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Abstract. Animals and robots must constantly make sense of multiple
streams of noisy information gathered from the environment, and com-
bine them appropriately to make improved decisions. Recently, it has
been proposed that animals might combine conflicting cues optimally us-
ing a ring attractor network architecture inspired by the head direction
system in rats and augmented with a dynamic re-weighting mechanism.
In this work we report that an older and simpler ring attractor network
architecture, requiring no re-weighting property combines cues according
to their certainty for small to moderate cue conflicts but converges on
the most certain cue for larger conflicts. These results are consistent with
observations in animal experiments that show sub-optimal cue integra-
tion and switching from cue integration to cue selection strategies. This
work therefore demonstrates an alternative architecture for those seeking
neural correlates of sensory integration in animals. In addition, perfor-
mance is shown robust to noise and miniaturization and thus provides
an efficient solution for artificial systems.

Keywords: ring attractor - cue integration - sensor fusion - optimal -
Bayesian integration head direction cells

1 Introduction

A fundamental principle underlying animal intelligence is the capacity to ap-
propriately combine redundant sensory (e.g. vision, olfactory and haptic) of the
same percept (e.g. location of a sensory source) to achieve a more accurate and
robust estimate [1,2]. For example, both mammals and insects constantly track
their pose using head-direction cells which combine information from external
cues (e.g. from surrounding visual features) with self-motion cues (from path
integration) to maintain a precise estimate of their current orientation [3,4]
(Fig.1). Yet, as all sensory information is subject to errors which can change
drastically depending on the situation (e.g. relying on visual cues in a darkened
room) animals must employ an adaptive cue combination strategy reflecting the
known errors (variance) in the different sensory signals to achieve the optimal
estimate of the desired environmental property.
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Fig. 1. The cue integration problem. (a) Example of an animal maintaining an estimate
of it’s current pose (green area) using different cues of varying certainty (Self-motion,
black area, and vision, red area). (b) When cues are represented by conflicting Gaussian
functions, the width describes the uncertainty of each and the optimal solution is given
by weighting each cue according to their known variance as described by Bayes’ rule.

Bayes’ theorem (1) provides a mathematical framework describing the opti-
mal way in which information from different sources should be combined, and
some studies argue that animals have Bayesian brains [2,5-7]. According to
Bayes’ Rule, the posterior probability P (Ztrue|Zeue) (the probability of event a
will happen when the cue about x is sensed) is proportional to the product of the
prior probability P (2¢-4.) (the probability of event  happening based on prior
knowledge) and the likelihood function P (Zeye|Ttrve) (the probability of the cue
when z truly happened, which represents the reliability of this cue). Assum-
ing that the prior probability P (z{yye) is uniform and the z.,. is corrupted by
Gaussian noise with variance o2, then the posterior probability is proportional
to 1/02. Therefore, when there are n cues all concerning = event and corrupted
by Gaussian noise with variance ¢?,i = 1,2,...n, the optimal way to reduce
the uncertainty of estimating « (i.e., the maximum the posteriori probability) is
averaging the cues weighted by their reciprocal variances 1/02, as indicated by
(2), which is identical with results calculated by the MLE (maximum-likelihood
estimate) [6, 8]. The theorem asserts that cues with lowest variance (e.g. more re-
liable) should be weighted more than those with high variance (i.e. less reliable)
as demonstrated in Fig.1(b).

P (xtrue‘mcue) =P (mcue|xtrue) P (mtrue) /P (xcue) (1)

n

J

Artificial systems also rely on redundant sensory information to maintain
pose estimates and thus must solve the same problem although in robotics the
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problem is commonly known as sensor fusion. For example, a classical robot
called Blanche optimally combines the result calculated by matching algorithm
that registers the range data with the map and the measurement from mounted
odometer to get a more precise self-location estimate [9]. Sensor fusion for mobile
robot navigation is a long standing issue and many statistical methods based on
maximum a posteriori and maximum-likelihood estimation have been applied
to solve it [10]. Recent advances in deployment of robot systems such as cars
with their suite of GPS, radar, cameras, and laser scanning sensors to estimate
precise lane position, owe much to adoption of probabilistic integration of cues in
line with the Bayesian formulation described above [11]. Yet, such methods,are
generally computationally expensive and unsuitable for application on small,
cheap robot platforms. Learning from biology may bring significant potential
benefits for solving these problems in the artificial system [10,12].

