Galaxy tool version 1.0.0, minimum size: 50, maximum size: 0, minimum quality: 0, maximum quality: 0,

maximum number of bases allowed outside of quality range: 0, paired end data: false) and the remaining reads aligned to the neces-

sary genome(s) using Bowtie2 (Galaxy tool version 0.2) with the default (–sensitive) parameters (mate paired: single-end, write

unaligned reads to separate file: true, reference genome: SacCer3 or CanGla, specify read group: false, parameter settings: full

parameter list, type of alignment: end to end, preset option: sensitive, disallow gaps within n-positions of read: 4, trim n-bases

from 50 of each read: 0, number of reads to be aligned: 0, strand directions: both, log mapping time: false).

To generate alignments of reads that uniquely align to the S. cerevisiae genome, the reads were first aligned to the C. glabrata

(CBS138, genolevures) genome with the unaligned reads saved as a separate file. These reads that could not be aligned to the

C. glabrata genome were then aligned to the S. cerevisiae (sacCer3, SGD) genome and the resulting BAM file converted to BigWig

(Galaxy tool version 0.1.0) for visualization. Similarly, this process was done with the order of genomes reversed to produce align-

ments of reads that uniquely align to C. glabrata.

Visualization of ChIP-seq profiles

The resulting BigWigs were visualized using the IGB browser (Nicol et al., 2009). To normalize the data to show quantitative ChIP

signal the track was multiplied by the samples’ occupancy ratio (OR) and normalized to 1 million reads using the graph multiply func-

tion. In order to calculate the average occupancy at each base pair up to 60 kb around all 16 centromeres, the BAM file that contains

reads uniquely aligning to S. cerevisiaewas separated into files for each chromosome using ‘Filter SAM or BAM’ (Galaxy tool version

1.1.0). A pileup of each chromosome was then obtained using samtools mpileup (Galaxy tool version 0.0.1) (source for reference list:

locally cached, reference genome: SacCer3, genotype likelihood computation: false, advanced options: basic). These files were then

amended using our own script (chr_position.py) to assign all unrepresented genome positions a value of 0. Each pileup was then

filtered using another in-house script (filter.py) to obtain the number of reads at each base pair within up to 60 kb intervals either

side of the centromeric CDEIII elements of each chromosome. The number of reads covering each site as one successively moves

away from these CDEIII elements could then be averaged across all 16 chromosomes and calibrated by multiplying by the samples’

OR and normalizing to 1 million reads.

Live-cell imaging

Exponentially growing cells were placed on 2.5% agarose pads made of synthetic complete medium containing glucose. Live cell

imaging was performed under a spinning disk confocal system (PerkinElmer UltraVIEW) with an EMCCD camera (Hamamatsu)

mounted on an Olympus IX81 microscope with Olympus 100x 1.35N.A. objectives. Image acquisition was done at 25�C. Seventeen

to twenty-one Z stacking images were acquired and image deconvolution was done by using Volocity software with 7 iterations and

95% confidence. Fresh samples were prepared every 10 min.

Chromosome spreads

Chromosome spreads were done according to a protocol described (Shen and Skibbens, 2017): Cells were fixed with 4% parafor-

maldehyde for 90 min at 25�C. Cells were washed 3 times with distilled water and resuspended in spheroplast buffer (1M sorbitol,

20 mM KPO4, pH7.4), then spheroplasted by adding b-mercaptoethanol (1/50 volume) and zymolyase T100 (stock: 10 mg/mL;

1/100 volume) and incubating for 1 h at 25�C. Spheroplasts were pelleted and resuspended in 1.5 pellet volume of spheroplast buffer

with 0.5% Triton X-100. 10 mL of the cell suspension were added to each well on poly-L-ysine coated slides, set at room temperature

for 10min. After removing the liquid from the wells by gentle pipetting 20 mL of 0.5%SDSwas added to eachwell and set for 10min at

room temperature. After gentle aspiration the slides were air-dried. The attached spheroplasts were then dehydrated by immersing

the slides in fresh methanol/acetic acid (3:1) for 5 min at room temperature. Slides were stored at 4�C until completely dry, then

treated with RNase A (100 mg/ml) in 2xSSC buffer (0.3 M NaCl, 30 mM sodium Citrate, pH7.0) for 1 h at 37�C. Slides were washed

4 times in fresh 2xSSC (2min/per wash), then subjected to a series of cold (�20�C) ethanol washes (start with 70%, followed by 80%,

95% ethanol washes, 2 min/per wash), and air-dried. Slides were pre-warmed to 37�C, then put into denaturing solution (70% form-

amide, 2xSSC) at 72�C for 2 min, and immediately subjected to a series of cold (�20�C) ethanol washes (start with 70%, followed by

80%, 90%, 100% ethanol washes, 1 min/per wash), and air-dried. Slides were mounted with VectaShield mounting medium (Vector
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Laboratories) and observed under a Zeiss LSM780 confocal microscope equipped with a 100x Plan-Apochromat 1.4NA oil immer-

sion objective lens (Carl Zeiss).

