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A B S T R A C T

Previous studies reported that the volume of the left superior temporal gyrus (STG) is reduced in patients with
schizophrenia and negatively correlated with hallucination severity. Moreover, diffusion-tensor imaging studies
suggested a relationship between the brain microstructure in the STG of patients and auditory hallucinations.
Hallucinations are also experienced in non-patient groups. This study investigated the relationship between
hallucination proneness and the brain structure of the STG.

Hallucination proneness was assessed by the Launey Slade Hallucination Scale (LSHS) in 25 healthy in-
dividuals who varied in their propensity to hear voices. Brain volume and microstructure of the STG was as-
sessed by magnetic resonance imaging (MRI). Microstructure was examined by conventional diffusion-tensor
imaging as well as by neurite orientation dispersion and density imaging (NODDI). The latter decomposes dif-
fusion-based MRI into multiple compartments that characterize the brain microstructure by its neurite com-
plexity known as orientation dispersion (ODI) and by its neurite density (NDI).

Hallucination proneness was negatively correlated with the volume and microstructure (fractional aniso-
tropy, neurite complexity) of the left but not the right STG. The strongest relationship (r=−0.563) was ob-
served for neurite complexity (ODI). No correlation was observed for neurite density (NDI).

These findings suggest that there is a relationship between the volume and the microstructure of the left STG
and hallucination proneness. Dendritic complexity (but not neurite density) is inversely related to hallucination
proneness. Metrics based on multi-compartment diffusion models seem to be more sensitive for hallucination-
related neural processes than conventional MRI-based metrics.

1. Introduction

Auditory verbal hallucinations (AVHs), or ‘hearing voices’, in the
absence of any external auditory stimulus is the most commonly re-
ported symptom of schizophrenia with a prevalence of around 70%
(Sartorius et al., 1986). AVHs are also experienced by a significant
minority of the general population (Allen et al., 2012; Beavan et al.,
2011; Jardri et al., 2012; Verdoux and van Os, 2002), who are some-
times referred to as healthy voice hearers (HVHs), with an estimated
lifetime prevalence of 4% to 15% (Van Os et al., 2009). For this reason,
it was proposed that AVHs may represent part of an ‘extended pheno-
type’ of psychosis (Johns et al., 2004). According to this hypothesis
psychotic symptoms are represented along a continuum which includes

the (healthy) general population (Baumeister et al., 2017; Bentall,
2004; Daalman et al., 2011). This continuum accommodates, at one
end, clinical voice hearers (CVHs) who are distressed by their voices
and require care and, at the other end, non-voice-hearing healthy in-
dividuals (healthy controls) (Baumeister et al., 2017).

Despite of the large prevalence of AVH in clinical and non-clinical
populations their aetiology remained poorly understood. Several func-
tional magnetic resonance imaging (fMRI) studies that investigated the
brain activity during AVHs in CVHs identified the contribution of
fronto-temporal language circuits, including parts of the auditory
cortex (for review see (Allen et al., 2008). Several studies specifically
implicated the superior temporal gyrus (STG), which is closely asso-
ciated with speech and language processing (Hickok and Poeppel,
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2000) and contains Wernicke's area which is integral for speech per-
ception (for review see (Jardri et al., 2012). These findings support the
theory that AVH involve the auditory pathways that process speech
(Allen et al., 2007). Although the vast majority of research has focused
on CVHs, fMRI studies looking at AVHs in non-clinical voice hearers
also reported similar activation patters in the left STG (Allen et al.,
2012; Daalman et al., 2011; Diederen et al., 2012; Hill and Linden,
2013; Jardri et al., 2012; Linden et al., 2011), supporting the hypothesis
that the neural mechanisms behind AVHs are the same in clinical and
non-clinical populations (Jardri et al., 2012).

