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Abstract—Voltage source inverters are essential devices to
integrate renewable energy sources to the main grid and control
the injection of real and reactive power. Due to their inherent
nonlinear dynamics, the stability and particularly the current
limitation of power controlled inverters represent challenging
tasks under grid variations or unrealistic power demands. In
this paper, using the synchronously rotating dq transformation,
a nonlinear current limiting controller is proposed for three-
phase inverters connected to the grid through an LCL filter.
The proposed controller introduces a cascaded control structure
with inner current and voltage control loops and an outer power
controller that includes a droop function to support the grid
and rigorously guarantee a limit for the grid currents. Using
nonlinear closed-loop system analysis and based on input-to-state
stability theory, the limits for the d- and q-axis grid currents
are proven independently from each other without adding any
saturation units into the system that can lead to instability.
Extensive simulation results of the proposed nonlinear current-
limiting controller are provided to demonstrate its effectiveness
and current-limiting property.

Index Terms—Nonlinear control, three-phase inverter, current
limitation, nonlinear stability analysis

I. INTRODUCTION

In contrast to traditional power grids which depend on the

centralized generation, the smart grid architecture is based

on several distributed generation (DG) units that include

renewable energy sources, such as wind turbine generators

and photovoltaic systems [1]. However, as the integration of

the renewable sources into the grid increases, power system

stability has become fragile due to volatility in the supply

and demand which affects the frequency and voltage of the

grid [2]. Therefore, in order to enhance system reliability

and achieve large-scale utilization of DG units and seamless

transition between islanded and grid-connected modes without

violating the voltage and frequency limitations [3], the design

of advanced control methods for the inverter devices that

integrate DG systems to the main grid is of major importance

[1], [4], [5]. Droop control is one of the most commonly used

methods for inverters to support the grid, since it does not

require any communication between the DG units and adjusts
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the active and reactive power depending on the grid voltage

and frequency [6].

Although droop control has been proven to be a very ben-

eficial way to manage the injected active and reactive power

independently, in a number of studies such as [7], [8], [9] and

[10], the nonlinear dynamics of the controller and the system

are often not taken into account and the stability analysis is

based on linearization techniques. Since linearization methods

confine the region of stability, the accurate nonlinear dynamics

of a droop controlled grid-tied inverter should be considered

for a rigorous stability analysis [11], [12].

In grid-connected applications, in order to improve the

system stability and also protect the inverter and the filter

against high currents, a current-limiting property should be

additionally guaranteed. For this purpose, additional saturation

blocks or limiters are often used in combination with the droop

controller [13], [14], and [15]. However, these techniques can

lead to instability due to integrator windup. This problem can

be alleviated using anti-windup methods [16], [17], but most

of the modern anti-windup methods need full information of

the system parameters, which are generally unknown, and

traditional anti-windup techniques cannot rigorously guarantee

closed-loop system stability. To this end, a nonlinear current

limiting controller that overcomes these issues has been re-

cently proposed for single phase grid-connected inverters in

[18], [19] and guarantees current limitation without suffering

from integrator windup under both normal and faulty grid

conditions. However, this controller cannot be directly applied

to three-phase inverters using the dq synchronously rotating

reference frame modelling [1] and can only limit the current on

the inverter side and not the grid side, which is more important

in grid-connected applications.

In this paper, a nonlinear controller that can be applied to

three-phase inverters connected to the grid with an LCL filter

and guarantee a rigorous grid current limitation is proposed.

Based on the synchronously rotating dq reference frame mod-

elling of the inverter, the proposed controller is designed in a

cascaded control structure with two inner current and voltage

loops and an outer power control loop (droop control). For

the inner control loops, traditional PI controllers are adopted

with decoupling terms to guarantee fast regulation of the

inverter currents and voltage, which is a common approach
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Fig. 1: Three-phase grid-connected inverter with an LCL filter

in three-phase inverter applications [20]. However, for the

outer power loop, a new nonlinear droop controller is pro-

posed with bounded voltage dynamics and a constant virtual

resistance to guarantee closed-loop system stability and the

desired limitation. Using nonlinear Lyapunov methods [21],

the boundedness of the controller voltages are analytically

proven and then using input-to-state stability, the d- and q-axis

grid currents are proven to be limited below a given maximum

value independently from each other or the power demand.