We therefore take a bio-inspired approach to firstly understand how animals
resolve this task, which in turn may offer inspiration to engineers seeking efficient
solutions. As a starting point, we use classic neural network architecture known
as a ring attractor network. Ring attractors can be constructed such that the
output activity resembles a Gaussian profile that is maintained even in the ab-
sence of sensory input. When new sensory input is presented, the activity profile
will shift towards and stabilize at the new location. If this sensory input is driven
by orientation cues such as path integration or visual features then the Gaussian
mean will naturally track the animal orientation. Such networks have been pro-
posed to underpin the head-direction cells in animals [13, 14]. Further when more
than one input signal is presented ring attractors can be constructed such that
the output settles on the weighted average of the combined cues as required for
optimal cue integration [15]. In a recent review, Jeffery et al [16] proposed that
ring-attractor networks may provide a general architecture for optimal cue inte-
gration. Their biomimetic model (constrained by physiological data from rats)
used re-weighting mechanism to achieve optimal integration. This re-weighting
(ruled by Hebbian learning) is driven by the greater activation in the overlap
zone of input cues, which strengthens the synapse within the overlaped area and
then shifts the activation towards the in-between position of input cues.

In this study, we take a more bio-inspired approach that is unconstrained
by the biology and revisit the Touretsky [15] ring attractor network and assess

its ability to combine conflicting cues of different strengths. Specifically we seek
to assess how this network performs when given cues of different strengths and
with different levels of conflict. Specifically, we wish to document if and when the
network optimally integrates cues or if it adheres to a winner-takes-all solution,
or switches strategy depending on the situation.

Our results suggest that a Touretsky ring attractor network can integrate
cues in a manner approaching optimal (i.e, consistent with MLE) for small con-
flicts. For larger conflicts the network switches to WTA (winner-takes-all) mode,
mirroring results of ethological experiments [17]. Performance is shown to be ro-
bust to noise and significant reduction in the network size, and thus provides a
simple (no re-weighting mechanism required), compact ring attractor solution to
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cue integration that can provide inspiration for those seeking similar integration
networks in animals or act as a bio-inspired method for optimal sensor fusion in
robots.

2 Models and Methods

2.1 Touretsky Ring Attractor Model

Artificial Neurons The network is constructed using two populations of CTRNN
(continuous time recurrent neural network) neurons which are the simplest non-
linear and continuous dynamical neurons suitable for simulating the subset of real
numbers as required for our ring attractor model [18]. The average membrane
potential ¢; of a CTRNN 4** neuron is updated by the differential equation (3),
where 7 is the positive time constant and I; is the total number of inputs into the
neuron which equals the weighted sum of other neurons’ outputs O;,j =1,2,...n
and the external inputs, as shown in (4), where Wj; is the weight matrix rep-
resenting the connection strength from j** to i** neuron, ¢ is the activation
function and X; is the external input. To acquire the nonlinear property of the
network, the activation function of g should be a nonlinear function. Here we
simply applied a semi-linear threshold function with a threshold defined by 6 as
indicated in (5).

T@ = C; + IZ (3)

Ii = Z Wjin + Xi = Z Wjig(Cj) + XZ' (4)
j=1 j=1

g(c) = max(0,0 + ¢) (5)

Network Geometry We implemented a variant of the classic ring attractor
network [13] (Fig.2(a)) which replaces the inhibitory interneurons with a single
global inhibitory (uniform inhibitory) neuron making the network easier to tune
while giving the same performance [15]. Each excitatory neuron in the network
has recurrent excitatory connections to all other neurons in the ring with weights
decreasing with distance which is crucial for generating the bell-shape activation
profile in stable state, as revealed in (6), where d;; is the distance between the
ith and j** neuron. Our network posses a single dynamic inhibitory neuron that
sums inputs from the excitatory neurons and then proportionally inhibits the
entire network. Note, for ease of understanding the recurrent connections from
a single excitatory cell are shown in Fig.2 (a) but in reality each neuron has the
same set of recurrent connections.

2
—d2;

WEE — o (6)
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Fig.2 (b) shows the process by which the network combines input from mul-
tiple cues. We simulate cues of different strengths using Gaussian functions (see
equation (7) where K is the scale factor, u defines the peak position of the
Gaussian curve (estimation of the certain property based on the cue) and o? is
the variance of the Gaussian function determining the reliability of the signal).
To have a corresponding connection with the integration neurons in the attrac-
tor, the cues are represented by the activation profile of N neurons with their
preference p;, and so the Gaussian curve is sampled by N points at intervals.
This input is then passed to the integration population which is shown in un-
wrapped form in Fig.2 (b), and with the recurrent connections omitted for ease
of reading. The integration population (and also population representing cue 1
and cue 2) has N neurons labeled with their preferences (for example, if these
neurons represent the heading directions of the animal, the preferences will be
the preferred directions evenly distributed around the entire 360° of possible di-
rections). The inhibitory population has a single dynamic postulated inhibition
neuron summing the activations from all integration neurons and which recur-
rently inhibits all integration neurons. Therefore, in accordance with equations
(3) - (5), the average membrane potential of the output neurons (neurons in in-
tegration population) is computed by equation (8), where X1 and X2 represent
the activation vectors of cue 1 and cue 2 respectively and u is the membrane
potential of the uniform inhibitory neuron (calculated by equation (9)). Note
that in order to maintain the nonlinear property and simultaneously guarantee
the positive output of the model, we tuned the total input I to ¢ and u using
function g according to [15].

