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Abstract 8 

The cryogenic engine has received increasing attention due to its promising potential as 9 

a zero-emission engine. In this study, a new robust liquid nitrogen injection system was 10 

commissioned and set up to perform high pressure injections into an open vessel. The 11 

system is used for quasi-steady flow tests used for the characterisation of the direct 12 

injection process for cryogenic engines. An electro-hydraulic valve actuator, provides 13 

intricate control of the valve lift, with a minimum cycle time of 3 milli seconds and a 14 

frequency of up to 20 Hz.  With additional sub-cooling, liquid phase injections from 14 15 

- 94 bar were achieved. Results showed an increase in the injected mass with the 16 

increase in pressure, and decrease in temperature.  The injected mass was also observed 17 

to increases linearly with the valve lift. Better control of the injection process, 18 
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minimises the number of variables, providing more comparable and repeatable sets of 19 

data.  Implications of the results on the engine performance were also discussed.  20 

Keywords: Cryogenic engine injection, Liquid nitrogen, Hydraulic valve actuator, 21 

Thermal energy, Zero emission engine 22 

   23 

1. Introduction  24 

The cryogenic engine is a zero-emission combustion free engine designed to deliver 25 

power from cold. The engine uses a typical Rankine cycle with a near-isothermal 26 

expansion of liquid air or nitrogen from low grade/ ambient heat to convert heat energy 27 

into work1. With a limited engine power of ~0.2 kWh/kg of fuel (one ref here), the 28 

engine is aimed at providing auxiliary power and air conditioning for refrigeration 29 

hybrid heavy-duty vehicles. The performance and efficiency of the engine are solely 30 

based on the expansion, which is driven by the speed of the heat transfer process. 31 

Previous designs involved the indirect expansion of the cryogen using a heat exchanger, 32 

but were limited by its efficiency, and added to the overall bulk and mass of the design. 33 

More recently, the Dearman engine2 was designed in order to achieve higher 34 

efficiencies using in-cylinder heat transfer, which is achieved by the direct injection of 35 

the cryogen into a heat transfer fluid (HEF). The heat transfer is enhanced by direct 36 

contact and increased interfacial area between the two fluids3. The process is entirely 37 

controlled by the injection and mixing of the cryogen in the cylinder. 38 
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High pressure cryogenic injection has been of great interest for power and propulsion 39 

systems in the aerospace industry. Although extensive experimental and numerical 40 

studies4-7 have been conducted to characterize and understand the cryogenic flow 41 

dynamics involved in the injection and mixing process, only a few authors have 42 

attempted to investigate injections specific to reciprocating cryogenic engines3, 8-12. For 43 

example, Clarke et al.3 demonstrated the benefits of the mass transfer, latent heat and 44 

sensible heat transfer of liquid nitrogen, as well as the use of water as the heat transfer 45 

fluid, which were influenced significantly by the injection parameters. Despite the linear 46 

correlation between the injection pressure and pressurisation rates, it was noted that the 47 

intake pressure would be limited by the onset of cavitation and chocking at a certain 48 

point.  At this point, the flow velocity becomes non-responsive to the increase of the 49 

upstream or decrease of the downstream pressure. This critical point, based on the ratio 50 

of the downstream and upstream pressure, would determine the peak engine pressure 51 

under specific conditions.  The onset of chocking occurs approximately 50 % lower 52 

than the critical pressure ratio13. The effects of chocking are not considered because the 53 

pressure at which this maximum is reached is above the injection pressures tested here. 54 

This work is an extension of the work done by Mohr et al.14investigating high pressure 55 

flow through a poppet valve for the Dearman engine but with the use of liquid nitrogen 56 

rather than gas.      57 
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Earlier work was limited to low injection pressure due to the experimental constraints. 58 

