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Abstract 

The objective of this paper is to provide new insights into commuters’ mode choice behavior in 

a monocentric closed city with endogenous population distribution, where a congested highway and 

a crowded railway provide commuting services for residents on a linear urban corridor. We first 

explore typical equilibrium mode-choice patterns with exogenous city boundary and population 

distribution, and then incorporate residents’ mode choice into an urban spatial equilibrium model, in 

which residents’ household consumption, residential location choice and property developers’ 

housing production are also explicitly modeled. Using comparative static analysis, we find that the 

urban corridor expands with the increase of railway fare if there is no congestion in the bimodal 

transportation system, but it would be uncertain if highway congestion and transit crowding cannot 

be ignored. We provide numerical evidence to show that the urban corridor possibly shrinks with the 

increase of railway fare once congestion effects are considered. We also discuss the changes of urban 

form, utility level of residents and social welfare with different railway fare and subsidy policies. The 

numerical results show that the distance-based fare policy with low subsidy should be preferred 

because it can realize the Pareto-improved social welfare and utility level of residents. 

Keywords: linear monocentric city; mode choice; residential location choice; housing market; 

railway subsidy 

 

1. Introduction 

In recent decades and accompanying the economic growth and technological advances, we have 

seen rapid expansions and complex changes in developing cities around the world, such as that 
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taking place in Beijing and Shanghai, China. Urban expansion results in commuters living further 

away from work places, which in turn dramatically increases the demand for motorized vehicles. For 

instance, a report by Beijing Municipal Bureau of Statistics shows that the total number of motorized 

vehicles reached 5.6 million at the end of 2014 from a level of 4.8 million just four years ago, even 

though new car registrations via a lottery system have been introduced since 2011 (BMBS, 2015). 

Meanwhile, rapid developments of urban subways and railway networks such as mass transit systems 

in these cities have broadened travel mode choices to commuters (Yang et al., 2016, Peng et al., 

2017), and governments and transit agencies are putting in vast sum of investments and subsidies to 

provide a reasonable level of transit operations throughout the cities (Wang et al., 2015; Xu et al., 

2017). These rapid and complex developments in cities raise challenging research questions, 

especially on the agenda of sustainable urban development. 

In principle, distribution and migration of population, frequent changes in work place and 

residential location and so on, may all have marked effects on the travel decisions of the residents 

(e.g. on travel mode, time of day and route choices). Likewise, developments (and expansions) of 

multimodal transportation networks (such as new metro lines) and the accompanying pricing policies 

may lead to changes in residential location choice, land-use pattern, housing market and so on (e.g., 

Bravo et al., 2010; Ma and Lo, 2012; Mohammad et al., 2013; Efthymiou and Antoniou, 2013; Dubé 

et al., 2013; Wang and Du, 2016b; Ng and Lo, 2015, 2017). It is, therefore, of great importance to 

address the inter-relationship between transportation and residential location choices, and the impacts 

of pricing policies, land use and housing developments on these choices. 

Transport planners have long since recognized the need to consider the interactions between 

transport and land use in making their long-term transport planning for urban areas. For cities of 

relatively small sizes and with stable transportation and land-use markets, traditional four-stage 

travel demand models have been established to analyze trip generation, trip distribution, modal split 

and trip assignment. However, it has long been recognized that there are inconsistencies across 

different levels of four-stage modeling, due in part to their sequential and independent processes and 

the lack of feedback loops between stages. There have been large efforts in developing combined 

(with feedback loops) transportation equilibrium models to overcome some of the inconsistencies in 

the traditional four-stage modeling (e.g. Evans, 1976; Boyce and Southworth, 1979; Safwat and 

Magnanti, 1988; Huang and Lam, 1992; Tam and Lam, 2000; Zhou et al., 2009). For a historical 

overview of combined equilibrium models, readers can refer to Boyce and Williams (2015). 

Combined equilibrium models based on multi-modal discrete networks have been formulated 

and analyzed extensively in the past decade (e.g. Lo et al., 2004; Garcıғa and Marıғn, 2005; Liu et al., 

2015). Discrete network models are generally developed for their realism in representing the 
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behavior of city; however such models tend to have a large number of parameters to be estimated. 

On the other hand, the continuum modeling approach has been shown to be able to explore general 

trends and patterns of commuters’ behavior and their changes in response to policy changes in 

transportation systems at a more aggregated macroscopic level (Ho and Wong, 2006). In many 

continuum equilibrium traffic assignment models, densely spaced roads are treated as a continuum 

over which commuters are continuously distributed in a two-dimensional space (e.g., Sasaki et al., 

1990; Yang et al., 1994; Wong, 1998; Jiang et al., 2011). Due to the difficulty of obtaining exact 

solutions and analytical properties in a two-dimensional space, a simplified one-dimensional urban 

corridor with a continuum of entry points and a single exit point has often been adopted. Jehiel (1993) 

was the first to verify the existence of the simple solution of equilibrium states under the condition 

that the capacities of two congested modes are constant. In a transport system with a congestible 

highway and a congestion-free railway, Wang et al. (2004) investigated the characteristics of 

equilibrium mode choice patterns before and after the introduction of a park-and-ride (P&R) service. 

Following the thinking of Wang et al. (2004), Liu et al. (2014) further investigated the effects of 

rationing and pricing on morning commuters’ travel cost and modal choice behavior in each location. 

Taking into account the in-vehicle crowding effects of railway service and assuming a continuous 

P&R provision on the urban corridor, Liu et al. (2009) explored the continuum equilibrium 

properties by analyzing commuters’ mode choice and P&R transfer decisions. Li et al. (2012) 

investigated the intermodal equilibrium, road toll pricing, and bus system design issues on the 

congested urban corridor with two alternative modes of auto and bus, which share the same roadway. 

These studies on the continuum equilibrium are limited in their consideration of transportation 

systems and rely on one key assumption that the spatial distribution of households and the length of 

urban corridor, i.e., the city boundary, are given exogenously. As we mentioned before, transportation 

systems are linked closely with urban economics. Especially in those cities with rapid spatial 

expansions, urban land-use and housing developments as well as residents’ consumer behavior 

frequently interact with residents’ residential location and mode choices in the long term. Therefore, 

it is necessary to analyze the continuum equilibrium properties of mode choice patterns in an urban 

spatial equilibrium modeling framework. 

On the basis of the stylized monocentric city model (Alonso, 1964; Muth, 1969; Mills, 1967, 

1972; Brueckner, 1987), this paper develops a bimodal urban spatial equilibrium model in which the 

interplays among household consumption, residential location, mode choice and housing production 

are explicitly modeled. Furthermore, we analyze the impacts of railway fare changes on the city 

boundary with the consideration of endogenous population distribution, and numerically discuss the 

changes of urban form, utility level of residents and social welfare with different railway fare and 
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subsidy policies.  

The remainder of this paper is organized as follows. Section 2 reviews the urban economics 

studies on mode choice and subsidy issues associated with monocentric cities. Section 3 describes 

the basic assumptions and the overall modeling framework. Section 4 explores equilibrium mode-

choice patterns with exogenous city boundary and population distribution. Section 5 presents an 

urban spatial equilibrium model by integrating household consumption, residential location choice 

and housing production with mode choice. The effects of railway fare changes on the city boundary 

are examined in detail. Section 6 provides a numerical comparison of urban system performance 

with different railway fare and subsidy policies. Concluding remarks are provided in Section 7. 

 

2. Related studies 

Much urban economic analysis is made based on a particular model of urban spatial structure, 

the monocentric city model pioneered in the 1960s by Alonso (1964), Muth (1969) and Mills (1967). 

In this section, we focus on reviewing related studies on mode choice and subsidy issues associated 

with monocentric cities in the urban economics literature. 

The earlier literature emphasized the integration of mode choice into urban economic analysis 

and ignored the effects of either traffic congestion or in-vehicle crowding. Capozza (1973) was the 

first to develop a spatial general equilibrium model of a monocentric city with two transportation 

modes, i.e., a land-intensive road service and a land-economizing subway service. By assuming that 

the subway is less expensive than roads from the Central Business District (CBD) to some location 

on the urban corridor, Capozza found numerically that the addition of a subway system to a city with 

only roads would reduce transportation costs and city size. The reason for this is such that the 

construction of a subway permits land to be transferred from road use to housing, thereby dominating 

the reduction of city size. Without the use of land in transportation, Arnott and MacKinnon (1977) 

used a spatial general equilibrium simulation model to study the long-run effects of transportation 

changes such as changing parking fees and decreasing bus travel time in a closed city. An interesting 

point brought out in their simulations is the welfare-interdependence of different groups resulting 

from their spatial interaction. Anas and Moses (1979) was the first to provide an analytical urban 

spatial model to examine the impact of bimodal transportation on equilibrium residential land use 

and urban forms. They showed that the basic urban forms can result from the relative generalized 

cost characteristics of competing dense and sparse radial networks. Using an extended Alonso-Muth 

model (Alonso, 1964; Muth, 1969) with two competing modes of commuting, LeRoy and Sonstelie 

(1983) explained both of why resident distribution pattern of American cities, that the rich lived on 

the edges while the poor lived in the centers, prevailed until the 1970s and of why it is changing. 
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Sasaki (1989, 1990) made a comparative static analysis of urban spatial structure in two-transport 

mode setting and examined the impacts of transportation system changes and income changes on 

users’ welfare. It is found that an improvement in the public transport mode may produce a 

contraction in the city size and decrease the welfare of some residents. Using a monocentric city 

model with two transportation modes, Creutzig (2014) investigated the effect of fuel prices on public 

transport infrastructure, modal shares and urban form. Besides the above works with discrete mode 

choice, some papers developed urban spatial equilibrium models that introduces mode choice as a 

continuous variable by assuming residents may optimize respective travel time, speeds or costs for 

objective decisions (e.g., Brown, 1986; DeSalvo and Huq, 2005; Brueckner, 2005). 