Protein purification

Hinge domains

E. coli Rosetta (DE3) pLysS (Stratagene) were transformed with pET vectors expressing the cohesin hinge domains. The expression

was induced at OD600 = 0.6 with 1mM IPTG at 18�C overnight. The cells were pelleted and re-suspendd with TAP buffer (50 mMTris–

HCl, 250 mM NaCl, 1 mM b-mercaptoethanol, pH 7.5), freshly supplemented with EDTA-free protease inhibitor cocktail tablets

(Roche). After re-suspension, the cells were lysed with the French press (Constant Systems) at 18 kPsi followed by 1 min sonication

at 80% AMPL (Sonics Vibra-Cell). The cell lysate was cleared by centrifugation at 80,000 g for 30 min at 4�C (Beckman Coulter, rotor

JLA-16.250). The cleared lysate was incubated with Talon Superflow beads (Clontech) for 2 h at 4�C. Beads were washed 3 times

with TAP buffer containing 10 mM imidazole. Proteins were eluted in TAP buffer with 500 mM imidazole and loaded onto a Superdex

200 16/60 chromatography column (GE Healthcare) equilibrated with TAP buffer (50 mM Tris–HCl, 100 mM NaCl, 1 mM b-mercap-

toethanol, pH 7.5). Peak fractions were collected and concentrated using Vivaspin columns (Sartorius Stedim Biotech).

Xenopus proteins

Xenopus Smc1 and Smc3 genes were cloned into pFastBac Dual vector (Invitrogen). A C-Terminal tag consisting 2xFLAG and HALO

was fused to XSmc3. XSA1 and XRad21 genes were cloned into pFastBac Dual vector. XRad21 was cloned with His8 tag in the

C terminus. 3xTEV sites were introduced into a proline-rich region in XRad21 after P465. Baculoviruses for protein expression in

Sf9 cells were generated according to the Bac-to-Bac baculovirus expression system protocol (Invitrogen/Thermo Scientific).

Approximately 72 h after baculovirus addition, insect cells were harvested, washed in PBS, frozen in liquid nitrogen and stored

at �80�C. All subsequent steps were performed on ice or at 4�C. Cells were lysed by thawing and dounce homogenizing in buffer

A500 (25 mM KH2PO4 pH 7.5, 500 mM KCl, 5% v/v glycerol, 2 mM MgCl2), 20 mM b-mercaptoethanol, 0.05% v/v Tween-20,

0.5 mg/ mL PMSF and complete protease inhibitor (Roche). After lysis, an equal volume of buffer A0 (buffer A500 lacking KCl)

was added to the lysate and centrifuged at 75,000g for 40 min. The clarified lysate was filtered through a 0.45 mm filter and cohesin

purified in the AKTA system using a 5 mL (HisTrap) TALON column (VWR). The column was washed with 20 column volumes of

buffer B (20 mM Tris PH7.5, 250 mM NaCl, 5% glycerol) and eluted over a linear gradient of 0-500 mM imidazole. The peak fractions

containing the cohesin tetramer were pooled and incubated with anti-FLAG-M2 resin (Sigma) for 3 h at 4�C. The beads were pelleted

and washed with EB buffer (100 mM KCl, 2.5 mMMgCl2 and 50 mMHEPES-KOH pH 7.5) and eluted in EB buffer with FLAG peptide

containing 10% glycerol and 5 mM DTT. The eluted protein was passed through a Superose6 column (GE Healthcare) equilibrated

with EB buffer containing 10% glycerol. Peak fractions were collected and stored in aliquots at �80�C.