Additionally, closed cylinder injections meant that the mass flow during the injection 59 

cycle could not be measured, but only determine once the valve was closed. Therefore, 60 

the injected mass at any time during the injection cycle was unknown. Repeatability and 61 

comparison of the results was also an issue especially with the lack of information on 62 

valve timings and injection duration and therefore further testing is needed in this area.  63 

The mass transfer into the engine is key expansion and pressurisation in the engine 64 

and therefore key to its overall performance. Precise control of the valve lift and speed 65 

is necessary to analyse and understand the mass transfer during the injection cycle. 66 

However, experiments in this area present several challenges due to the complexity of 67 

the injection process. For example, the adequate supply of the cryogen at sub-cooled 68 

temperatures (77-126 K) is difficult to maintain. Secondly, high pressure injections 69 

coupled with short valve timings are necessary to maximise the injected mass. The rapid 70 

valve movement is required to prevent backflow, as the cylinder-pressure approaches to 71 

that in the injection line. Consequently, a robust high speed valve actuation system 72 

capable of the task within a few milliseconds is also necessary for the experiments.  73 

This paper describes the design and operation of a purposely built rig to conduct off 74 

engine tests for the high pressure injection of liquid nitrogen. With increased pressure, 75 

we expect higher flow velocities of the injected jet, which would enhance the mixing 76 

and ultimately, the heat transfer. The system is used for a quasi-steady flow 77 
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characterisation of the LN2 injector, as a vital stage of investigations into direct injection 78 

for cryogenic engines. An electro-hydraulic valve actuation (EHVA) system is used to 79 

control the movement of the poppet valve in the LN2 injector. This valve actuation 80 

system is needed to allow for a rapid and timely valve movement.   LN2 is shot into an 81 

open vessel, in order measure the injected mass during the injection cycle. Pressure and 82 

temperature readings at the injector are used to determine the thermodynamic state of 83 

the nitrogen. The effect of injection parameters on the mass flow is discussed, as well as 84 

the implications for the engine performance.  85 

2. Structure of injection system  86 

2.1 Injector  87 

The spray quality is highly dependent on the design of the injector and the injection 88 

pressure. The injector used is provided by Dearman Engine Company Ltd and is 89 

designed specifically for cryogenic injection. It is made of stainless steel because of 90 

high cryogenic toughness and consistent thermal expansion at the operating sub-zero 91 

temperatures. The injector consists of a poppet valve, which is attached to the head of 92 

the injector. The inlet and outlet lines are both angled, to reduce the pumping force at 93 

the inlet, whilst increasing it at the outlet. This prevents the cryogen from flowing out of 94 

injector too quickly. The inlet feedline is slightly extended to allow for a steady laminar 95 

flow before the valve is opened.  96 
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An ultra-high-molecular-weight-polyethylene (UHMWPE) seat is pressed onto the base 97 

of the poppet valve to reduce the wear resulting from impact during movement. The 98 

thermoplastic material is used for its low density; high impact strength; ductility; 99 

abrasion resistance; chemical resistance and self-lubricating properties15, 16. UHMWPE 100 

also has excellent sealing properties17, which are vital to prevent any leakage when the 101 

valve is closed.  UHMWPE and stainless steel were selected for their compatibility and 102 

low shrinkage percentage (less than 1%). At low temperatures, the hardness and friction 103 

coefficient of the plastic increases and it begins to display characteristics of fatigue and 104 

abrasive wear18. The increased hardness is attributed to the closely packed micro-105 

structure at low temperatures, hindering the movement/slip of the molecular chains. The 106 

ductility of the material is lost, therefore reducing its ability to absorb energy during 107 

compressions. Although its fatigue life cycle at low temperatures is unclear, the seal did 108 

not demonstrate any sign of leakage and did not require replacement during the project 109 

period. Before testing, the valve was checked for leakage using both high pressure gas 110 

and liquid nitrogen. 111 

The injector assembly also consists of a spring underneath the injector head. The 112 

movement of the poppet valve is controlled by the EHVA unit that is coupled (Figure 1) 113 

to the injector, where it applies a 4.2kN force transmitted through the springs.  (Insert 114 