Note that in this paper, as an example, we use the ring attractor to represent
the heading direction system so all the values have the unit-degree. But generally
the unit could be other meanings when this model is applied to other specific
contexts.

K (pi—n)?
F(i) = — w7 4 EN(0,1),i=1,2,..N (7)
V 4TTO
de; -
Td70t = —c; + q Z W]%‘_}ECJ' + Xll + X27, + WI_>E’LL (8)
j=1
du I—T E—1I -
TEZ—U-FQ W u+ W ch (9)
k=1
3 Results

Fig.3 (a) shows the response of our ring attractor network configured with 100
neurons when stimulated with two conflicting cues (65° apart) with different
variances (0cye1 = 40°, 0cyez = 35°) shown by red and black lines. The response
of the network (green line) approaches the MLE, i.e., the optimal integration
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Fig. 2. The implemented Touretzky ring attractor network. (a) Excitatory neurons are
shown by green circles, and the global inhibitory neuron depicted by the blue circle. The
recurrent excitatory interneurons are shown by orange arrows with connection strength
decreasing with distance between neurons. Excitatory and inhibitory connections be-
tween the global inhibitory neuron are also shown in blue and green respectively. (b)
The full integration network shown in unwrapped form (minus recurrent connections
for ease of reading) with example inputs and optimal output overlaid.

(blue dashed line) rather than following the WTA (winner-takes-all) solution.
Fig.3 (b) shows that the network response is robust to noise with each cue
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corrupted by Gaussian white noise ((7) with & = 0.01). Finally, inspired by
recent anatomical results showing that insects encode their heading direction
using populations of only 8 directional neurons in each hemisphere of the central
complex [19,20] we reduced the number of neurons in our integration network
from 100 to 8. Fig.3 (c) demonstrates that the cue integration properties of the
network remained stable despite the obvious loss of resolution in the Gaussian
functions.

To assess the performance of the network across likely scenarios we performed
two more experiments using the noise free network with 100 neurons. Firstly, we
assessed the performance of the network when presented with cues that were
increasingly disparates. Cue 1 (ficuer = 0°,0cuer = 40°) was presented at the
same position throughout the tests, while Cue 2 was presented at increasingly
distant positions (pteyer is from 0° to 180° in 5° steps). We performed this analysis
under three conditions: (a) cues with identical variance (Geye1r = Teuez = 40°);
(b) cues with slight differences in variance (ocye1 = 40°, 0cue2 = 35°); and (c)
cues with significantly different variance (ceye1 = 40°, ocyea = 20°). Fig.4 shows
the peak response of the network (green line) overlaid on the MLE (blue line) and
WTA (red line) solutions. With cues of equal variance (Fig.4 (a)) the network
response approaches (though never very precisely matches) the MLE solution
but changes to WTA-like responses when cue-conflict exceeded approximately
100°. With small differences in variance (Fig.4(c)), the network again weights
cue in an approximately optimal manner but shifts to a WTA response at higher
values (> 110°). In contrast when more significant differences in variance were
presented (Fig.4 (d)), the network changes from the MLE to WTA response at
much smaller conflicts (> 60°). Fig.4 (b) shows the outputs of ring attractor with
re-weighting mechanism when conflict of the original heading direction firing
with the light(visual stimulus) increasing (green line) and the data of biological
experiments (black line), the whole tendency are very similar with our model’s
performance though it is not accurately identical due to the parameters setting.

Secondly we assessed the performance of the network to combine cues when
the certainty of one cue was altered while the other was held constant. Specifi-
cally, cue 1 and cue 2 were presented 90° apart. While cue 2 variance was held
at 40°, the variance of cue 1 was increased from 5° to 200°. Fig.5 shows the peak
position of the activation profile of the network changes from a WTA state for
uncertainty of cue 1 below 15° and above 160° but performs a weighted average
when uncertainty of cue 1 in the range from 20° to 155°. Although not acting
in a truly optimal manner the switch from WTA to weighted-average and back
again follows the general profile of the MLE prediction.