Altered functional activation patterns of AVHs are also accompanied
by differences in the brain structure as revealed by conventional mag-
netic resonance imaging (MRI). In CVHs the most consistently reported
structural finding is a reduced volume in the STG of people experien-
cing hallucinations (Allen et al., 2008; Allen et al., 2012; Jardri et al.,
2012). This reduction in volume has also been shown to correlate with
AVH severity (Allen et al., 2012; Modinos et al., 2013). A recent review
of STG volume-related differences in schizophrenia patients suggests
that the left STG is more often implicated than the right hemisphere
homologue (Sun et al., 2009). Although this suggests a link between
AVH and the STG volume, the cause of this relationship remained un-
resolved.

Diffusion-weighted imaging (DWI) is an MRI-based method sensi-
tive to the diffusion of water (Le Bihan and Breton, 1985). As this dif-
fusion is constrained by the cellular arrangement, DWI is sensitive to
the brain microstructure (Beaulieu, 2002). Conventional DWI methods
such as diffusion-tensor imaging (DTI) suggest that AVHs are related to
an aberrant microstructure in the STG. For instance, CVHs showed in-
creased diffusivity in the STG compared to healthy people and diffu-
sivity in the left STG was also correlated with symptom severity (Lee
et al., 2009). DTI is sensitive to the brain microstructure, but it adopts a
relatively simple model (Le Bihan and Breton, 1985). DTI approximates
the diffusion at each voxel by an ellipsoid that assumes a single com-
partment. Hence, it does not well distinguish between different types of
cellular assemblies such as neurite structures (e.g., axons and dendrites)
or extra-neurite structures (e.g., glia) (Zhang et al., 2012).

Neurite orientation dispersion and density imaging (NODDI) is
based on a multi-compartment biophysical model that extends con-
ventional DWI and allows diffusion to be modelled separately for intra-
neural and extra-neural space (Le Bihan and Breton, 1985; Zhang et al.,
2011; Zhang et al., 2012). Two of the main microstructural markers
provided by this method are: the neurite density index (NDI), which
estimates the fraction of tissue which is made up of neurites, and the
orientation dispersion index (ODI), which estimates the angular con-
figuration of neurites (Zhang et al., 2012). Quantifying neurite mor-
phology in terms of its density and orientation distribution provides
further insight into the structural basis of brain function. The branching
complexity and orientation of dendritic trees is related to the compu-
tational properties and the function of neurons. For instance, neurite
morphology is a key characteristic of brain development (Chang et al.,
2015; Conel, 1967), aging (Chang et al., 2015; Dickstein et al., 2007)
and neurological disorders (Colgan et al., 2016; Dickstein et al., 2007;
Zhang et al., 2012). The intra-neurite compartment in grey matter of
healthy developed brains is highly dispersed due to sprawling dendritic
processes and this would be characterized by high ODI values (Zhang
et al., 2012).

Characterising the spatial configuration of neurites in healthy in-
dividuals alongside a measure of individual differences in hallucination
proneness may therefore offer further insight into the aetiology of AVH.
According to the continuum model of AVHs (Baumeister et al., 2017;
Van Os et al., 2009; Verdoux and van Os, 2002) both clinical and non-
clinical populations should share common mechanisms. By studying
non-clinical voice hearers the mechanisms leading to hallucinations
may be investigated whilst avoiding confounding effects on the neu-
roimaging data associated with clinical sequelae such as medication,
institutionalization or illness duration.

The present study utilized NODDI measures, alongside conventional
structural imaging and DTI, to assess the microstructure in the STG in a
non-clinical sample that varied in their propensity to experience hal-
lucinations. Hallucination proneness was assessed using the Launey-
Slade Hallucination Scale (LSHS) (Launay and Slade, 1981), which has
been widely used in hallucination research, and which is reliable
(Bentall and Slade, 1985) and stable over time (Aleman et al., 1999).
We hypothesised that volume and parameters defining grey matter
microstructure in the STG will be associated with the propensity to
hallucinate. In particular we expected a small volume, a low FA value
and a low ODI and/or NDI value to be associated with higher scores on
the LSHS. As previous research reported a hemisphere bias (Lee et al.,
2009; Sun et al., 2009), we expected the association between brain
volume, microstructure and LSHS to be most prominent in the left
hemisphere.