Figure1) 115 
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2.2 EHVA set up 116 

 The EHVA is controlled by a servo valve mechanism. A servo mechanism is a 117 

control system that uses its own measured output to accurately match the demand 118 

signal. The mechanism minimises the effect of errors or anomalies within the control 119 

system itself, as well as the load 19. It also offers greater precision control of the valve 120 

position with a rapid response to changes in speed, direction or frequency. 121 

The hydraulic valve responds to the input signal, with the conversion of fluid 122 

pressure into the movement of its own piston rod. This then applies a large axial force 123 

onto the head of the injector, which is transmitted to the poppet valve. As a result, the 124 

poppet is pushed down to allow the cryogen to flow into the vessel. This is known as 125 

the forward stroke. The large force is needed to allow the valve to move independent of 126 

Figure 1: Injector and actuator assembly  
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any pressure or forces upstream or downstream of it, during both the forward and return 127 

strokes. For the forward stroke, the 4.2kN force has to overcome the spring forces and 128 

the pressurised LN2 in the feedline.  During the return stroke, the pressure rises in the 129 

vessel and the spring forces are most likely to force the valve to close a lot quicker than 130 

desired. Therefore the force provided by the EHVA provides better control over the 131 

closing of the valve despite the opposing forces. 132 

The hydraulic pressure in the valve actuator is controlled by a unit (Figure 2) 133 

consisting of an electrical motor, 5 l/min speed pump,  30 litre oil tank, 2 litre 134 

Figure 2: Hydraulic unit controlling the hydraulic pressure of the EHVA: 1. 50 Hz motor 2. 

Accumulator 3. Pressure gauge 4. 30 L Oil tank 5. Solenoid by-pass valve 6. 

1 

2 

3 

4 

5 



    

  9 

 

accumulator and a bypass damper for safety. A temperature gauge is incorporated to 135 

monitor the oil temperature. This is due to the high fluid temperature caused by constant 136 

pumping that could result in failure. The unit has a maximum operating oil pressure of 137 

275 bar which can be used to vary the hydraulic force applied. (Insert Figure 2) 138 

The position of the piston rod of the actuator is measured by a differential variable 139 

reluctance transducer (DVRT), with an accuracy of ±2.7 %. The readings are fed to the 140 

Data Acquisition system and recorded by the computer running LabVIEW software. 141 

The 14-bit Data Acquisition device provides a voltage resolution of 10-2 mV per bit and 142 

based on the DVRT calibration, the valve lif t could be adjusted to the nearest 143 

micrometer (10-3 mm).  144 

2.3  Control configuration of the EHVA 145 

The servo valve requires a well-designed control system, in order to promptly and 146 

accurately open and close the valve in response to the demand signal. Figure 3 shows 147 

the components of the closed-loop control system used here. The feedback from the 148 

transducer is compared to the demand. The resulting error is amplified and fed back as 149 

the new input. The gain of the amplifier is set as high as possible, in order to improve 150 

the response and accuracy of the servo valve. This strategy makes the precision of the 151 

valve solely dependant on the accuracy of the transducer itself. The output from the 152 

DVRT is also amplified by a signal conditioner before the deviation from the demand is 153 

calculated. This configuration is used to determine the exact closing time, unlike the 154 
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previous work3, where the valve closure was reliant on the valve springs and the 155 

pressure gradient.  156 

The injection duration and valve lift were controlled by the width of the demand 157 

pulse, which is set manually within the LabVIEW programme. When triggered, the oil 158 

in the actuator moves in proportion to the drive signal, resulting in the movement of the 159 

piston rod to the desired position. The best valve response was attained using a square 160 

wave demand signal of 0 - 1 V, from fully closed to fully opened. The maximum valve 161 

lift was recorded at 1.222 mm. (Insert Figure 3) 162 

Amplifier  
Servo 

valve  

Actuator Load  

DVRT Signal conditioner Feedback 

 گ
Output 

Error 

Demand  

+ - 

Figure 3: Components in the EHVA servo control mechanism 
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2.4 Experimental setup 163 