There are a few studies focusing on transport subsidies in a monocentric city model. Brueckner 

(2005) was the first to deal with transportation subsidies as a potential source of urban sprawl. They 

showed that transport subsidies inefficiently lead to the urban expansion if the single-mode transport 

system exhibits constant returns to scale. Su and DeSalvo (2008) extended the work of Brueckner 

(2005) to investigate the effect of transportation subsidies on urban sprawl in a two-mode urban 

spatial model. It is found by comparative static analysis that there are an inverse relation between 

transit subsidies and sprawl and a direct relation between auto subsidies and sprawl, which is 

different from the single-mode results obtained in Brueckner (2005). With the assumption of fixed 

housing consumption, Borck and Wrede (2008) made progress in addressing optimal mode choice in 

presence of income heterogeneities. They found subsidies toward different modes have different 

effects. For instance, rich automobile drivers may suffer from transit subsidies, while poor transit 

users may benefit from subsidies to automobiles. 

To the best of our knowledge, however, few studies discussed mode choice problems in an 

urban spatial equilibrium setting with congestion externalities, except for Haring et al. (1976) and 

Buyukeren and Hiramatsu (2016). Haring et al. (1976) extended a von Thunen-type model of urban 

structure by Mills (1972) to include two congested modes of transportation, and then concluded by 

simulating representative American and European cities that one travel mode dominates 

transportation choice until a competing mode becomes competitive, beginning at the edge of city. 

This conclusion is intuitive although it is through a numerical analysis: Haring et al. (1976) did not 

provide any analytical proof for it, nor did they discuss subsidies for commuting in their work. 

Buyukeren and Hiramatsu (2016) studied how anti-congestion policies such as congestion tolls and 

an urban growth boundary should be designed optimally in a monocentric city with car and public 

transit modes. They found that modal substitution effect can limit the centralizing force of anti-

congestion policies, which would make mitigating congestion cause urban sprawl. The result is 

obtained using a simplified two-zone monocentric model often used in the urban economics 
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literature (e.g., Anas and Pines, 2008). 

Table 1 summarizes the differences among the related studies together with this papers’ 

contributions. In reality, the impacts of congestion and transport subsidies on residents’ mode choice 

and residential location choice cannot be ignored. In this paper, we characterize congestion and 

substitution effects between transportation modes in a continuum model framework for urban spatial 

equilibrium, and examine the impacts of transport subsidies on urban form and utility level of 

residents. 

 

Table 1. Contributions to urban economics literature. 

Citation Transportation 
modes 

Congestion 
effect 

Transport 
subsidies 

Urban 
model Solutions 

Alonso (1964), Mills (1972), 
Muth (1969) 

Highway No  No  Continuum Analytical  

Capozza (1973), Arnott and 
MacKinnon (1977) 

Highway & railway No  No  Continuum Numerical  

Anas and Moses (1979), 
Sasaki (1989, 1990) 

Highway & railway No  No  Continuum Analytical 

Brueckner (2005) Highway No  Yes  Continuum Analytical 
Su and DeSalvo (2008) Highway & railway No Yes Continuum Analytical 
Haring et al. (1976) Highway & railway Yes  No  Continuum Numerical 
Buyukeren and Hiramatsu 
(2016) 

Highway & railway Yes  No Two-zone Analytical 

This paper Highway & railway Yes  Yes  Continuum 
Analytical & 
Numerical 

 

3. Model framework for a bimodal monocentric city 

In this section, we propose a continuum model framework for a linear monocentric city with 

two transportation modes, which is a modification of the stylized monocentric city model (Alonso, 

1964; Muth, 1969; Mills, 1967, 1972; Brueckner, 1987). In the modified model, each urban resident 

commutes to work in the CBD along a linear urban corridor with a crowded railway (specially 

referred to be of either subway or light rail type with closely spaced stations) and a congested 

highway serving for two alternative travel modes, transit and auto (Liu et al., 2009; Du and Wang, 

2014).  

To facilitate the presentation of essential ideas of this paper without loss of generality, we 

introduce several basic assumptions as follows. 

A1: The city is closed. This means that the total population is exogenously given and fixed, but 

the utility level of residents, city boundary and spatial population distribution are all endogenously 

obtained by balancing the demand and supply of housing and land markets. In the land market, the 

land value determines the land use patterns on the urban corridor, an urban residential area or a rural 

area. In the long run, the land rent at the city boundary is assumed to be equal to the exogenous 
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agricultural rent. 

A2: At the demand side of housing market, all residents are assumed to be rational and earn the 

same annual income at the CBD, and tastes are assumed to be identical for all individuals. After 

subtracting the annual commuting cost, all the remaining annual income of each resident can be used 

to consume two kinds of normal goods, a housing service and a composite non-housing good. The 

objective of each resident is to maximize his/her household utility by household consumption and 

residential location choice within his/her budget constraint. 

A3: The annual commuting cost of each resident is endogenously determined by all residents’ 

simultaneous mode choice decisions along the corridor. All residents can choose their preferred 

travel modes based on each mode’s generalized travel cost in a morning rush hour, which is defined 

as the fixed cost plus the variable cost related to travel distance and congestion externality. For 

simplicity the supply of transportation, e.g., the capacity of highway and the speed of train, is 

assumed to be fixed and constant throughout the corridor. 

A4: At the supply side of housing market, property developers determine the housing 

investment per unit of land on the corridor in order to maximize their respective profits. The land 

revenue from land rents belongs to the government, and can be partly used to subsidize the operating 

deficit of railway (defined as the difference between operating cost and fare income) with given fare 

and subsidy policies. 

Based on the above assumptions, urban residents’ mode choice, household consumption and 

residential location behavior, property developers’ housing production behavior and the 

government’s subsidy policies for railway operation are explicitly integrated in the proposed bimodal 

monocentric city model, and their interplays are shown schematically in Fig. 1. The proposed model 

framework consists of three important components:(i) mode choice equilibrium, (ii) housing 

demand-supply equilibrium, and (iii) railway fare and subsidy policies. For the mode choice 

equilibrium, each resident’s annual commuting cost is generated with a given  inputted city boundary 

and spatial population distribution from the second component and the railway fare from the third 

component. Taking the land and endogenous commuting cost as inputs, the second component 

determines the city boundary, spatial population distribution, land rents and residents’ utility level in 

a housing demand-supply equilibrium setting. With the above land rents and residents’ utility level as 

inputs, the third component sets the government’s fare and subsidy policies for railway operating.  
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Fig.1. Model framework for a bimodal monocentric city. 

 

4. Mode choice equilibrium 

This section focuses on the first component of the proposed bimodal monocentric city model. 

Specifically, we will characterize typical equilibrium mode-choice patterns and the generation of 

endogenous annual commuting cost with exogenously given city boundary and spatial population 

distribution. Following  Wang et al. (2004), Liu et al. (2009) and Liu et al. (2014), the commuting 

during a morning rush hour is modeled as a continuum of entry points and a single exit point. The 

exit point represents the CBD which all residents or commuters are heading for.  

Let B  be the city boundary or the length of urban corridor, N  be the total population of city 

commuting to the CBD and ( )n x  be the residential population density at location or entry point x , 

where x  is defined as the distance from the location or entry point to the CBD. Therefore, it holds 

that 
0

( )d
B
n x x N . 

 

4.1. Generalized travel cost functions 

According to the assumption A3, all residents or commuters can choose their preferred travel 

modes at any entry point of the corridor based on each mode’s generalized travel cost in a morning 
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rush hour at that entry point. Before characterizing equilibrium mode-choice patterns along the 

corridor, we first introduce the specific components of generalized travel costs in a morning rush 

hour by transit mode and by auto mode, respectively. 

The generalized travel cost by transit mode from location x  to the CBD, ( )rG x , consists of 

three cost components: (a) the fixed cost component, ra , which includes the access time cost using 

the transit mode and the fixed part of railway fare; (b) the distance-related cost component, rb x , 

where rb  is the congestion-free variable cost per unit distance (e.g., the variable part of railway fare); 

and (c) the location-dependent in-vehicle crowding cost component, ( )rc x . It follows: 

( ) ( )r r r rG x a b x c x   .
 

(1) 

As explained in Huang (2000), the in-vehicle crowing cost is mainly attributed to the privacy loss 

and body contact (uncomfortable physical proximity). The more passengers there are in the train, the 

larger the in-vehicle crowding cost is (Tirachini et al., 2013; Lu et al., 2015). Thus, the value of 

( )rc x  certainly depends on the number of passengers in the train from location x  to the CBD. Let 

( )rN x  be the number of passengers in the train arriving at location x . Similar to Liu et al. (2009), 

we consider a function form of ( )rc x  as follows: 

 
0

( ) ( ) d
x

r r rc x g N w w  ,
 

(2) 

where  ( )r rg N x  is the in-vehicle crowing cost per unit distance at location x . Without loss of 

generality, it is assumed that (0) 0rg   and  ' ( ) 0r rg N x  . 