Xenopus extracts and chromatin isolation

S phase extract capable of performing a single round of replication was prepared as previously described (Aze et al., 2016). Briefly,

Xenopus eggs were collected in MMR buffer (5 mM K-HEPES pH7.5, 100 mM NaCl, 0.5 mM KCl, 0.25 mM MgSO4, 0.5 mM CaCl2,

25 mM EDTA) from chorionic gonadotropin injected female frogs. The eggs were de-jellied in 10 mM Tris pH8.0, 110 mM NaCl and

5mMDTT and rinsed three times inMMR. De-jellied eggs were released in interphase in presence of 5 mMcalcium ionophore (Sigma)

for 5-6 min, washed three times with MMR and rinsed twice in ice-cold S-buffer (50 mMK-HEPES pH7.5, 50mMKCl, 2.5 mMMgCl2,

250mM sucrose, 2 mM b-mercaptoethanol). Activated eggs were then packed by centrifugation at 1,200 rpm for one minute and the

excess of buffer was discarded. Eggs were crushed at 13,000 rpm for 12min at 4�C. The crude extract was collected and centrifuged

at 70,000 rpm for 12 min at 4�C in a TLA100 rotor (Beckman). The interphase extract was obtained by collecting and mixing the

cleared cytoplasmic fraction with the nuclear membranes. For sperm nuclei preparation 4 testes were removed from 2 male frogs

and placed in Petri dishes containing 10 mL EB buffer (50 mM KCl, 50 mM HEPES KOH pH7.6, 5 mM MgCl2, 2 mM DTT). Testes

were finely chopped with razor blade. The material was then transferred to a 15 mL Falcon tube and spun at 2,000 x g, in a swinging

bucket rotor for 5 min at 4�C. The pellet was resuspended in a total volume of 2 mL of room temperature SuNaSp buffer (0.25 M su-

crose, 75 mM NaCl, 0.5 mM spermidine, 0.15 mM spermine). To remove membranes 100 mL of 2 mg/ml lysolecithin (Sigma) were

added and incubated for 10 min at room temperature. Reaction was stopped by adding 3% BSA (Sigma). The pellet was resus-

pended again in 2 mL EB and spun at 2,000 g for 5 min at 4�C. The final pellet was resuspended in 400 mL EB + 30% glycerol.

For BACs preparation RP11-1151L10 BAC was purchased from http://bacpac.chori.org/home.htm. The BAC DNA was isolated

from bacteria using QIAGEN Plasmid Maxi Kit. The DNA was resuspended in a solution of 50% CsCl supplemented with

12.5 ng/ml of ethidum bromide and centrifuged for 20 h at 60,000 rpm in a 70.1 Ti rotor (Beckman). Formation of a continuous

CsCl gradient allowed the precise recovering of the supercoiled DNA from the nicked, linear or broken DNA. Removal of ethidium

bromide from DNA was performed using butanol and the DNA was finally dialyzed overnight in TE buffer (10mM Tris HCl pH8.0,

1mM EDTA). BACs DNA (3 to 10 ng/ml) was added to egg extracts and incubated 90 min. Where necessary, geminin was used at

a concentration of 60 nM.

To isolate LSS extract assembled chromatin, samples were diluted in ten volumes of EB buffer (100 mM KCl, 2.5 mM MgCl2 and

50 mM HEPES-KOH pH 7.5) containing 0.25% Nonidet P-40 and centrifuged through a 30% sucrose (in EB) layer at 10,000 rpm for
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5 min at 4�C using a HB-6 rotor (Sorvall), washed twice with 500 mL EB buffer and centrifuged at 10,000 rpm for 1 min. The pellet was

resuspended in Laemmli loading buffer and the proteins resolved by either 4%–15%, 7.5% or 10% SDS-PAGE and analyzed by

western blotting with specific antibodies as indicated.

Immuno-depletion of extracts

Protein A Dynabeads were pre-incubated overnight at 4�Cwith anti-Scc2 rabbit antiserum or pre-immune rabbit serum. To immuno-

deplete XScc2 from the extracts, 0.5 mL extracts were incubated with antibody-bound Dynabeads for 1 h at 25�C. To fully deplete

Scc2 four rounds of depletion were required.

ATPase assay

ATPase activity wasmeasured by using the EnzChek phosphate assay kit (Invitrogen) by following the protocol as provided. Cohesin

tetramer (Smc1, Smc3, Scc1 and Scc3; final concentration: 50 nM, final NaCl concentration: 50mM)was added together with a 40 bp

long double stranded DNA (700 nM). The reaction was started with addition of ATP to a final concentration of 1.3 mM (final reaction

volume: 150 ml). After completion, a fraction of each reaction was run on SDS-PAGE and the gel stained with Coomassie brilliant blue

in order to test that the complexes were intact throughout the experiment and that equal amounts were used when testing various

mutants and conditions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Southern Blotting

After hybridization, Southern blots were exposed to phosphorimager screens (Fuji) and scanned with an FLA7000 scanner (Fuji). The

band intensities were quantified using AIDA image analyzer (version 4.50, Raytest). Intensity of each band was calculated as a per-

centage of total pixel intensity of the lane. At least three biological replicates were performed for each experiment, means and stan-

dard deviations are presented in the figures and figure legends.