Figure 4: Schematic of the experimental rig in an open configuration 
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The experimental rig (Figure 4 & 5) consists the injector, pressure vessel (pressure 164 

bomb), buffer vessel, an EHVA and a data acquisition unit. The primary supply of LN2 165 

is provided by a 200 L Dewar, which is used to purge the entire system before testing. A 166 

manual valve (V5) allows for LN2 to be delivered to the cooling jacket of the buffer 167 

vessel to commence sub-cooling. Sub-cooling occurs continuously throughout testing. 168 

The buffer vessel is filled with nitrogen from the Dewar via a vacuum insulated hose 169 

and valve V10. Thermocouples T8 and T7 are used to determine when the vessel is 170 

filled. Using V4, the LN2 in the buffer is pressurised using the gas bottle. The 171 

pressurised LN2 has a higher saturation temperature, therefore minimising the 172 

occurrence of a multiphase injection, whose thermodynamic properties would be 173 

problematic to determine without knowledge of the liquid to vapour ratio in the mixture. 174 

The injected LN2 is vaporised and measured by the flow meter located at the end of the 175 

heat exchanger. The measurement uncertainty of the injected mass is mainly due to that 176 

of the flow meter of ± 5%.    177 
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To achieve consistent and repeatable data, the pressure and temperature of the LN2 were 178 

constantly monitored using several thermocouples and pressure sensors at various 179 

locations. The valve was triggered once steady state temperature and pressure readings 180 

at the injector were achieved. The pressure was measured by a piezo-resistive 181 

transducer (Kulite CT-375) with an uncertainty of ± 5%, whilst temperature readings 182 

were recorded by T-type thermocouples, calibrated with a ± 1 % of uncertainty. 183 

Thermocouples T1, T3, and T4 were used to monitor the liquid temperature in the 184 

injector in order to establish steady flow, and provide information on the heat leak in the 185 

Figure 5: Picture of the assembled experimental rig.  
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feed line, pre-injection. (Insert Figure 4 & 5) 186 

 187 

3. Results  188 

To demonstrate the feasibility of the setup, injections were conducted at various 189 

frequencies, pressure, valve lifts, injection durations and sub-cooling ratios (Tinj/Tsat) of 190 

nitrogen; where Tinj is the injection temperature and Tsat is the saturation temperature at 191 

the injection pressure. The parameters of a sample of the tests conducted are shown in 192 

Table 1. Control of injection parameters reduces the variables in the injections, thus 193 

making the results comparable and repeatable. The flow rate was used to calculate the 194 

mass of liquid nitrogen injected. The liquid density was calculated using the reference 195 

equation established by Span et al.20, with an uncertainty of 0.02% for pressures below 196 

300 bar. 197 

Table 1: Sample of some of the injections conducted below saturation temperature and at high pressure, showing 198 

the total injected mass and flow rate per injection (per pulse).  199 

Test Valve 
lift (h) 
(mm) 

Test 
duration 

(s) 

Demand 
Pulse 
width 
(ms) 

Frequency 
(Hz) 

Injection 
Pressure 

(bar) 

Temperature 
T3 
(K) 

Sub-
cooling 

ratio 
Tinj /Tsat 

Total 
LN2 
mass 
(kg) 