The generalized travel cost by auto mode from location x  to the CBD, ( )hG x , also consists of 

three cost components: (a) the fixed cost component, ha , which includes the access time cost and the 

fixed monetary cost using the auto mode (e.g., the parking fee at the CBD); (b) the distance-related 

cost component, hb x, where hb  is the congestion-free variable cost per unit distance including the 

free-flow travel time cost and the variable monetary cost for driving unit distance on the highway 

(e.g., fuel and insurance fees).; and (c) the location-dependent congestion time cost component, 

( )hc x . It follows: 

( ) ( )h h h hG x a b x c x   .
 

(3) 

Similar to Wang et al. (2004) and Liu et al. (2009), let the travel time cost  ( )h ht N x  for driving 

unit distance around location x  be a strictly increasing function of traffic volume ( )hN x  at x , and 0
ht  

be the free-flow travel time cost per unit distance. Thus, 0 (0)h ht t  holds. The location-dependent 
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congestion time cost component ( )hc x  can be denoted as 

  0

0
( ) ( ) d

x

h h h hc x t N w w t x  . (4) 

Specially, if  ( )h ht N x  takes a standard Bureau of Public Roads (BPR) function type, i.e., 

    0 0( ) 1 ( )h h h h ht N x t N x W


  , where 0
hW  is highway capacity,   and   are positive 

parameters, then Eq. (4) can be changed as 

 0 0

0
( ) ( ) d

x

h h h hc x t N w W w


  . (5) 

 

4.2. Equilibrium patterns of mode choice 

Let ( )rn x  and ( )hn x  be the demand densities (the number of commuters per unit distance) of 

residents who choose the transit mode and auto one at location x , respectively. It follows: 

( ) ( ) ( )r hn x n x n x  . (6) 

The number of passengers in the train arriving at any location x  is 

( ) ( )d
B

r rx
N x n w w  . (7) 

And the traffic volume on the highway at any location x  is 

( ) ( )d
B

h hx
N x n w w  . (8) 

According to Wardrop’s (1952) First Principle for travel choice, a deterministic user equilibrium is 

achieved when no user can reduce his/her generalized travel cost by changing mode choice no matter 

where he/she lives. 

Definition 1. Mathematically, the user equilibrium conditions for mode choice can be written as: 

( ) 0 ( ) ( )

( ) 0 ( ) ( )
h h r

r r h

n x G x G x

n x G x G x

  
   

,  0,x B , (9) 

where ( )rG x  and ( )hG x  is given by Eqs. (1) and (3), respectively. This definition states that at mode 

choice equilibrium, residents at any location choose the mode with the minimal generalized travel 

cost. Therefore, the annual commuting cost for each resident located at x  can be expressed as 

 ( ) 2 min ( ), ( )r hC x G x G x , (10) 

where the “2” denotes a daily round-trip travel between location x and the CBD (here, we assume 

morning and evening commuting are completely symmetrical), and   is the annual average number 

of trips to the CBD per resident. 

A little change in the cost components of any one mode’s generalized travel cost would impact 
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on the equilibrium mode-choice patterns. Next, we focus on the scenarios that each mode will be 

used at certain locations along the urban corridor, and characterize typical patterns of mode choice 

equilibrium under different restrictive conditions. Without much loss of generality, the following 

assumption is used for all the characterized equilibrium patterns: 

r r h ha b B a b B   , (11) 

which assures that for all residents at the city boundary, traveling on the highway is always cheaper 

than that on the railway if the highway is empty (Wang et al., 2004; Liu et al., 2009). In other words, 

residents located closer to the city boundary always prefer to commute by auto mode. Based on this 

assumption, the following three cases with four typical patterns of mode choice equilibrium become 

possible2 due to the gap between the fixed cost components of two modes, as shown in Fig.2. 
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Fig. 2. Possible equilibrium mode-choice patterns 

 

Case (I): (0) (0)r hG G  

                                                        
2 If the transit mode has no crowding effect, as analyzed in Wang et al. (2004), there exists only one possible equilibrium mode-choice 
pattern for the scenario that both modes will be used along the urban corridor. It is similar to that shown in Fig. 2(Ib), where a unique 
mode-switching point distinguish the use of transit mode and auto mode along the corridor. 



12 
 

This case has been discussed in Liu et al. (2009). We restate it here for comparison. In this case, 

the railway has the lower fixed cost than the highway, i.e. 

(0) (0)r r h hG a G a   . (12) 

Eqs. (11) and (12) assure that 

r hb b , (13) 

which means that the highway has lower congestion-free variable cost per unit distance than the 

railway. Therefore, the railway is used by all residents living closer to the CBD, while the highway is 

used by those living farther out. Two typical patterns of mode choice equilibrium become possible 

due to the gap between the variable costs (including the distance-related and congestion cost 

components) of two modes, see panels (Ia) and (Ib) of Fig. 2. If there are small gaps between the 

fixed costs of two modes and/or between their variable costs, two mode-switching points, 1x  and 2x , 

might exist and both congested modes can be used simultaneously between them. As shown in Fig. 

2(Ia), the variable costs of two modes per unit distance become equal at 2x , and the two generalized 

travel cost curves coincide in the interval 1 2,x x   . So that    2 2r hG x G x   and    1 1r hG x G x , 

i.e. 

 
2

0( )d
B

r h h hx
b b t n w w t   , (14) 

1 1 2

1
1 1 1

0
( ) ( )d ( )d d

x x x

r r r r r r rx x
a b x c x a b x g n w w n w w x       

   
 

1 2

1 2

0
1 1 1 1

0
( ) ( )d ( )d d

x x B

h h h h h h h hx x
a b x c x a b x t n w w n w w x t x         

    . (15) 

By solving Eqs. (14) and (15), we can get the solutions of 1x  and 2x  if they both exist. However, the 

congestion-free variable cost of transit mode per unit distance has the possibility to be large enough 

to exceed that of auto mode when serving all demands, i.e. 

0( )r h h hb b t N t   . (16) 

This means Eq. (14) does not hold again. In this scenario, only one mode-switching point exists 

along the corridor, denoted as 3x . As shown in Fig. 2(Ib), all residents living inside 3x  take railway 

while those living beyond 3x  take highway. At location 3x , we have    3 3h rG x G x , i.e. 

3 3

3 3 3
0

( ) ( )d d
x x

r r r r r r x
a b x c x a b x g n w w x       

  
  3

3

0
3 3 3 3

0
( ) ( )d d

x B

h h h h h h hx
a b x c x a b x t n w w x t x        . (17) 
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Case (II): (0) (0)r hG G  

As the fixed costs of two modes are equal, i.e., (0) (0)r r h hG a G a   , the solution of Eq. (15) 

approaches the CBD, and the ‘‘simple solution” in Jehiel (1993) emerges, which is the special case 

of Case (I). As shown in Fig.2(II ), both congested modes are used between the CBD and location 1x , 

and only the auto mode is used from 1x  to the city boundary. The solution of 1x  can be obtained by 

resolving 1 1( ) ( )r hG x G x  , i.e. 

 
1

0( )d
B

r h h hx
b b t n w w t   . (18) 

 

Case (III): (0) (0)r hG G  

In this case, the fixed cost of transit mode is larger than that of auto mode, i.e. 

(0) (0)r r h hG a G a   , (19) 

which means all residents living near the CBD take highway for travel. Fig. 2(III ) depicts the 

situation that both congested modes can be used simultaneously between location 2x  and 3x . Similar 

to the first panel of Case (I), the variable costs of two modes per unit distance become equal at 3x , 

and the two generalized travel cost curves coincide in the interval  2 3,x x . So that 3 3( ) ( )r hG x G x   

and 2 2( ) ( )r hG x G x , i.e. 

 
3

0( )d
B

r h h hx
b b t n w w t   , (20) 

 2 2 3

2
2 2 2 0

( ) ( )d ( )d d
x x x

r r r r r r rx x
a b x c x a b x g n w w n w w x       

  2 3

2 3

0
2 2 2 20

( ) ( )d ( )d d
x x B

h h h h h h h hx x
a b x c x a b x t n w w n w w x t x          . (21) 

By solving Eqs. (20) and (21), we can get the solutions of 2x  and 3x . Note that in this case, the 

solution of Eq. (20) always exists with the assumption that no mode is allowed to dominate the 

whole corridor. 

Some properties of mode choice equilibrium can be observed for all cases from Fig. 2: (a) the 

variable costs of two modes per unit distance are both positive and non-increasing with x 3,  0,x B ; 

(b) the generalized travel costs of two modes and their lower envelope, i.e., the minimum of 

                                                        
3 The proof of this property is similar to that of entry (i) of Lemma 1 in Liu et al. (2009). We omit it here in order to save space. 
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generalized travel costs, are both continuous and increasing with x ,  0,x B . In terms of its 

definition that the minimal generalized travel cost times some constants, the annual commuting costs 

of residents, ( )C x , are also continuous and increasing with x ,  0,x B . In addition, it is noticed 

that the minimum of generalized travel costs and resultant annual commuting costs of residents are 

differentiable for all  0,x B  in each panel of Fig. 2 except for 3x x  in Fig. 2(Ib). 

Given the city boundary and residential population distribution, the following Proposition 1 

(Proof can be found in Appendix A.1) shows how the mode-switching points 2x , 3x , 1x  and 3x  in 

Fig. 2 vary with the fixed cost component of transit travel ra  or the congestion-free variable cost per 

unit distance by transit mode rb . This proposition can be used for comparison with the numerical 

results in Section 5.5, where the city boundary and population distribution are endogenously 

determined. However, due to the simultaneous use of transit mode and auto mode at certain location 

internals along the corridor, the variations of the mode-switching points 1x  and 2x  with respect to ra  

or rb  are difficultly derived, although it intuitively seems that 1x  is decreasing whilst 2x  is 

increasing with ra  or rb . 