Hence, the proposed controller introduces a droop control

structure to support the voltage and frequency of the grid and

at the same time maintains a limited injected current to the

grid to protect the inverter under unrealistic power demands.

Detailed simulation results of a grid-connected three-phase

inverter equipped with the proposed nonlinear current-limiting

controller are presented to verify the theoretical analysis.

The rest of the paper is arranged as follows. In Section II,

the dynamic model of a three-phase grid-connected inverter

is given. In Section III, the proposed controller is presented

and the dynamics of the outer power control loop are analyzed

to prove the desired current-limiting property. In Section IV,

simulation results of a three-phase inverter operating under

the proposed controller are provided and in Section V, the

conclusions of the paper are drawn.

II. DYNAMIC MODEL OF THE SYSTEM

The system under consideration is a three-phase inverter

connected to a balanced grid with angular velocity ωg via

an LCL filter, as illustrated in Fig. 1. The inverter-side filter

resistance, inductance, and capacitance are represented by Rf ,

Lf , and Cf , respectively, while grid-side filter resistance and

inductance are denoted as Rg and Lg . The inverter is supplied

by a dc source denoted as Vdc, while Va, Vb, and Vc represent

the three-phase grid voltages. The dynamic model of the

system can be obtained using the synchronously rotating dq

frame [1], as given below:

Lf

dIfd

dt
= −RfIfd + ωLfIfq +md

Vdc

2
− VCd (1)

Lf

dIfq

dt
= −RfIfq − ωLfIfd +mq

Vdc

2
− VCq (2)

Cf

dVCd

dt
= Ifd − Igd + ωCfVCq (3)

Cf

dVCq

dt
= Ifq − Igq − ωCfVCd (4)

Lg

dIgd

dt
= −RgIgd + ωLgIgq − Vgd + VCd (5)

Lg

dIgq

dt
= −RgIgq − ωLgIgd − Vgq + VCq (6)

where Ifd, Ifq and Igd, Igq represent the d and q components

of inverter and grid currents, respectively, whereas VCd, VCq

and Vgd, Vgq symbolize the filter and grid voltages in dq

frame. The control inputs of the system are represented by md

and mq , which are duty ratio functions that drive the PWM

(pulse width modulation) signals for the inverter. Taking into

consideration the dq system equivalence, as in [22], the real

power P and reactive power Q of the system can be calculated

as

P =
3

2
(VCdIgd + VCqIgq) , Q =

3

2
(VCdIgq − VCqIgd) . (7)

As can be seen from (7), due to the multiplication of the

system states in the expressions of P and Q, any controller that

requires the calculation of the real and the reactive power, such

as the droop controller, will result in a nonlinear closed loop

system. Hence, the stability analysis of the closed-loop system

and key properties for the inverter, such as current limitation,

must be proven using nonlinear systems theory. To this end,

the main aim of this paper is to design a nonlinear droop

controller for a three-phase inverter that guarantees stability

and limits the grid currents under given maximum values at

all times.

III. CONTROLLER DESIGN AND ANALYSIS

In order to design the desired droop controller for the

inverter, a cascaded control structure which includes inner

current and voltage control loops and an outer power control

loop is adopted. For the inverter side currents and voltages, the

inner loops introduce a PI controller with decoupling terms,

while a novel nonlinear droop controller is proposed as the

outer loop to limit the grid currents in dq reference frame as

presented below in detail.