Flow 
rate ሺ݉ሻሶ  
kg/s 

1 0.51 5.80 5 5 14.58 104.52 0.95 6.02 0.064 

2 0.57 4.43 7 5 26.55 102.42 0.84 3.77 0.079 

3 1.13 4.63 10 5 28.85 96.82 0.79 3.81 0.084 

4 0.55 4.43 7.5 5 29.37 106.78 0.86 3.34 0.081 

5 0.59 5.23 7.5 5 44.46 100.41 0.80 3.06 0.097 

6 1.18 6.64 10 5 43.54 95.49 0.76 4.18 0.104 

7 1.17 4.63 10 5 45.25 96.44 0.77 3.14 0.095 
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8 0.50 6.03 5 5 46.29 96.89 0.77 3.18 0.095 

9 0.61 4.83 7.5 5 47.35 100.46 0.80 2.79 0.098 

10 0.51 4.43 5 5 66.34 102.51 0.81 1.74 0.091 

11 1.20 5.00 10 5 62.84 108.64 0.78 2.52 0.118 

12 1.220 5.00 10 5 71.70 99.40 0.79 2.28 0.115 

13 1.16 5.00 10 5 82.22 106.11 0.84 2.13 0.091 

14 1.16 5.00 10 2 94.03 110.95 0.88 0.97 0.045 

 200 
 201 
3.1  Valve frequency and lift profiles 202 

 Pulsed injections of up to 20 Hz were achieved using the EHVA unit as shown in 203 

Figure 6.  Frequencies above this were found to cause misalignment of the EHVA 204 

piston, due to the increased mechanical vibration in the components. Regardless of the 205 

20 Hz maximum operating frequency, the system can never the less be used to conduct 206 

injections corresponding to various engine speeds of up to 1200 rpm, and determine the 207 

total injected mass at various injection parameters. With sufficient experimental data, 208 

correlations can be established to predict the engine peak pressure and ultimately power 209 

output.  (Insert Figure 6) 210 

Details of the valve profile are demonstrated in Figure 7.The amplifier provides the 211 

signal required for the valve to move to the correct position in respect to the demand. A 212 

4.8 ms delay between the demand and actual valve movement was observed. This delay 213 

could be caused by limitations of the hydraulics or the mechanical components of the 214 

actuator. That is, it may take slightly longer to redistribute the oil in the valve once it is 215 

triggered. It should be noted that the delay was found to vary with the frequency and 216 



    

  16 

 

demand width, however, this was ignored because the valve is still opened and closed 217 

within the time specified in the demand. (Insert Figure 7&8) 218 

The valve may only be opened briefly to avoid the onset of backflow in the injector 219 

inlet, which would occur as the cylinder pressure rises above that in the feed line. The 220 

speed of the valve is controlled by the width of the demand pulse as demonstrated in 221 

Figure 8.  222 

The width also determines the height of the valve lift because the valve is given more 223 

time to reach its maximum position with a longer pulse. Demonstrated by the 3ms 224 

demand, the valve does not have enough time to move to its commanded position before 225 

returning to close.  To attain the maximum lift, the demand has to be ≥ 10 ms. For a 226 

longer pulse, the valve stays open at its maximum lift for longer before commencing the 227 

return stroke.   228 

With this in mind, the valve lift and injection timing can be perfected in accordance 229 

Figure 7: Detail of valve lift for a 10 ms demand pulse 



    

  17 

 

with the engine requirements such as; engine speed, performance or fuel (cryogen) 230 

consumption.    231 

  232 

Figure 6: Valve profiles of 2,5,10 and 20 Hz frequencies 
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 233 

  234 

Figure 7: Detail of valve lift profile of a 10 ms demand pulse. 
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    235 

Figure 8: Increase in valve lift with an extended demand period, with maximum lift attained at 10 ms  
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Pressure drop  236 

When the valve is opened, there is an immediate pressure drop in the upstream 237 

pressure in the cryo feed line due to the pressure gradient across the injector as shown 238 

Figure 9. A momentary pressure drop of ̱18 bar is recorded during each pulse. During 239 

the injection cycle, the average pressure remains relatively steady, with a slight 240 

variation of േ 2.2 bar. An increased variation in pressure during the injection would 241 