 

Proposition 1. Given the city boundary B  and the residential population density ( )n x , the mode-

switching points 2x , 1x  and 3x  do not vary with ra  whist 3x  is decreasing with ra . Furthermore, 2x , 

3x , 1x  and 3x  are all decreasing with rb . 

 

Once the city boundary and population distribution are fixed, it is also intuitive to know that the 

annual commuting cost of residents ( )C x will increase with ra  or rb . The following Proposition 2 

(Proof can be found in Appendix A.2) only verifies this property for the scenario shown in Panel (Ib) 

of Fig. 2. For the other scenarios in Fig. 2, analytical derivations are more complex due to the 

simultaneous use of transit mode and auto mode at certain location internals along the corridor. 

 

Proposition 2. Given the city boundary B  and the residential population density ( )n x  for the 

scenario shown in Panel (Ib) of Fig. 2, the annual commuting cost of residents ( )C x  are increasing 

with ra  or rb  for any  0,x B . 
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5. Urban spatial equilibrium 

It is known in the previous section that, with a given city boundary and residential population 

distribution, the annual commuting cost of residents at any location along the urban corridor may be 

generated endogenously by modeling residents’ mode choice behavior. In the long run, the city 

boundary and population distribution will both change with residents’ household consumption and 

residential location choice, property developers’ housing production and housing market’ demand-

supply equilibrium. Taking the endogenous annual commuting costs of residents as inputs, this 

section presents the whole urban spatial equilibrium model except for the mode choice equilibrium 

component. 

 

5.1. Household consumption and residential location 

This section focuses on the demand side of housing market. According to assumption A2, all 

residents are assumed to be identical and earn the same annual income Y  at the CBD. For a rational 

resident at location x , his/her optimal decision on the annual consumption of two normal goods, a 

housing service and a composite non-housing good, is to resolve the direct utility maximization 

problem under his/her budget constraint. That is, for any [0, ]x B , 

 
( ), ( )

( ) max ( ), ( )
z x g x

U x V z x g x , (22) 

subject to the budget constraint, 

( ) ( ) ( ) ( )z x p x g x Y C x   . (23) 

Here,  ( ), ( )V z x g x  is a common household direct utility function, where ( )z x  is the location-

dependent consumption of a composite non-housing good and ( )g x  is the location-dependent 

consumption of housing (also called the lot size), measured in square feet of floor space; ( )U x  is the 

location-dependent household indirect utility function; ( )p x  is the location-dependent housing rental 

price per square foot and the price of non-housing good is taken to be unity for simplicity; ( )C x is  

the annual commuting cost as defined before. 

For convenience of further analysis, as assumed in Li et al. (2013) and Gubins and Verhoef 

(2014), the following Cobb–Douglas form of household direct utility function is adopted in this 

paper, 

 ( ), ( ) ( ) ( )   0,  1V z x g x z x g x        , , , (24) 

where   and   are positive constants. Here, 1    represents the household direct utility 

function has constant returns to scale, which is assumed in this paper for simplicity. 
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By solving the budget constraint in ( )z x  and substituting it into Eq. (24), the first order 

condition of Eq. (24) with respect to ( )g x  gives a unique demand for the lot size, which is implicitly 

defined as 

( ) 0
V V

p x
z g

 
  
 

. (25) 

Then we obtain 

 ( ) ( ) ( )g x Y C x p x  , (26) 

 ( ) ( ) ( )U x Y C x g x
   . (27) 

Since all residents are identical, the urban spatial equilibrium must yield identical utility levels 

for all individuals. Let u  be the utility level of residents at urban spatial equilibrium. So, we have 

 U x u
 
for all [0, ]x B . Combining this with Eqs. (26) and (27), we derive  ,p x u  and  ,g x u , 

which are also functions of utility level u , as follows (Please refer to Appendix B): 

   1 1, ( )p x u Y C x u
      , (28) 

    1, ( )g x u Y C x u
      . (29) 

Eqs. (28) and (29), respectively, illustrate the housing rental price per square foot and lot size per 

household at equilibrium. Obviously, under a given level of utility, the housing rental price decreases 

and the lot size per household increases with the distance from the CBD, since the annual commuting 

cost is a continuous and increasing function of x , see the discussions in the previous section. 

 

5.2. Housing production 

This section focuses on the supply side of housing market. Property developers at each location 

along the corridor are assumed to determine the capital investment in the location-dependent housing 

market in order to maximize their respective profits. The following Cobb–Douglas form of housing 

production function is used to capture property developers’ behavior (Brueckner, 1987): 

 ( ) ( ) ,0 1bh S x S x b   , [0, ]x B , (30) 

where  ( )h S x  is the housing supply per unit of land at location x , ( )S x  is the capital investment 

of housing per unit of land at location x  and  and b  are positive parameters. 

Let ( )r x  be the rent or value per unit of land at location x  and k  be the price of capital (i.e., 

the interest rate). Property developer’s profit per unit of land at location x , ( )x , by optimizing the 

capital investment intensity ( )S x , can be maximized as 
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   
( )

max ( ) ( ) ( ) ( ) ( )
S x

x p x h S x r x kS x    , [0, ]x B , (31) 

where the first term is the total housing revenue per unit of land and the second is total cost per unit 

of land including the land rent and production cost. The first-order optimality condition of the 

maximization problem (31) is 

1( )
( ) ( ) 0

( )
bx

p x b S x k
S x

  
  


. (32) 

Substituting  ,p x u  in Eq. (28) into Eq. (32) produces the capital investment intensity 

     
11 1

1 (1 )1 (1 ), ( )bb bS x u bk u Y C x    


    . (33) 

Then, using Eqs. (29), (30) and (33), the residential population density at location x ,  ,n x u , can be 

calculated by 

    
      

1 1
11 (1 ) (1 )

,
, ( )

,

bb b b b
h S x u

n x u bk u Y C x
g x u

 
    

     . (34) 

Under perfect competition (Brueckner, 1987), all property developers earn zero profit, i.e. 

( ) 0x   for all [0, ]x B , thus the land rent at location x  is 

      
11 1

1 (1 )1 (1 ), ( ) ( ) ( ) 1 1 ( )b bb br x u p x S x kS x k b bk u Y C x     


       . (35) 

From Eqs. (33) – (35), we can easily obtain 
 ,

0
( )

S x u

C x





, 

 ,
0

( )

n x u

C x





 and 

 ,
0

( )

r x u

C x





. These 

inequalities state that the capital investment intensity, residential population density and land value 

all decrease with the distance from the CBD under a given level of utility, since ( )C x  is increasing 

with x , [0, ]x B , which is observed from Fig. 2. 

 

5.3. Housing demand-supply equilibrium 

Balancing the housing supply and demand requires two conditions that characterize the overall 

spatial equilibrium of the closed city (Brueckner, 1987). The first equilibrium condition requires that 

property developers outbid agricultural users for all lands used in housing production. Since the land 

rent decreases with distance from the CBD, the land rent for urban area reaches the minimum at the 

city boundary, at least equal to the exogenous agricultural rent ar . Therefore, it follows: 

( ) ar B r . (36) 

The second equilibrium condition requires all residents live inside the urban areas. Since the total 

population of the closed city is fixed as N , it holds that 
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0
( , )d

B
n x u x N . (37) 

Eqs. (36) and (37) are used to solve for the city boundaryB  and the utility level of residents at 

equilibrium u .  

 

5.4. Solution procedure 

In the presented closed city model, the total population is exogenously fixed whilst the city 

boundary and the equilibrium utility level of residents are both endogenous. The step-by-step 

procedure for calculating the equilibrium solutions of the model is presented as follows: 

Step 1: Give the initial values of city boundary (0)B , and residential density (0)( )n x  for all 

(0)0,x B   . Residents is assumed to be uniformly distributed on the urban corridor at beginning.  

Step 2: Evaluate the generalized travel cost (0)( )C x  according to Eq. (10). Set 1l  . 

Step 3: Use an iterative process to yield the values of utility level ( )lu and city boundary ( )lB . 

Specifically, keeping the values of other variables in Eq. (36) and (37) fixed and using the value of 

( 1)lB  , first solve Eq. (37) to obtain the value of u , and then update the value of B  by solving Eq. 

(36) based on the Bisection algorithm. Repeat the above process until the values of B  and u  both 

satisfy Eqs. (36) and (37). 

Step 4: Calculate the values of ( ) ( )lp x , ( ) ( )lg x , ( ) ( )lS x , ( ) ( )ln x  and ( ) ( )lr x  by solving the Eqs 

(28), (29), (33), (34) and (35) using the values of ( )lu  and ( )lB  obtained in Step 3. 

Step 5: Obtain the auxiliary travel cost 
( )

( )
l

C x  by Eq. (10). Then, set  

 ( )( 1) ( ) ( )( ) ( ) ( ) ( )
ll l lC x C x C x C x l    . 

Step 6: If the relative error ( 1) ( ) ( )( )-C ( ) ( )l l lC x x C x  is less than an acceptable level, then 

terminate; Otherwise, replace ( ) ( )lC x  with ( 1)( )lC x . Let 1l l  . Go to Step 3. 
 