2. Material and methods

2.1. Participants

Twenty-five participants aged 20–63 years (M=39.4, SD=14.4)
were recruited either via an opportunistic sampling method or via an
experimental participation programme in the School of Psychology at
Liverpool University, in which case they were awarded course credits
for their participation, 16 of them were women. 19 participants were
students (11 undergraduate students, 5 PhD candidates). The highest
educational level of the remaining participants was a General
Certificate of Secondary Education (1) or an Advanced Level school
degree (8).

Inclusion criteria for participants were: English speaking, 18 years
or older and self-reported normal or corrected vision. Exclusion criteria
included: self-reported history of psychiatric disorders and neurological
disease, being on medication for epilepsy, migraines, renal disease,
cardiac disease, hypertension, diabetes, or any other medical condition
- assessed using a standard pre-screening questionnaire used at the
Liverpool Magnetic Resonance Imaging Centre. All participants gave
written informed consent. Part of the data was also included in a pre-
vious study (Spray et al., 2017). Ethical approval for the project was
obtained from the University of Liverpool Research Ethics Committee.

2.2. The revised Launay-Slade Hallucination Scale (LSHS-R)

The LSHS-R (Launay and Slade, 1981) is a widely used and reliable
(Bentall and Slade, 1985) self-report measure of hallucination-prone-
ness. The 12 items describe clinical and subclinical forms of auditory
and visual hallucination-like experiences. Participants are asked to rate
the degree to which the content of each item applies to themselves on a
5-point Likert scale (0 = “certainly does not apply” to 4= “certainly
applies”). Aggregate scores may vary from 0 to 48, whereby high scores
reflect a high degree of hallucination proneness. The LSHS-R of the
current (non-clinical) sample were normally distributed with a mean
score of 13.6 (± 9.1) and had excellent internal consistency
(α=0.91). The mean of the current sample did not significantly differ
from the mean of a larger sample from the same target population
(Berry et al., 2018).

2.3. Data acquisition

MRI data were acquired using a 3 Tesla Siemens Trio MR scanner
(Erlangen, Germany). Participants lay supine (head first) in the scanner
with cushions used to minimise movement. One high-resolution T1-
weighted structural run, one T2-weighted structural run and one dif-
fusion-weighted run were acquired for each scan. The anatomical T1-
weighted images (repetition time: 2040ms, echo time: 5.57ms, flip
angle: 90°, voxel size: 1× 1×1mm3, field of view: 256×224mm2)
were acquired by a magnetization-prepared rapid-acquisition gradient-
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echo) sequence across 176 sagittal slices covering the whole brain. The
structural T2-weighted images were acquired as part of the routine
protocol, but not analysed further. Diffusion-weighted images (DWI)
were acquired by a single shot pulsed gradient echo sequence with
echo-planar read-out across 40 axial slices (repetition time: 6000ms,
echo time: 112ms, flip angle: 90°, 3× 3×3mm3, field of view:
222×222mm2). Diffusion was acquired along 60 equally distributed
orientations with b-values of 1000 s/mm2 and 2000 s/mm2 with b-zero
interspersed into the acquisition sequence.

2.4. Cortical reconstruction

T1-weighted structural images of each individual brain were auto-
matically reconstructed by Freesurfer (Martinos Center for Biomedical
Imaging, Charlestown, MA). This reconstruction automatically seg-
mented brain images into cortical grey matter and subcortical white
matter structures (Fischl, 2012). As part of this processing pipeline
Freesurfer automatically computes volumetric statistics for each subject
across a default set of cortical regions.

2.5. Definition of cortical regions of interest (ROI)

Previous studies (Allen et al., 2008; Allen et al., 2012; Van Os et al.,
2009) implicate the STG in the aetiology of AVHs. We therefore as-
sessed this region of interest (ROI) in the left and right hemispheres.
The ROI was identified in each individual brain using the automatic
cortical segmentation from the Freesurfer reconstruction. NODDI me-
trics were quantified in this ROI bilaterally for each individual using an
in-house script written on MATAB 2015a (MathWorks, Natick, US).