Figure 9: Pressure drop of 18 ±0.05 bar at each pulse and (b) Pressure variation of ±2 bar throughout 

the entire injection cycle. 
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lead to cyclic variation in the peak cylinder pressure. This can be likened to the jerking 242 

in the conventional engine during acceleration, due to the uneven engine power. With a 243 

less than 4% variation demonstrated in these tests, jerking was not a concern. The 244 

injected mass of a single injection can be scaled up to determine that of pulsed/transient 245 

injections, for the same conditions, especially the upstream and downstream pressure 246 

ratio. For future work, the pressure variation can be lessened with the use of an 247 

accumulator volume of some kind, so as to conduct injections without the significant 248 

pressure drop in the upstream.  (Insert Figure 9) 249 

3.2 Effects of pressure and cooling ratio on the flow profile 250 

The mass flow profiles obtained for injections at 29, 67, 81 and 83 bar are shown in 251 

Figure 10(b). The measured flow was limited by the minimum value recorded by the 252 

flow meter at 25 l/s (0.032 kg/s) evident in the cut off points in the graphs below. Above 253 

this, the flow increases gradually as its attempts to achieve quasi-steady flow. At this 254 

point, the injected nitrogen begins to boil off at the same rate at which it goes through 255 

the flow meter. A maximum flow is recorded at the point when the injection is stopped 256 

and the flow decreases gradually due to some residual boil off of what is left 257 

downstream of the vessel. A comparison of flow profiles for gas and liquid injections at 258 

64 bar is shown in Figure 10(a). (Insert Figure 10) 259 
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The gaseous injection (at a cooling ratio of 1.04) is different because the injected 260 

mass is reduced due to a lower fluid density. This is reflected by the lower maximum 261 

flow reading of 0.095 kg/s, 1.2 times less than that of the liquid injection at a cooling 262 

ratio of 0.78. The initial flow gradient is significantly reduced and the flow plateau’s out, 263 

indicative of attaining a steady state a lot quicker. With the lack of phase change, the 264 

equilibrium temperature is achieved a lot sooner. The higher flow rate in the liquid 265 

injections is sustained by the higher energy transfer (latent heat), which continues to 266 

increase steadily until the injection is terminated.   267 

The data does not reveal any information on the mass flow profile during the first 268 

seconds of the injection, therefore the effects of flashing on the flow were not recorded 269 
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here. This is due to the minimum measurement of the flow meter at 25 l/s.  Flashing is a 270 

phenomenon that driven by the temperature and pressure upstream and the pressure 271 

downstream of the valve.  It is the formation of a gaseous phase in the jet flow due to 272 

the rapid pressure drop as the liquid emerges. In theory, this would decrease the mass 273 

flow across the valve initially until the liquid begins to flow out. At lower injection 274 

temperatures, we would expect a reduction in flashing, resulting in a larger ratio of 275 

liquid to gas. However, it is not possible to observe these effects in these experiments. 276 

A gradual opening of the valve over a longer time interval, or injection into a 277 

pressurised vessel, would reduce the occurrence of flashing due to the reduced pressure 278 

drop across the valve. This would facilitate higher pressurisation rates in the engine 279 

Figure 11: Increase in flow profile with increased valve lift and increased injected mass for injections of 

68±1 bar at cooling ratio of 0.84 ± 0.1 
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cylinder. (Insert Figure 11) 280 