5.5. Effects of railway fare changes 

It is known in Section 4 that, the equilibrium mode-choice patterns along the corridor may vary 

with the relative cost differences between using public transit and using private automobile, which 

are measured by comparing the fixed or variable components of generalized travel costs by both 

modes. The switching among possible mode choice patterns will bring a significant change in the 

annual commuting costs of residents, which leads to different household consumption, residential 

location choice and housing production in a closed city. Accordingly, an urban expansion or 
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contraction might occur. Besides those in the time costs and fuel price, the changes in the railway 

fare determine the cost differences between two modes, which may finally lead to different urban 

forms. This section focuses on the effects of railway fare changes on the equilibrium mode choice 

patterns and urban forms. Without loss of much generality, the railway fare at location x , ( )f x , is 

assumed to be distance-based and linear with x , i.e., 0( ) r rf x f f x  . Here, 0
rf  is the fixed part of 

railway fare and rf  is the variable part of railway fare per unit distance. Next, we discuss the effects 

of parameters 0
rf  and rf  on the city boundary, utility level and equilibrium mode choice patterns, 

respectively. 

 

(1) Effect of parameter 0
rf  

As mentioned in Section 4.1, the fixed part of railway fare is included into the fixed cost 

component of transit travel ra . Hence, with the other factors fixed, a change in 0
rf  is exactly 

equivalent to that in ra . Notice that the city boundary B  and the utility level u  are endogenously 

determined in Eqs. (36) and (37). Totally differentiating Eqs. (36) and (37) with respect to 0
rf  

produces: 

0 0 0
0

x B x Br r r x B

r du r dB r

u df x df f  

  
  

  
, (38) 

0 0 00 0
( ) 0

B B

r r r

dB du n n
n B dx dx

df df u f

 
  

   . (39) 

Combing Eq. (38) and Eq. (39), we have 

0 00 0

0

0
( )

B B

x B r r x B

B
r

x B x B

r n r n
dx dx

u f f udB
r n rdf dx n B
x u u

 

 

   


   


  


  

 


, (40) 

0 00

0

0

( )

( )

B

x Br rx B

B
r

x B x B

r r n
n B dx

f x fdu
r n rdf dx n B
x u u



 

  


  


  


  




. (41) 

Since ( )C x  is increasing with x  from Fig. 2, According to Eqs. (34) and (35), we easily get 

( , ) 0n x u u   , ( , ) 0r x u u    and ( , ) 0
x B

r x u x


   . Thus, the denominators of Eq. (40) and Eq. 

(41) are both positive, and the signs of 0
rdB df  and 0

rdu df  are determined by that of the 

numerators of Eq. (40) and Eq. (41), respectively, which truly depend on the degree of highway 
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congestion and transit crowding. 

When there are no highway congestion and transit crowding on the studied urban corridor, 

( )rG x  and ( )hG x  are both linear with x , and only one mode-switching point 3x  exists along the 

corridor, similar to that shown in Fig. 2(Ib). Obviously, according to Eq. (10) and the assumption 

(11), 0( ) 0rC B f   , 0( ) 0rC x f    for all [0, )x B , and there exists a corridor interval where 

0( ) 0rC x f   , which lead to 0

0
( , ) 0

B

rn x u f dx    and 0( , ) 0r x B
r x u f


    from Eqs. (34) and 

(35). As a result, we have 

00

0

0

0
( )

B

x B r

B
r

x B x B

r n
dx

u fdB
r n rdf dx n B
x u u



 

 
 

 
  


  




, (42) 

00

0

0

0
( )

B

x B r

B
r

x B x B

r n
dx

x fdu
r n rdf dx n B
x u u



 

 

 

 
  


  




, (43) 

which are consistent with the results analyzed in Sasaki (1989, 1990) and Su and DeSalvo (2008). 

However, when there exist highway congestion and transit crowding, it is difficult to judge on the 

signs of 0

0
( , )

B

rn x u f dx   and 0( , ) r x B
r x u f


   due to the complex nested relationships between 

( )C x  and ( , )n x u . Hence, the signs of 0
rdB df  and 0

rdu df  are un-determinate in this situation and 

may be different case by case. Taking the values of model parameters in Table 2 as inputs, Table 3 

and Fig. 3 show some numerical examples with the consideration of highway congestion and transit 

crowding, where 0 0rdB df   and 0 0rdu df   hold. To summarize, we have the following 

proposition. 

 

Proposition 3. Without highway congestion and transit crowding, the city boundary will expand and 

the utility level of residents will reduce as the fixed part of railway fare increases. However, there are 

possibilities that an increase in the fixed part of railway fare results in a shrink in the city boundary if 

highway congestion and transit crowding are considered. 

 

With the given values of model parameters in Table 2, Table 3 shows the changes of some 

endogenous variables in the studied city model with different values of 0
rf , such as the city boundary, 

the utility level of residents, the mode-switching points and the total number of transit passengers. 
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We can see clearly that, as 0rf  takes values from 2 to 10, the city boundary, the utility level of 

residents and the total number of transit passengers gradually decrease. This confirms the latter part 

of Proposition 3. Furthermore, the mode-switching point farther from the CBD always decreases 

with 0
rf , which is similar to the conclusion drawn in Proposition 1, where both of the city boundary 

and population distribution are exogenously given. But, different from one farther from the CBD, the 

mode-switching point closer to the CBD first decreases till being zero when 0 6rf  , and then 

increases. This is because all residents living close to the CBD in fact use different travel modes 

when the value of 0
rf  is smaller or larger than 6. 

 

Table 2. Values of model parameters. 

Symbol Definition Value 
Parameters associated with city model 
N  Total number of residents in the city 90000 
Y  Annual income (RMB) 150000 

ar  Agricultural rent at the city boundary (RMB) 300000 
  Annual average number of trips to the CBD per resident 350 
 ,   Parameters in utility function 0.75,   0.25   

b ,  Parameters in housing production function 0.7,b  80.8 10    

k  Interest rate 5% 
  parameter that converts utility level into equivalent monetary units 80 

Parameters for auto travel 
0

hW  Highway capacity (veh/h) 5400 

ha  Fixed cost component of auto travel (RMB) 11 
0
ht  Free flow travel time cost per unit distance on highway (RMB/km) 1/3 

0
h hb t  Congestion-free variable cost per unit distance except for 0ht  (RMB) 0.2 

 ,  Parameters in BPR function 0.5,   1   
Parameters for transit travel 

0
rf  Fixed part of railway fare (RMB) 2, 4, 6, 8, or 10 

0
r ra f  Fixed cost component of transit travel except for 0

rf  (RMB) 5 

rf  Variable part of railway fare (RMB) 0.4, 0.8, or 1.8 

rb  Congestion-free variable cost per unit distance except for rf  (RMB) 0.6 

oc  Fixed operating cost of railway per year (RMB) 82 10  

 ,   Parameters in in-vehicle crowding cost    0( ) ( )r r r rg N x N x W


  
0 8000rW  , 0.5  , 

1   
Note: In all numerical examples, the city corridor is uniformly discretized into 100 sections for approximately 
solving the model. 

 

Fig. 3(g) – (i) depict the equilibrium mode-choice patterns along the urban corridor associated 

with 0
rf  2, 6 and 10, respectively, which are similar to that shown in panels (Ia), (II) and (III) of 
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Fig. 2. When 0 2rf  , the railway has the smaller fixed cost than the highway, i.e., r ha a , thus all 

residents living near the CBD choose the railway for travel. When 0 6rf  , the fixed costs by railway 

and by highway are equal, i.e., r ha a , thus residents living in location 23.23x  to the CBD will 

use highway and railway simultaneously. When 0 10rf  , the railway has the larger fixed cost than 

the highway, i.e., r ha a , leading all residents living near the CBD choose the highway for travel. 

For comparison, besides that with highway congestion and transit crowding shown in panels (g) 

– (i), Fig. 3 also gives the equilibrium mode-choice patterns for cases without highway congestion 

and transit crowding and with only highway congestion, which correspond to panels (a) – (c) and 

panels (d) – (f), respectively. Clearly, when both of highway congestion and transit crowding are 

ignored as depicted in Fig. 3(a) – (c), the city boundary is increasing with 0rf , which is consistent 

with the former part of Proposition 3. However, even if only highway congestion is considered, the 

opposite change of the city boundary possibly occurs with the increase of 0
rf . Fig. 3(d) – (f) provide 

such numerical examples. Further, when transit crowding is considered together with highway 

congestion, the city boundary always is smaller than that with only highway congestion for different 

values of 0
rf , by comparing Fig. 3(d) – (f) with Fig. 3(g) – (i).  

 

Table 3. Changes of endogenous variables with different values of 0
rf  

0
rf  City boundary Utility level 

Mode-switching 
point closer to the 

CBD 

Mode-switching 
point farther from 

the CBD 

Total number of 
transit passengers 

2 75.57 285.93 4.53 23.43 44552 
4 75.18 284.77 3.00 23.30 38346 
6
 

74.92 283.78 0 23.23 24753 
8
 

74.61 283.06 4.48 23.13 15038 
10

 
74.29 282.48 6.69 23.03 11066 

Note: These results are calculated based on 0.4rf   and other parameter values in Table 2. 
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Fig. 3. Mode-choice patterns with different 0rf  for cases without highway congestion and transit crowding ((a) – 

(c)), with only highway congestion ((d) – (f)) & with highway congestion and transit crowding ((g) – (i)). 
 