2.6. Diffusion-weighted image processing

Diffusion weighted images were processed off-line using the
FMRIB's Diffusion Toolbox (FDT) provided by FSL (The Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain) (Jenkinson
et al., 2012). Pre-processing included eddy current correction and a
motion correction to compensate for head motion artefacts.

For each individual, the diffusion-weighted images were linearly
registered to the reconstructed anatomical space using the FLIRT tool
provided by FSL. The registration matrices were produced using six
degrees of freedom and were visually inspected and manually corrected
if necessary.

The diffusion tensor model (Basser et al., 1994) was fitted to each
voxel of the preprocessed DWI images (with b-value=1000 s/mm2 and
b-zero) by the DTIfit tool of FSL. Subsequently, the fractional aniso-
tropy (FA) and mean diffusivity (MD) (Basser et al., 1994) were cal-
culated. FA expresses the degree of anisotropic diffusion (ranging from
0= isotropic to 1= anisotropic) by the normalized variance of the
eigenvalues of the tensor model. MD expresses the average degree of
diffusion – calculated as the mean of the three eigenvalues.

The NODDI microstructure parameter maps were estimated using
motion-corrected images using the NODDI toolbox(Zhang et al., 2012).
The two (unitless) parameters of interest from the NODDI model were
the intra-cellular volume fraction, which reflects a neurite density index
(NDI), and the orientation dispersion index (ODI). The NDI expresses
the fraction of diffusion per voxel within neurites and theoretically
ranges from 0 (no intra-neurite diffusion) to 1 (full intra-neurite dif-
fusion). The ODI is a measure of the dispersion of neurites (axons,
dendrites) ranging from 0 (strictly parallel) to 1 (isotropically dis-
persed).

2.7. Statistical analysis

For each hemisphere (left and right STG), a multiple regression was
run between all MRI metrics (FA, MD, ODI, NDI and volume) and the
LSHS score. It is well known that NODDI metrics provide sensitive

correlates of age (Chang et al., 2015). We therefore controlled for
participant's age using this as an additional regressor of no interest.
Education level may also affect cognitive performance and cerebral
microstructure (Piras et al., 2011). Therefore, education level (coded by
highest degree: 1=General Certificate, 2=Advanced Level, 3= un-
dergraduate studies, 4= post-graduate studies) was added as regressor.
As the full regression model (based on all measures) assesses the con-
tribution of each measure only within the context of the other mea-
sures, subsequent partial correlations (tested by two-tailed t-tests) for
single measures (controlling for age and education level) were ex-
amined.

3. Results

A multiple regression including all brain measures of the left STG
(volume, FA, MD, ODI, MDI) as well as age and education level ex-
plained R2=64.8% (R=0.805) of the variance in LSHS scores, ad-
justed R2=0.504, F(7, 17)= 4.48, p= .005. However, only volume
(β=−0.34, p= .042), FA (β=−0.56, p= .003), and ODI
(β=−0.58, p= .003) were significant predictors for the LSHS scores.
Neither MD (β=−0.25, p= .164) and NDI (β=−0.07, p= .722) nor
age (β=−0.16, p= .407) and education level (β=0.12, p= .592)
contributed significantly to the prediction of LSHS scores. A multiple
regression for measures of the right STG explained only R2=16.6%
(R=0.408) of the variance in LSHS scores, which was not significant,
adjusted R2=−0.177, F(7, 17)= 0.48, p= .833.

In order to examine the relationship between each single brain
measure and hallucination proneness (LSHS) partial correlations con-
trolling for age and education level were performed. There was a ne-
gative correlation between LSHS scores (13.6 ± 9.1) and the left STG
volume (10,677 ± 1705mm3), which was statistically significant, r

(21)=−0.440, p= .036. However, the right STG volume
(10,286 ± 1348mm3) did not significantly correlate with LSHS scores,
r(21)=−0.291, p= .178 (see Fig. 1).