 Based on the Bernoulli equation21, at constant density, flow velocity increases with 281 

pressure. However, the flow across the valve is most likely to be critical based on the 282 

ratio of the upstream and downstream pressure. For a gas, the flow is choked when the 283 

ratio of the downstream to the upstream pressure is less than 0.53. Choked flow is 284 

useful because the velocity at the valve is maximised despite variations in the upstream 285 

or downstream pressure. With injections into an open vessel, the possibility of choked 286 

flow of some description (two-phase choked flow) is high.  Under chocked conditions, 287 

the flow attains a maximum velocity despite the increase in upstream pressure. However, 288 

the mass flow rate increases due to the increased flow density with increased injection 289 

pressure.  290 

3.3 Effect of valve lift  291 

The valve lift is proportional to the flow area which is proportional to the mass flow 292 

rate, ݉ ሶ . Proof of Equation 1 is evident in the results shown in Figure 11 where ܣ = ݄  * 293 

circumference and ݄ = lift.  294 

 ሶ݉ ൌ  Equation 1 ܣݒߩ

where ߩ is the flow density, ݒ is the flow velocity and ܣ is the flow area.  295 

A 0.2 mm difference in the lift resulted in a 10 kg/s decrease in the flow. Results 296 

showed a linear increase in the injected mass with the increased valve lift, due to the 297 
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increased lift. This correlation can be used to determine the injected mass for a specified 298 

lift under these injection parameters, for this valve geometry.  299 

The power and efficiency of the engine are most important. While the power is 300 

dependent on the pressurisation, the efficiency is dependent on the speed of the heat 301 

transfer process and ensuring the nitrogen is expelled at atmospheric temperature. The 302 

mass profile during the injection provides an insight into the heat transfer and ultimately 303 

the pressurisation in the cylinder.  304 

4. Conclusions  305 

Direct injection in a cryogenic engine requires a combination of a high mass transfer 306 

with a swift injection duration. This paper presents a cryogen injecting system set up 307 

and commissioned to allow for the investigations of controlled direct injection for 308 

cryogenic engines. The set up consists of a liquid nitrogen supply and a powerful valve 309 

actuation system. Designed to conduct several single and steady flow injections of 310 

nitrogen in various thermodynamic states, controlled high pressure injections into an 311 

open vessel were conducted and studied. The following conclusions can be drawn:  312 

 With the addition of a sub-cooling system, the injection system is capable of 313 

performing liquid nitrogen injections at high pressure of up to 94 bar. These tests 314 

can be used as a stepping stone into investigations into a closed vessel.  315 
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 The use of the EHVA provides accurate control of the valve movement, thus 316 

reducing the number of variables in the processes resulting in repeatable and 317 

reliable injection data.  318 

 The flow in the system is characterised by the extent of the boil off and 319 

attainment of steady flow through the flow meter. This was used to distinguish 320 

between liquid and gas injections, highlighting the benefits of latent heat transfer.  321 

 The total injected mass of nitrogen increases with increased injection pressure 322 

and valve lift. A definite linear correlation between the lift and injected mass is 323 

observed, but there is still no clear trend for the increase in injection pressure.  324 

 The mass flow profiles can be used to calculate the heat transfer to the nitrogen 325 

during the injection and provide a better understanding of the pressurisation and 326 

how it varies with the injection pressure.  327 

The set up commissioned here can be utilised for further off engine testing such as, 328 

the variation of the duration sweep of injections to better identify the transiency of mass 329 

flow in an injection event, investigating the heat transfer that results in pressurisation 330 

for closed vessel injections, as well as a comparison for future valve design iterations.   331 

Acknowledgements 332 

We are grateful to the financial support from EPSRC, the University of Leeds 110 333 

Anniversary Research Scholarship and Dearman Engine Company Limited. We are also 334 



    

  27 

 

grateful to Paul Edwards (Advanced Engineering Ltd) and Robert Harris (University of 335 

Leeds) for all technical support.  336 

 337 

 338 

 339 

 340 

 

 

 

  



    

  28 

 

5. References 
 

1. Li Y, Chen H and Ding Y. Fundamentals and applications of cryogen as a thermal energy 

carrier: A critical assessment. International Journal of Thermal Sciences. 2010; 49: 941-9. 

2. Ltd DEC. Improved cryogenic engine system In: Organisation WIP, (ed.). World 

Intellectual Property Organisation. 10/2016. 