ATPase assay

ATPase activity was measured by recording absorption at 360 nm every 30 s for 90 min using a PHERAstar FS. DAU at 360 nm was

translated to Pi release using an equation derived by a standard curve of KH2PO4 (EnzChek kit). Rates were calculated from the slope

of the linear phase (first 10 min). At least two independent biological experiments were performed for each experiment, means and

standard deviations are reported for every experiment.

rDNA morphology

For each condition, a minimum of 100 cells was scored from 3 biological replicates. Means and standard deviations are reported for

each condition.

DATA AND SOFTWARE AVAILABILITY

Scripts

All scripts written for this analysis method are available to download from https://github.com/naomipetela/nasmythlab-ngs.

Chr_position.py takes mpileups for S. cerevisiae chromosomes and fills in gaps, with each position in the chromosome added

given a read depth of 0.

Filter60.py reads the files produced by Chr_position.py and takes the read depth for all positions 60 kb either side of the CDEIII for

all chromosomes, produces an average for each position andmultiples it by theOR. TheOR should be derived from the reads aligned

in the appropriate bam files (Hu et al., 2015).

Calibrated ChIP-seq data

The accession number for the calibrated ChIP-seq data (raw and analyzed data) reported in this paper is GEO: GSE105005.
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Supplemental Figures

Figure S1. Related to Figures 1 and 2

(A) Western blot of fully circularizable 6C wild-type cohesin crosslinked in vivo using BMOE, probed for the HA-epitope on Smc3. The positions of the different

crosslinked species are indicated.

(B) Genomic DNA isolated from aliquots of the experiment in Figure 1B were electrophoresed, Southern blotted and detected with the TRP1 probe.

(C) The 6C strain (K23889) was grown as in Figure 1B and subjected to 2D gel electrophoresis either in the absence or presence of proteinase K in the second

dimension. The positions of the supercoiled monomer, CM and CD species are marked. (*) indicates non-specific background signal.

(D) Samples from experiment shown in Figure 1C were subjected to minichromosome IP without in vivo crosslinking; the position of the band containing su-

percoiled monomers is indicated in the Southern blot.

(E) FACS profiles of the strains described in Figure 1E.

(F) FACS profiles of the strains described in Figure 1F.

(G) FACS profiles of the strain described in Figure 1G.

(H) Exponentially growing diploid cells containing 2 copies of 6C cohesin with a tag on just one of the 2C Scc1 copies (K24242) and diploid cells containing 1 copy

of 5C cohesin and one copy of 6C cohesin with a tag on just the 2C Scc1 (K24194) were subjected to the minichromosome IP assay. The intensities of the CM and

CD bands quantified using AIDA Image Analyzer software are plotted as % of the total lane intensities. See also Figure 2E.

(I) Quantification of the gel from Figure 2E showing the lane traces. (J) FACS profiles of the strains described in Figure 2G.
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Figure S2. Related to Figures 3, 4, 5, and 6

(A) Two replicates of the experiment performed in Figure 3B.

(B) Left panel: Efficiency of the hinge crosslinking was compared between the wild-type and the DDAAA strains: Wild-type (K26085) and DDAAA (K26086) strains

were subjected to western blotting with and without in vivo crosslinking and the blots probed with anti-Myc (Smc1) and anti-HA (Smc3) antibodies to detect the

un-crosslinked and crosslinked Smc1/Smc3 species. Right panels: Samples from experiment described in Figures 3B and 4F were subjected to western blotting

after in vivo crosslinking and the blots probed with either anti-Myc (left panel) or anti-PK antibody (right panel). The positions of the fully circularized species are

indicated.

(C) Average ChIP profiles of the experiment described in Figure 3C. The ChIP profiles are showing the number of reads at each base pair away from the CDEIII

element averaged over all 16 chromosomes.