Partial correlations examining the relationship between hallucina-
tion proneness (LSHS) and DTI-based measures of the STG micro-
structure (controlling for age and education level) showed only a
marginally significant negative correlation between LSHS scores and FA
values in the left STG (0.15 ± 0.03), r(21)=−0.356, p= .095. FA
values in the right STG (0.15 ± 0.03) were not correlated with LSHS
scores, r(21)=−0.215, p= .324. MD values in the left STG
(0.73 ± 0.04 μm2/ms) were not correlated with LSHS scores, r

(21)= 0.033, p= .881, nor were MD values in the right STG
(0.74 ± 0.04 μm2/ms), r(21)= 0.038, p= .863 (see Fig. 2).

Finally, we examined the relationship between hallucination pro-
neness and neurite dispersion (ODI) and neurite density (NDI) based on
the NODDI model. There was a strong, negative correlation between
LSHS scores and ODI values in the left STG (0.53 ± 0.05), which was
statistically significant, r(21)=−0.563, p= .005. ODI values in the
right STG (0.54 ± 0.04) were not significantly correlated with LSHS
scores, r(21)= 0.041, p= .851. This relationship is illustrated in
Fig. 3A. Moreover, NDI values in the left STG (0.41 ± 0.03) were not
correlated with LSHS scores, r(21)= 0.101, p= .645, nor were NDI
values in the right STG (0.39 ± 0.04), r(21)= 0.146, p= .505
(Fig. 3B).

4. Discussion

Hallucination proneness (assessed using the LSHS) was shown to be
negatively associated with the volume and microstructure (assessed
with FA and ODI) in the left but not the right STG. Particularly, neurite
complexity (ODI) rather than neurite density (NDI) was shown to be
associated with hallucination proneness. These results support the
proposed link between STG volume and AVH (Allen et al., 2008; Allen
et al., 2012; Jardri et al., 2012). They are also consistent with the
continuum model of AVHs (Baumeister et al., 2017; Van Os et al., 2009;
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Verdoux and van Os, 2002), demonstrating that, in a healthy popula-
tion, individual variations in hallucination proneness may be related to
individual differences in left STG neurite configuration.

Our results showed that several measures of brain structure (vo-
lume, FA, and ODI) in the left STG predicted LSHS scores. The strongest
relationship (e.g., largest effect as indicated by correlation coefficients)
was observed for ODI suggesting that NODDI-based metrics are most
sensitive in detecting the relationship between brain structure and
hallucination proneness. Hence, the results from the current study
suggest that future research aiming to investigate links between STG
structure and AVHs should adopt multi-shell diffusion-weighted MRI

combined with biophysical modelling. Nevertheless, the other measures
(volume, FA) still showed a relationship with hallucination proneness
even when analysed together with ODI in a combined regression model.
In fact, brain volume and FA were not or only weakly correlated with
ODI (all p > .15).

The specific patterns of association between LSHS scores and the
NODDI metrics provides further insight into the type of microstructural
tissue configuration that may be involved in hallucination proneness
and expands on previous research linking hallucinations and micro-
structure in the left STG (Lee et al., 2009). Healthy grey matter which is
involved in higher order processing is associated with high dendritic

Fig. 1. Relationship between STG volume and hallucination proneness. The scatter plots show scores of hallucination proneness (LSHS) as a function of the left and
right superior temporal gyrus (STG) volume, respectively. The volume of the left STG (but not the right STG) showed a significant correlation with LSHS scores.
Relationships that were significant (p < .05) in the multiple regression (see text) are indicated by sold lines and the partial correlation coefficient (r), non-significant
(n.s.) by dashed regression lines. n=25.

Fig. 2. Relationship between DTI-based measures of microstructure and hallucination proneness. The scatter plots show scores of hallucination proneness (LSHS) as a
function of A) fractional anisotropy (FA) and B) mean diffusivity (MD) of the left and right superior temporal gyrus (STG), respectively. FA values (but not MD) in the
left STG (but not the right STG) showed a significant correlation with LSHS scores. Relationships that were significant (p < .05) in the multiple regression (see text)
are indicated by sold lines and the partial correlation coefficient (r), non-significant (n.s.) by dashed regression lines. n=25.
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spine complexity (Hering and Morgan, 2001; Zhang et al., 2012). We
observed a negative relationship between ODI in the left STG and LSHS
scores such that lower dendritic spine complexity was associated with
higher hallucination proneness. As we did not find an association with
hallucination proneness and dendritic density, our results support the
notion that function can be regulated by dendritic spine structure and
not only by the density of dendrites (Hering and Morgan, 2001; Jacobs
et al., 2001; Morris et al., 2016).