3. Clarke H, Martinez-Herasme A, Crookes R and Wen DS. Experimental study of jet 

structure and pressurisation upon liquid nitrogen injection into water. International Journal of 

Multiphase Flow. 2010; 36: 940-9. 

4. Kim T, Kim Y and Kim S-K. Numerical study of cryogenic liquid nitrogen jets at 

supercritical pressures. The Journal of Supercritical Fluids. 2011; 56: 152-63. 

5. Branam R and Mayer W. Characterization of cryogenic injection at Supercritical 

pressure. Journal of Propulsion and Power. 2003; 19: 342-55. 

6. Mayer W, Telaar J, Branam R, Schneider G and Hussong J. Raman measurements of 

cryogenic injection at supercritical pressure. Heat and Mass Transfer. 2003; 39: 709-19. 

7. Mayer WOH, Schik AHA, Vielle B, et al. Atomization and breakup of cryogenic 

propellants under high-pressure subcritical and supercritical conditions. Journal of Propulsion 

and Power. 1998; 14: 835-42. 

8. Archakositt U, Nilsuwankosit S and Sumitra T. Effect of volumetric ratio and injection 

pressure on water-liquid nitrogen interaction. Journal of Nuclear Science and Technology. 2004; 

41: 432-9. 

9. Wen D, Ding Y and Lin G. Phase change heat transfer of liquid nitrogen upon injection 

into aqueous based TiO(2) nanofluids. Journal of Nanoparticle Research. 2008; 10: 987-96. 

10. Wen DS, Chen HS, Ding YL and Dearman P. Liquid nitrogen injection into water: 

Pressure build-up and heat transfer. Cryogenics. 2006; 46: 740-8. 

11. Dinh TN, Bui VA, Nourgaliev RR, Green JA and Sehgal BR. Experimental and analytical 

studies of melt jet-coolant interactions: a synthesis. Nuclear Engineering and Design. 1999; 189: 

299-327. 

12. Dahlsveen J, Kristoffersen R and Saetran LR. Jet mixing of cryogen and water. TSFP 

DIGITAL LIBRARY ONLINE. Begel House Inc., 2001. 

13. Maytal B-Z and Elias E. Two-phase choking conditions of real gases flow at their critical 

stagnation temperatures and closely above. Cryogenics. 2009; 49: 469-81. 

14. Mohr S, Clarke H, Garner CP, Rebelo N, Williams AM and Zhao HY. On the 

Measurement and Modeling of High-Pressure Flows in Poppet Valves Under Steady-State and 

Transient Conditions. Journal of Fluids Engineering-Transactions of the Asme. 2017; 139. 

15. Hambir S and Jog JP. Sintering of ultra high molecular weight polyethylene. Bulletin of 

Materials Science. 2000; 23: 221-6. 



    

  29 

 

16. Wang A, Essner A, Polineni VK, Stark C and Dumbleton JH. Lubrication and wear of 

ultra-high molecular weight polyethylene in total joint replacements. Tribology International. 

1998; 31: 17-33. 

17. Sudo M and Muraki T. Sealing stopper for a syringe and a prefilled syringe. Google 

Patents, 2000. 

18. Liu HT, Ji HM and Wang XM. Tribological properties of ultra-high molecular weight 

polyethylene at ultra-low temperature. Cryogenics. 2013; 58: 1-4. 

19. Rydberg K-E. Hydraulic servo systems. TMHP51 Fluid and Mechanical Engineering 

Systems Linköping University. 2008. 

20. Span R, Lemmon EW, Jacobsen RT, Wagner W and Yokozeki A. A reference equation of 

state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K 

and pressures to 2200 MPa. Journal of Physical and Chemical Reference Data. 2000; 29: 1361-

433. 

21. Shames IH and Shames IH. Mechanics of fluids. McGraw-Hill New York, 1982. 

 