(legend continued on next page)



(D) Exponentially growing diploid strains K17660 (expressing Mtw1-RFPand Smc1-eGFP), K18194 (expressing Mtw1-RFP and Scc1-eGFP), and K26700 (ex-

pressing Mtw1-RFP and with smc3AAA expressed from the endogenous locus and expressing smc1DD from an ectopic locus) were grown in YEPD medium at

25�C and were placed on 2.5% agarose pads made of synthetic complete medium containing glucose. Live cell imaging was performed under a spinning disk

confocal system at 25�C.

(E) Coomassie stained gels showing Smc1/3 hinge exchange. Purified heterodimeric hinge domains that had either wild-type or DDD mutant Smc1 associated

with Smc3 hinge containing a cysteine substation (E570C) were mixed with purifiedMBP-tagged Smc1 containing a cysteine substitution (K639C). Wemeasured

the exchange of the wild-type and DDD mutant Smc1 with the MBP-Smc1 by adding homo-bifunctional crosslinker bBBr for the indicated times.

(F) Crosslinking was compared between the wild-type, Smc3-Scc1 and Scc1-Smc1 fusion strains: Wild-type (K23889), Smc3-Scc1 (K24838) and Scc1-Smc1

(K25696) strains were subjected to western blotting with and without in vivo crosslinking and the blots probed with anti-PK antibody against Scc1/fusion proteins

to detect un-crosslinked and crosslinked species. The position of the fully circularized species is indicated.



A       DDAAA (average)

C    Smc3-Scc1 fusion (average)

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

re
a
d
s

Distance from CDEIII (kb)

150

120

90

60

30

0-10-20-30-40
0

-50-60 10 20 30 40 50 60

Smc3-Scc1 fusion

Wild Type

"

-10 100

Smc3-Scc1-PK (fusion)

Scc1-PK (wt)

-10 0 10

0

50

100

150

200

250

-30 -20 -10 0 10 20 30

DDAAA

WT

Distance from CDEIII (kb)

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

re
a
d
s

Smc3-HA

-40-50 40 50 60

n
u
m

b
e
r 

o
f 

re
a
d
s

n
u
m

b
e
r 

o
f 

re
a
d
s

Distance from CDEIII (kb)

0

50

100

150

200

250

-50 -40 -30 -20 -10 0 10 20 30 40 50

WT
DDD
699

Chr. X

-50 -40 -30 -20 -10 0 10 20 30 40 50

B    DDD (individual chromosomes)

0

20

40

60

80

100

120

140

160

WT
DDD
699

Chr. II

Scc1-PK

Scc1-PK

Figure S3. Related to Figures 3, 4, and 6

(A) Cells from K26797 (containing endogenous 33miniAID-tagged SMC3 and ectopic wild-type SMC3), K26611 (containing endogenous 33miniAID tagged-

SMC3 and endogenous smc1DD and ectopic smc3AAA) were arrested in G1 and synthetic auxin (indole-3-acetic acid) added to 1 mM 30 min before release.

(legend continued on next page)



Cultures were released into YPD containing 1mMauxin and nocodazole to arrest the cultures in G2/M and analyzed by calibrated ChIP-sequencing. ChIP profiles

show the number of reads at each base pair away from the CDEIII element averaged over all 16 chromosomes.

(B) Calibrated ChIP-seq profiles along chromosome II and Chromosome X from the experiment described in Figure 4E.

(C) Calibrated ChIP-seq of exponentially growingwild-type (K23889) and Smc3-Scc1 fusion strain (K24838). ChIP profiles show the number of reads at each base

pair away from the CDEIII element averaged over all 16 chromosomes.

See Figure 6B for representative individual chromosome traces.



Figure S4. Related to Figure 3E

Examples of chromosome spreads of the wild-type, DDAAA mutant and the smc3 depletion (smc3 null) strains from the experiment described in Figure 3E.
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Figure S5. Related to Figures 4 and 5

Multiple sequence alignment indicating conservation of Smc1 resides K554, K650 and K661 in S. cerevisiae across various other eukaryotes. These residues are

highlighted in the hinge structure shown in Figure 4A.
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Figure S6. Related to Figure 7

Interphase Xenopus egg extract was treated with either DMSO or aphidicholine for 15 min. The extracts were then supplemented with 3 ng BAC DNA/ml. After a

90 min incubation, chromatin fractions were isolated, the chromatin pellets washed with buffer containing indicated amounts of KCl and analyzed by western

blotting.
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Figure S7. Related to Figures 4 and 5

The conserved positively charged residues that lie inside the lumen of condensin hinge domain are marked in the structure of Smc2-Smc4 hinge domain.
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