Previous research suggested that AVHs are related to reduced
functional connectivity within language circuitries (Lawrie et al., 2002;
Mechelli et al., 2007). Although this reduced functional connectivity
may be mediated by the architecture of axons in the white matter (e.g.,
callosum)(Spray et al., 2017), the present results suggest an additional
mechanism: The reduced functional integration in AVHs may reflect
reduced synaptic integration capacity within the grey matter of the left
STG. This reduced synaptic integration seems to be primarily due to
reduced neurite complexity. However, as we also observed volume
changes, which were not or only weakly correlated with ODI, other
mechanisms may also contribute. Further research assessing both
functional integration capacity in the left STG alongside measures of
synaptic integration capacity (such as ODI) in the left STG could shed
further light on the mechanisms behind AVH and offer a potential
biological marker for this symptom.

The sample of the current study did not include CVHs which means
that the results are not confounded by illness-related effects of
chronicity and medication. Although this is an advantage, future re-
search needs to determine whether the findings are generalizable to a
clinical population. Although healthy individuals who score highly on
the LSHS do not usually have hallucinatory experiences that are as
pervasive and persistent as those experienced by CVHs (Stanghellini
et al., 2012), HVHs with high LSHS scores and CVHs have similarly

impaired source monitoring ability (Brébion et al., 2016; Brookwell
et al., 2013). Moreover, previous research suggests that the AVH neural
mechanisms are likely to be shared by both groups (Jardri et al., 2012).
There are some indications from self-report studies that high LSHS
scores in HVHs may be linked to excessive dialogic inner speech
(McCarthy-Jones and Fernyhough, 2011) whereas CVHs may especially
experience inner speech that takes the characteristic of other people (de
Sousa et al., 2016). However, the main difference between CVHs and
HVHs seems to be in the way that they interpret their experiences, with
CVHs interpreting their hallucinations as powerful, threatening and
therefore distressing (Chadwick and Birchwood, 1994; Daalman et al.,
2011; Honig et al., 1998; Sorrell et al., 2010). Future research into the
neurite configuration of the STG in groups of both HVHs and CVHs
could further advance our understanding of group differences and help
to determine whether the neurite related AVH aetiology is shared.

A limitation of the current study is the relatively small and homo-
genous (primarily students) sample. Future research may seek to re-
plicate these findings with a larger sample from a more diverse popu-
lation. Additional characteristics, not assessed in this current study,
such as levels of anxiety or depression, intelligence, socioeconomic
status, and history of psychiatric disease could also be associated with
hallucination proneness, brain volume, and microstructure. Future re-
search should assess the contribution of these additional factors - even
though in our study age and educational level had only a very moderate
effect compared to the metrics of brain structure.

In summary, the current findings point towards a possible me-
chanism for hallucinations within the left STG. The findings suggest
that an aberrant microstructure, specifically reduced dendritic spine
complexity, contributes - at least partially - to the genesis of AVHs.
Furthermore, the present results suggest that multi-compartment DWI
methods such as NODDI provide more sensitive measures than

Fig. 3. Relationship between NODDI-based measures of microstructure and hallucination proneness. The scatter plots show scores of hallucination proneness (LSHS)
as a function of A) orientation dispersion (ODI) and B) neurite density (NDI) of the left and right superior temporal gyrus (STG), respectively. ODI values (but not
NDI) in the left STG (but not the right STG) showed a significant correlation with LSHS scores. Relationships that were significant (p < .05) in the multiple
regression (see text) are indicated by sold lines and the partial correlation coefficient (r), non-significant (n.s.) by dashed regression lines. n= 25.
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volumetric measures alone.
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