Next, we examine what changes would result if both of the city boundary and population 

distribution are exogenously given. We first fix the city boundary and population distribution as 

those endogenously generated by the studied city model with 0 10rf   or 2, and then observe the 

changes of equilibrium mode- switching points by adjusting 0
rf , as shown in Table 4. Clearly, with 

the increase of 0
rf , the mode-switching point closer to the CBD first decreases till being zero and 

then increases whilst the mode-switching point farther from the CBD always decreases, which is 

consistent with the results with endogenous city boundary and population distribution. Furthermore, 

it can be seen by comparing the results in Table 4 and Table 3 that, when the city boundary is fixed as 
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75.57, corresponding to the endogenous model with 0 2rf  , all mode-switching points with 

different values of 0
rf  are larger than that obtained using the endogenous model. In addition, when 

the city boundary is fixed as 74.29, corresponding to the endogenous model with 0 10rf  , the 

opposite trend comes true. This means, the equilibrium mode-choice patterns would be inaccurately 

predicted if endogenous properties of city boundary and population distribution are ignored. 

 

Table 4. Equilibrium mode-choice points with different 0rf  when the city boundary and population density are 

exogenously given. 

Exogenous examples 0
rf  

Mode-switching point 
closer to the CBD 

Mode-switching point 
farther from the CBD 

74.29B , corresponding 
to the endogenous model 

with 0 10rf   

2 4.46 23.10 

4 2.97 23.07 

6 0 23.06 
8 4.46 23.03 

10 6.69 23.03 

75.57B , corresponding 
to the endogenous model 

with 0 2rf   

2 4.53 23.43 

4 3.02 23.35 
6 0 23.27 

8 4.63 23.20 
10 6.80 23.14 

Note: The results are calculated based on 0.4rf   and the parameter values in Table 2. 

 

 (2) Effect of parameter rf  

As mentioned in Section 4.1, the variable part of railway fare is included into the congestion-

free variable cost component of transit travel rb . Hence, with the other factors fixed, a change in rf  

is exactly equivalent to that in rb . Similar to the analysis on the effect of parameter 0
rf , 

differentiating Eqs. (36) and (37) with respect to rf , respectively, and rearranging them, we have 

0 0

0
( )

B B

x B r r x B

B
r

x B x B

r n r n
dx dx

u f f udB
r n rdf dx n B
x u u

 

 

   


   


  


  

 


, (44) 

0

0

( )

( )

B

x Br rx B

B
r

x B x B

r r n
n B dx

f x fdu
r n rdf dx n B
x u u



 

  


  

  


  




. (45) 

As done before, it is easily to verify that the denominators of Eqs. (44) – (45) are both positive, thus 
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the signs of their numerators determine that of rdB df  and rdu df . When there exist highway 

congestion and transit crowding on the urban corridor, it is difficult to judge on the signs of 

0
( , )

B

rn x u f dx   and ( , ) r x B
r x u f


   due to the complex nested relationships between ( )C x  and 

( , )n x u . Thus, the signs of 0
rdB df  and 0

rdu df  are unknown in this situation. With the given values 

of model parameters in Table 2, Table 5 and Fig. 4 show some numerical examples with the 

consideration of highway congestion and transit crowding, where 0rdB df   and 0rdu df   hold. 

When there are no highway congestion and transit crowding, similar to the analysis on the effect 

of parameter 0
rf , it is easy to verify that ( ) 0rC B f   , ( ) 0rC x f    for all [0, )x B , and there 

exists a corridor interval where ( ) 0rC x f   , which lead to 
0

( , ) 0
B

rn x u f dx    and 

( , ) 0r x B
r x u f


    from Eqs. (34) and (35). As a result, we have 

0

0

0
( )

B

x B r

B
r

x B x B

r n
dx

u fdB
r n rdf dx n B
x u u



 

 
 

 
  


  




, (46) 

0

0

0
( )

B

x B r

B
r

x B x B

r n
dx

x fdu
r n rdf dx n B
x u u



 

 

 

 
  


  




, (47) 

which are also consistent with the results analyzed in Sasaki (1989, 1990) and Su and DeSalvo 

(2008). To summarize, we have the following proposition. 

 

Proposition 4. Without highway congestion and transit crowding, the city boundary will expand and 

the utility level of residents will reduce as the variable part of railway fare increases. However, , 

there are possibilities that an increase in the variable part of railway fare results in a shrink in the city 

boundary if highway congestion and transit crowding are considered. 

 

With the given values of model parameters in Table 2, Table 6 shows the changes of some 

endogenous variables in the studied city model with rf  for different cases with 0
rf  2, 6 or 8, such 

as the city boundary, the utility level of residents, the mode-switching points and the total number of 

transit passengers. Obviously, no matter what value of 0
rf  is fixed, as rf  increases from 0.4 to 1.8, 

the city boundary, the utility level of residents and the total number of transit passengers gradually 
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decrease. This confirms the latter part of Proposition 4. Furthermore, different from the changes 

varying with 0
rf  as discussed before, both the mode-switching points are decreasing with rf . Fig. 

4(e) – (f) depict the equilibrium mode-choice patterns along the urban corridor associated with 

0
rf  2 and rf 0.8 or 1.8, which are similar to that shown in panels (II) and (Ib) of Fig. 2. In these 

scenarios, the railway has the smaller fixed cost than the highway, thus all residents living between 

the CBD and the mode-switching point closer to the CBD choose the railway for travel. However, 

when 0 6rf  , the railway has the larger fixed cost than the highway, leading all residents living near 

the CBD choose the highway for travel. The equilibrium mode-choice patterns corresponding to this 

situation are not depicted here due to space limitations.  

 

Table 5. Changes of endogenous variables with different values of rf  

0
rf  rf  City 

boundary 
Utility level 

Mode-switching 
point closer to 

the CBD 

Mode-switching 
point farther from 

the CBD 

Total number of 
transit passengers 

2 
0.4 75.57 285.93 4.53 24.18 44552 
0.8 74.01 285.04 4.44 13.32 40813 
1.8

 
72.69

 
283.30 4.36

 
×

 
30872

 

6 
0.4 74.92 283.78 ×

 
23.23 24753 

0.8 73.30
 

282.90 ×
 

13.19
 

20468
 

1.8
 

72.03
 

281.15 ×
 

3.60
 

9760
 

10 
0.4 74.29 282.48 6.69 23.03 11066 
0.8 72.87

 
281.58 6.56

 
13.12

 
6419

 
1.8

 
71.80

 
280.51 ×

 
×

 
0
 

 

For comparison, besides that with highway congestion and transit crowding shown in panels (e) 

– (f), Fig. 4 also gives the equilibrium mode-choice patterns with 0
rf  2 and rf  0.8 or 1.8 for 

cases without highway congestion and transit crowding and with only highway congestion, which 

correspond to panels (a) – (b) and panels (c) – (d), respectively. Clearly, when both highway 

congestion and transit crowding are ignored as depicted in Fig. 4(a) – (b), the city boundary is 

increasing with rf , which is consistent with the former part of Proposition 4. However, even if only 

highway congestion is considered, the opposite change of the city boundary possibly occurs with the 

increase of rf . Fig. 4(c) – (d) provide such numerical examples. Further, when transit crowding is 

considered together with highway congestion, the city boundary is always smaller than that with only 

highway congestion for different values of rf , by comparing Fig. 4(c) – (d) with Fig. 4(e) – (f).  
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Fig. 4. Mode-choice patterns with different rf  for cases without highway congestion and transit crowding ((a) – 
(b)), ,with only highway congestion ((c) – (d)) & with highway congestion and transit crowding ((e) – (f)). 
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Next, we examine the changes when both of the city boundary and population distribution are 

exogenously given. We first fix the city boundary and population distribution as those endogenously 

generated by the studied city model with the four combination of 0
rf  and rf , i.e., (2, 1.8), (2, 0.4), 

(10, 1.8) and (10, 0.4), and then observe the changes of equilibrium mode-choice points by adjusting 

rf , as shown in Table 6. The results show that both the mode-switching points are decreasing with 

rf , which is consistent with the results with endogenous city boundary and population distribution. 

Furthermore, it can be seen by comparing the results in Table 6 with that in Table 5 that, when the 

city boundary is fixed as 72.69 or 71.80, corresponding to the endogenous model with 1.8rf  , all 

mode-switching points with different values of rf  are smaller than that obtained using the 

endogenous model. In additon, when the city boundary is fixed as 75.57 or 74.29, corresponding to 

the endogenous model with 0.4rf  , the opposite trend comes true. This again implies that the 

equilibrium mode-choice patterns would be inaccurately predicted if endogenous properties of city 

boundary and population distribution are ignored. 

 
Table 6. Equilibrium mode-choice points with different rf  when the city boundary and population density are 

exogenously given. 