4 Discussion

In this work, we re-visited the classic ring-attractor network described by Touret-
sky [15] to assess if it could be configured for optimal cue integration, and if so
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Fig. 3. Integration of conflicting cues by a ring attractor network. Activation profiles
of cues are shown by the red and black curves, the output profile of RA (the ring
attractor) by the green line, and the MLE by the blue dashed line. (a) shows the
results for a noise-free network with 100 neurons, (b) shows the results of the same
network with added white noise, and (c) show the results when the number of neurons
is reduced to 8.

whether this might give inspiration for those seeking such networks in animals
or provide a biologically-inspired solution for robotics.
We report that our implementation of the classic ring attractor although is

identical to the Touretsky model, but we show that it can perform optimal-like
cue integration when presented with conflicting cues. The network output is also
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Fig. 4. Network performance with increasing cue conflict. Cue 1 was presented in the
same location while cue 2 was presented at increasing distances. For (a),(c) and (d), the
response of the RA (ring attractor) is shown by the green line, the WTA prediction by
the red line, and the MLE by the blue line. (a) Cues of equal variance, (b) the results of
re-weighting model(green line) [21] and biological experiment(black line)[17], (c) Cue 1
has slightly more variance than Cue 1, (d) Cue 1 has significantly more variance than
cue 1. Raw data of (b) are provided by Hector Page and Kate Jeffery.

shown to be robust to noise on the sensory input and reduction in size to the 8
neurons that encode direction in insects. Our sweep tests showed that both the
variance and distance between conflicting cues strongly affect the network prop-
erties. With equal or small differences in variance of cues the network performs
a weighted average for small cue conflicts, but switches to a WTA response for
larger conflicts. For larger differences the network switches to WTA responses
at much small conflicts. This changing of response is akin to meta-Bayesian de-
cision making where it is highly sub-optimal to integrate two hugely conflicting
cues e.g. one should not go West, when one cue states North and the other
South. Instead one should choose the best single option, but how does the agent
know when to apply each strategy? We show that the [15] ring attractor network
inherently possesses this capacity.
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Fig. 5. Network performance with changes in variance difference. Cue 1 and cue 2 were
presented at the same location 90° apart. The variance of cue 2 was kept at 40° while
cue 1 changed from 5° to 200° in intervals of 5°. The position the peaks of activation
profile of cues 1 and 2 are shown by the dashed red and black lines respectively; the
WTA response by the solid red line; the MLE by the blue line; and the RA (ring
attractor) output by the green line.

Over two decades ago the ring attractor network was cited as a possible
solution underpinning the head direction cells in mammals that integrate direc-
tional cues from different sensory modalities to maintain an accurate read-out of
their current orientation [13]. Recent models of the head direction cells of mam-
mals have moved away from the original ring attractor architecture because the
physiology not mirroring the excitatory interconnections required by the original
model [21,22], and the belief that ring attractors will tend to a WTA outcome
over the weighted-average observed in behavioral experiments [16]. Through aug-
mentation of these models with a re-weighting mechanism (Hebbian learning)
[21] it has been proposed that this network architecture may be a ubiquitous neu-
ral circuit underlying optimal cue integration across many functions [16]. Here
we provide evidence that the original ring attractor network can also perform
weighted cue integration (closely matching the performance of the re-weighting
network [21] Fig.4 (b)), or cue selection in a manner closely approximating data
from rats [17] (Fig.4 (b)). Since no one has tried to use pure ring attractor to
do cues integration, let alone the analysis of its properties of combining different
cues, hence it is a interesting and meaningful reminding to show the ability and
property of ring attractor for future researching.

Direction cells have recently been revealed in insects (Drosophila) with so-
called E-PG neurons forming a bump of activity that moves in response to both
rotation of vision cues and self-motion and combines in both cue selection or
cue integration like a averaged weighted [4]. These E-PG neurons have also been
shown to have ring attractor dynamics [23]. Biomimetic (highly constrained by
the anatomy of the animal) have successfully recreated the activation phenomena



An analysis of a ring attractor model for cue integration 11

of behavioral experiments [24,25] but have not, as yet, been extended to the
broader cue integration problem discussed here and in [16]. We note that [24]
showed that fixed connection weights are sufficient to track the self-motion and
visual cues well with the dynamic re-weighting with slower learning rates giving
improved performance describing a trade-off between computational complexity
and required robustness.

By analyzing the Touretzky ring attractor network, we show that it can still
be considered a biologically plausible mechanism to achieve cue integration of
the animals. Although not well suited to described the head-direction system of
mammals due to physiological constraints, it is an open question whether other
areas of animal brains that perform cue integration can use this ring attractor
model. For instance, the lateral accessory lobe (LAL) of insects brain, which is
a converging point of sensory information and has inputs from sensory lobes,
mushroom body and the central complex [26,27] provides a candidate to search
for such network architectures. To date, we know little about how different cues
(like vision memory from mushroom body and path integration from central
complex) might be integrated in this area and wherein ring attractors may also
play crucial roles. As a bio-inspired neural network, the ring attractor is a com-
pact but efficient model to solve the similar problems in sensor fusion and its
anti-noise and stable performance with only 8 neurons endow it the advantage
of implementation on robots with limited computation resources.
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