Exogenous examples 0
rf  rf  

Mode-switching 
point closer to the 

CBD 

Mode-switching 
point farther from 

the CBD 

72.69B , corresponding to 
the endogenous model with 

1.8rf   
2 

0.4 4.43 22.53 
0.8 4.42 13.08 

1.8 4.36 × 

75.57B , corresponding to 
the endogenous model with 

0.4rf   
2 

0.4 4.53 24.18 
0.8 4.52 14.35 

1.8 4.45 × 

71.80B , corresponding to 
the endogenous model with 

1.8rf   
10 

0.4 6.46 21.54 
0.8 6.45 12.92 

1.8 × × 

74.29B , corresponding to 
the endogenous model with 

0.4rf   
10 

0.4 6.69 23.03 
0.8 6.68 14.11 

1.8 × × 

 

6. Railway fare and subsidy policies 

In the previous sections, both the fixed and variable parts of railway fare are taken as exogenous 

parameters when we explore possible equilibrium mode-choice patterns with or without endogenous 

city boundary and population distribution. In this section, we focus on the comparison of different 

railway fare and subsidy policies, and investigate the influence of them on the population distribution, 

city boundary, utility level of residents, which are essential to develop a sustainable city. 
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6.1. Model setting 

In most cities around the world, fare incomes are not high enough to cover the investment and 

the operating costs of transit system. Thus, direct financial subsidies are often provided by local 

governments to ensure suitable coverage of transit service (Gwilliam 2008; Tscharaktschiew and 

Hirte, 2012; Drevs et al., 2014). The source of transit subsidies mainly comes from local land 

revenue, property taxes, gasoline taxes, road tolls or others (Frankena, 1973; Creutzig, 2014; Xu et 

al., 2017). In this paper, the land revenue from land rents belongs to the government. To reveal the 

nature of the city model developed, we only consider part of the land revenue as the unique source of 

transit subsidies. Next, we first introduce two benchmark models for railway pricing without explicit 

transit subsidy, and then give the definition of high or low transit subsidy policies against them. 

The first benchmark model is called the profit maximization model, in which the railway 

operator determines the fixed and variable parts of railway fare to maximize the profit, r . That is, 

0

0
00,

max 2 ( ) ( )
r r

B

r r r r
f f

f f x n x dx c    , (48) 

where the first term is the annual fare income and 0c  is the fixed operating cost of railway. Hereafter, 

0( , )r rf f  denotes the profit maximization solution. 

The social welfare  maximization model is the second benchmark model, in which the 

government aims to maximize the social welfare of urban system by optimizing the fixed and 

variable parts of railway fare. It can be formulated as 

 
0 0,

max + ( )
r r

B

a r
f f
SW uN r x r dx    , (49) 

where   is a parameter that converts the utility level of residents into the equivalent monetary units, 

the first term is associated with the total utility of residents, the second term is the government’s land 

revenue from land rents after deducting agricultural rents, and the third term is the railway operator’s 

profit. In the following text, 0ˆ ˆ( , )r rf f  denotes the social welfare maximization solution. 

Given a specific fare policy without transit subsidy, the profit of the railway operator r  might 

be either positive or negative since it depends on the relative values of fare income and fixed 

operating cost of railway. The operating of railway would be unsustainable in reality if 0r  . Thus, 

it is necessary to subsidy the railway to be operated at least at breakeven point in this situation. That 

is, the following expression must hold: 

 
0

( ) 0
B

r e ar x r dx    , (50) 
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where e  is the minimum expenditure proportion of land revenue used for railway subsidy. Without 

loss of much generality, we only consider the case that Eq. (50) takes equality. Consequently, it holds 

that 

  0
max ( ) ,0

B

e r ar x r dx    . (51) 

Further, letting s  denote the subsidy ratio of fixed operating cost of railway, we have 

   0
0 00 0

( ) max 1 2 ( ) ( ) ,0
B B

s e a r r rr x r dx c f f x n x dx c        . (52) 

It can be easily observed from Eqs. (51) – (52) that, the subsidy ratio s  decreases 

proportionally with the fare income 0

0
2 ( ) ( )

B

r r rf f x n x dx   whilst the expenditure proportion e  

might not necessarily. Consider a special case with 0rf  , which means that all transit users will be 

charged the same flat fare, i.e., 0( ) rf x f , for any [0, ]x B . With the given parameter values in 

Table 2, where 8
0 2 10c   , Fig. 5 shows the changes of fare income, s  and e  varying with flat 

fare 0
rf . Obviously, when 0 5.3rf  , the fare income reaches the maximum and s  takes the 

minimum. In contrast, e  is minimal at 0 5.27rf  . 
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Fig.5. Changes of fare income, s  and e  with flat fare 

 

Since the fare income under social welfare maximization is not higher than that under profit 

maximization, we give the definition of high or low transit subsidy policies as follows. 

 

Definition 2. It is a high subsidy level if the fare income of railway under a specific transit fare and 

subsidy policy is lower than that under social welfare maximization. On the contrary, it is a low 

subsidy level if the fare income of railway is higher than that under social welfare maximization, but 
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is lower than that under profit maximization. 

 

Take the case with flat fare as an illustrative example. It is shown in Fig. 5 that, the fare income 

under social welfare maximization is 81.334 10 , corresponding to 0 5.1rf  . In this situation, the 

operating deficit of railway may be fully subsidized if the subsidy ratio s  is at least 0.33. Thus, 

according to Definition 2, if the fare income of railway under a specific transit fare and subsidy 

policy is lower than 81.334 10 , it is called as a fare policy with high subsidy. Otherwise, it is called 

as a fare policy with low subsidy.  

 

Table 7. Influence of fixed operating cost on fare income and profit of railway under social welfare 
maximization, profit maximization and breakeven without transit subsidy 

Policy Flat fare 
Distance-based fare with 

0 2rf   
Distance-based fare with 

0 8rf   

0c ( 810 ) 1.3 1.335 2.0 1.3 1.335 2.0 1.3 1.335 2.0 

Social 
welfare 

maximization 

0( , )r rf f  (5.1,0) (5.1,0) (5.1,0) (2,0.6) (2,0.6) (2,0.6) (8,0.25) (8,0.25) (8,0.25) 

Income 
( 710 ) 

13.34 13.34 13.34 13.69 13.69 13.69 13.17 13.17 13.17 

r ( 410 ) 340 10  6660  690 340 6310  170 180  6830  

Profit 
maximization 

0( , )r rf f  (5.3,0) (5.3,0) (5.3,0) (2,0.8) (2,0.8) (2,0.8) (8,0.3) (8,0.3) (8,0.3) 

Income 
( 710 ) 

13.36 13.36 13.36 14 14 14 13.25 13.25 13.25 

r ( 410 ) 360 10 6640  1000 650 6000  250 100  6750  

Breakeven 

0( , )r rf f  
(4.8,0), 
(5.75,0) 

(5.2,0), 
(5.4,0) 

× (2,0.45), 
(2,1.4) 

(2,0.5), 

(2,1.28) 
× (8,0.2), 

(8,0.4) 
× × 

Income 
( 710 ) 

13 13.35 
× 

13 13.35 
× 

13 
× × 

r ( 410 ) 0  0  × 0  0  × 0  × × 

 

6.2. Numerical comparison 

With the given values of parameters of the city model in Table 2, Table 7 shows the influence of 

fixed operating cost on the fare income and profit of railway under social welfare maximization, 

profit maximization and breakeven without transit subsidy. In this table, three specific fare policies, 

i.e., flat fare and distance-based fares with low or high fixed component (0
rf  2 or 8), are also 

examined for comparison. Clearly, the profit of railway is decreasing with the fixed operating cost. 

Furthermore, when the railway has a larger fixed operating cost, e.g., 8
0 2 10c   , the profit of 

railway is always negative even under profit maximization. This renders the no-existence of 
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breakeven solutions. Considering these, we next make a numerical comparison of urban system 

performance with different fare and subsidy policies in the case with 8
0 2 10c   , which is 

summarized in Table 8. 

 

Table 8. Urban system performance with different fare and subsidy policies. 

Performance index 
Flat fare 

Distance-based fare with 
0 2rf   

Distance-based fare with 
0 8rf   

Low 
subsidy 

High 
subsidy 

Low 
subsidy 

High 
subsidy 

Low 
subsidy 

High 
subsidy 

0( , )r rf f  (5.3,0) (2,0) (2,0.8) (2,0.2) (8,0.3) (8,0) 

Subsidy ratio s  33.21% 66.33% 30.03% 46.51% 33.77% 44.89% 

Expenditure proportion 

e  7.67% 15.19% 6.88% 10.64% 7.82% 10.40% 

B  79.08 79.63 74.01 76.91 75.19 78.74 
Average population 
density 

1138 1130 1216 1170 1197 1143 

Standard deviation of 
population density  

1706 1727 1955 1805 1829 1719 

Land revenue ( 810 ) 10.66 10.67 11.50 11.07 11.19 10.667 
Residual land revenue 
after subsidizing ( 810 ) 

9.04 9.05 9.75 9.39 9.49 9.046 

Average land value ( 710 ) 1.096 1.097 1.18 1.14 1.15 1.10 
Standard deviation of 
land value ( 710 ) 

2.08 2.11 2.36 2.20 2.21 2.09 

Utility level 284.62 286.45 285.04 286.34 283.28 283.56 

Social welfare ( 910 ) 2.82 2.77 2.84 2.81 2.806 2.79 

Note: Average population density = N B, Standard deviation of population density =  2

0
( )

B
n x N B dx B , 

Land revenue =  
0

( )
B

ar x r dx , Residual land revenue after subsidizing =  
0

(1 ) ( )
B

e ar x r dx  , Average 

land value = 
0

( )
B
r x dx B , and Standard deviation of land value =  2

0 0
( ) ( )

B B
r x r x dx B dx B  . 

 

It can be seen from Table 8 that, it does not matter whether it is flat fare or distance-based fare 

with different fixed components, the policies with low subsidy always cause a decrease in the city 

boundary and utility level of residents and an increase in the average population density and social 

welfare compared to those with high subsidy. However, it is different if the other performance 

indexes of urban system, such as the standard deviation of population density, land revenue, residual 

land revenue after subsidizing, average land value and standard deviation of land value, are 

examined. Under the flat fare policy, low subsidy leads to more even population distribution and land 

value along the corridor and to lower land revenue and average land value. However, under both 
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distance-based fare policies, low subsidy leads to the opposite results. This is because residents tend 

to live closer to the CBD when facing with the non-identical fares along the corridor. Furthermore, it 

can be found that, the distance-based fare policy with (2, 0.8) should be preferred among all three 

fare ones with low subsidy since the subsidy ratio is minimal, and the social welfare and utility level 

of residents are both maximal. If further lowering rf  on the basis of the fare policy, the social 

welfare would be worse although the utility level of residents becomes better, please see the fare 

policy with (2, 0) or (2, 0.2) for comparison. 

 

7. Concluding remarks 

We presented an urban spatial equilibrium model by integrating residents’ household 

consumption, residential location choice and property developers’ housing production with residents’ 

mode choice. In this model, all residents are assumed to commute from their home to work at the 

CBD on a linear urban corridor, where a highway and a railway together form a competitive bimodal 

transportation system. The city boundary and population distribution become endogenous 

determinants in response to residents’ consumption of housing and one composite non-housing good, 

and their residential location and mode choice decisions. Different from the existing bi-modal urban 

economics analysis (e.g., Capozza, 1973; Arnott and MacKinnon, 1977; Anas and Moses, 1979; 

LeRoy and Sonstelie, 1983; Sasaki, 1989, 1990; Su and DeSalvo, 2008; Creutzig, 2014), residents’ 

transportation costs are also endogenously generated due to highway congestion and transit crowding 

in the proposed model. 

The main findings and highlights of this paper are summarized as follows. Firstly, with 

exogenously given city boundary and population distribution, we derived the four possible 

equilibrium mode-choice patterns along the urban corridor by comparing the relative fixed cost of 

using transit mode with that of using auto mode. Comparably, only the case of smaller distance-free 

fixed cost by transit mode than that by auto mode was discussed in Liu et al. (2009). It is found that 

for any possible mode-choice pattern along the corridor, the mode-switching point farther from the 

CBD always decreases with the fixed cost component and the congestion-free variable cost per unit 

distance of railway travel. Secondly, we examined the effects of railway fare changes on the mode 

choice patterns and urban forms and found that a decrease of railway fare, whether in the fixed or 

variable components, would result in a spatial expansion of urban corridor if congested effects in the 

bimodal transportation system cannot be ignored. This result is different to the conclusion in the 

congestion-free case drawn in the urban economics literature (e.g., Sasaki, 1989, 1990; Su and 

DeSalvo, 2008). Finally, with the assumption that railway operation is subsidized from land rent 



34 
 

revenue by the government to reach the breakeven point, we numerically compared the urban system 

performance under different railway fare and subsidy policies. We found that high railway subsidy 

(or low fare policy) will induce the spatial expansion of urban corridor and reduce the social welfare, 

no matter the fare is flat or distance-based. Furthermore, the distance-based fare policy with low 

subsidy should be preferred, under which the social welfare and utility level of residents can be 

Pareto improved. 

Our work can be extended in several ways to investigate the in-depth interactions between 

transportation systems and land use patterns. Firstly, all residents were assumed to be homogenous in 

this paper. However, income levels of residents obviously determine their household consumption, 

auto vehicle ownership, and then residential location choice (Sasaki, 1990; Borck and Wrede, 2008). 

Therefore, residents’ income heterogeneity should be incorporated to the model. Secondly, in reality, 

morning peak-hour congestion is generally dynamic, and commuters may choose to use the less 

congested mode to travel and/or to depart early or late in order to reduce congestion (Gubins and 

Verhoef, 2014; Wang and Du, 2016a; Xu et al., 2017). It is of interest to model residents’ departure 

time choice, mode choice and residential location choice in an integrated urban framework. Thirdly, 

land rent revenue is only used to subsidize public transport, and only railway fare policies are 

compared in this paper. In a fast growing city, it is of importance to investigate the issues of fiscal 

subsidy for highway or railway construction. 
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Appendixes 

Appendix A: Mode choice equilibrium 

A.1. Proof of Proposition 1 

Proof. Since the city boundary B  and residential population density ( )n x  are fixed here, it is easy to 

know from Eqs. (14), (18) and (20) that the mode-switching points 2x , 1x  and 3x  are independent of 

ra , but depends on the value of rb . Since 0ht    according to the assumption, take the first-order 

derivatives of both sides of Eqs. (14), (18) and (20) with respect to rb , respectively, and we have 
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 2 2d d 1 ( ) 0r hx b t n x   , (A.1) 

 1 1d d 1 ( ) 0r hx b t n x   , (A.2) 

 3 3d d 1 ( ) 0r hx b t n x   . (A.3) 

Next, we analyze the variation of 3x  with respect to ra  or rb . Taking the first-order derivative of 

both sides of Eq. (17) with respect to ra  or rb  leads to: 

   3 3

3 3

3

0
3 3

0

d 1

d ( )d ( ) ( )d d ( )d
B x x B

r
r h h h r hx x x

x

a b b t t n w w n x g n w w x x t n w w




              
 

0 , (A.4) 

   3 3

3 3

3 3

0
3 3

0

d

d ( )d ( ) ( )d d ( )d
B x x B

r
r h h h r hx x x

x x

b b b t t n w w n x g n w w x x t n w w




              
 

0 , (A.5) 

where the inequalities hold due to 0rg   , 0ht   , and  
3

0 ( )d 0
B

r h h h x
b b t t n w w     from the 

condition (16). This completes the proof. ƶ 

 

A.2. Proof of Proposition 2 

Proof. According to the assumption, the city boundary B  and residential population density ( )n x  

are fixed as constants for the scenario shown in Panel (Ib) of Fig. 2. Without loss of generality, 

suppose that the fixed cost component of transit travel increases from o
ra  to n

ra , or the congestion-

free variable cost per unit distance by transit mode increases from o
rb  to n

rb . Here, the variables with 

superscripts “ o ” and “ n” denote the “original” and “new” ones, respectively. Obviously, 3 3
o n

x x  

holds from Proposition 1, which means residents located at  3 3,
n o

x x x  
 change their travel mode 

from transit to auto at new mode-choice equilibrium. As a result, it holds that ( ) ( )n o
r rN x N x , 

   ( ) ( ) ( ) ( )n n o o
r r r r r rc x g N x c x g N x    , ( ) ( )n o

h hN x N x , and ( ) ( )n o
h hG x G x  hold for any 

 0,x B . Next, we analyze the variation of annual commuting cost ( )C x  by dividing the whole 

corridor into three parts, i.e., 30,
n

x x   
,  3 3,

n o
x x 


 and  3,

o
x B

, respectively.  



36 
 

(1) For residents located at  3,
o

x x B 
, they always drive to the destination regardless of the 

variation of ra  or rb . Hence, ( ) 2 ( ) 2 ( ) ( )n n o o
h hC x G x G x C x     for any  3,

o
x x B 

. 

(2) For residents located at  3 3,
n o

x x x  
, they change their travel mode from transit to auto at 

new mode-choice equilibrium. Hence, ( ) 2 ( ) 2 ( ) ( ) 2 ( )n n o o o
h h rC x G x G x C x G x       for any 

 3 3,
n o

x x x  
, where the second inequality is due to Eq. (10). 

(3) For residents located at 30,
n

x x   
, they always travel by transit mode regardless of the 

variation of ra  or rb . For proving ( ) ( )n oC x C x , it is sufficient and necessary to verify 

( ) ( )n o
r rG x G x . Since ( ) ( )n o

h hG x G x  holds for any  0,x B , 3 3 3 3( ) ( ) ( ) ( )
n n n nn n o o

r h h rG x G x G x G x    

according to the user equilibrium conditions (9). Note that (0)r rG a  and ( ) ( )r r rG x b c x    from 

Eq. (1). Next, we discuss different cases with the increase of ra  or rb . 

When the fixed cost component of transit travel increases from o
ra  to n

ra , we have 

(0) (0)n n o o
h r h rG a G a   , and ( ) ( ) ( ) ( )n n o o

r r r r r rG x b c x G x b c x         for any  30,
n

x x  
. Hence, 

considering the continuity of ( )rG x , ( ) ( )n o
r rG x G x  must hold for any 30,

n
x x   

. 

When the congestion-free variable cost per unit distance by transit mode increases from o
rb  to 

n
rb , we have (0) (0)n o

h h rG G a   and (0) (0)n n o o
r r r rG b G b    . Since ( ) ( )n o

r rc x c x   for any 

 0,x B , there are at most a point 30,
n

y x   
 such that ( ) ( ) ( ) ( )n n n o o o

r r r r r rG y b c y G y b c y        .  

Hence, considering the continuity of ( )rG x , ( ) ( )n o
r rG x G x  must hold for any 30,

n
x x   

. 

This completes the proof. ƶ 

 

Appendix B: Derivations of rental price and lot size 

Since all residents are identical, we have  U x u
 
for all x . Accordingly, combining it with 

Eq. (27), we have 

 ( ) ( )u Y C x g x
   . (B1) 

This leads to 
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    1, ( )g x u Y C x u
 

  


  . (B2) 

Since  ( ) ( ) ( )g x Y C x p x   according to Eq. (26), we easily get 

   1 1, ( )p x u Y C x u
      . (B3) 

This completes the derivations of Eqs. (28) and (29). ƶ 
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