A. Inner Control Loops

Based on the dq dynamic model of the grid-connected

inverter, where md and mq are the control inputs, the inner

current controller that regulates the inverter currents Ifd and

Ifq to the desired values Idref and Iqref , respectively takes

the form:

md =
(Idref − Ifd)(Kpi

+
KIi

s
) + VCd − ωLfIfq

0.5Vdc

mq =
(Iqref − Ifq)(Kpi

+
KIi

s
) + VCq + ωLfIfd

0.5Vdc
. (8)

Here, a PI controller with additional decoupling terms is

applied at the duty-ratio inputs md and mq , while the reference

values Idref and Iqref are obtained from a voltage controller

with similar structure:

Idref = (VCdref − VCd)(Kpv
+
KIv

s
) + Igd − ωCfVCq

Iqref = (VCqref − VCq)(Kpv
+
KIv

s
) + Igq + ωCfVCd (9)

where the desired values for the capacitor voltages VCdref and

VCqref are defined by the outer power control loop.



The PI controller gains can be selected accordingly such

that the current controller acts much faster than the voltage

controller, which acts faster than the power controller. This

design of controllers in different time scales can be accom-

plished via suitable pole placement and is widely adopted in

a cascaded control design approach [23].

B. Proposed Nonlinear Controller (Outer Loop)

Since the fast inner control loops have been extensively

investigated in the literature [13] and [23], this paper will focus

on the design of the outer droop control loop, which represents

the novelty of this work. Based on the fast current and voltage

controllers, it is considered that the capacitor voltages VCd and

VCq are regulated to their reference values VCdref and VCqref

in (5) and (6). Then, the proposed controller takes the form

VCdref = Vgd + Ed − rvIgd − ωLgIgq (10)

VCqref = Vgq + Eq − rvIgq + ωLgIgd (11)

In (10) and (11), the parameters Ed and Eq represent two

controllable voltage terms (controller states) that implement

the desired droop functions, while rv acts as a positive constant

virtual resistance. Inspired by the universal droop control

expressions [24], and the bounded controller designed in [25],

the controller states Ed and Eq are dynamically formed as

Ėd =cd (Ke(E
∗ − VC)− n(P − Pset))E

2
dq (12)

Ėdq =−
cdEdEdq

E2
max

(Ke(E
∗ − VC)− n(P − Pset))

− kd

(

E2
d

E2
max

+ E2
dq − 1

)

Edq (13)

Ėq =− cq (ω
∗ − ωg +m(Q−Qset))E

2
qq (14)

Ėqq =
cqEqEqq

E2
max

(ω∗ − ωg +m(Q−Qset))

− kq

(

E2
q

E2
max

+ E2
qq − 1

)

Eqq (15)

where Edq , and Eqq are two additional control states and

cd, cq , Emax, Ke, kd, and kq are positive constants. The

expression Ke(E
∗−VC)−n(P −Pset) introduces the P ∼ V

droop expression, which should be zero at the steady-state,

and E∗ is the rated RMS voltage of the grid, VC is the RMS

voltage of the filter capacitor given as VC =

√

V 2
Cd

+V 2
Cq

2
, Pset

is the reference value of the real power and n is the droop

coefficient. Similarly, ω∗ − ωg +m(Q−Qset) represents the

Q ∼ −ω droop expression, where ω∗ is the rated angular

frequency, ωg is the grid frequency, Qset is the desired injected

reactive power and m is the second droop coefficient. The

P ∼ V and Q ∼ −ω droop expressions are adopted in this

paper due to the introduction of the virtual resistance rv in

the output via the proposed control design [24]. The initial

conditions of the controller states Ed, Edq , Eq , and Eqq are

selected as 0, 1, 0, and 1, respectively, and the nonlinear

dynamics (12)-(15) have been proposed in a way to guarantee

the boundedness of the controller states Ed and Eq in the

range Ed, Eq ∈ [−Emax, Emax] as explained below.

For the controller dynamics (12) and (13), one can consider a

Lyapunov function candidate as

Wd =
E2

d

E2
max

+ E2
dq. (16)

The time derivative of this function is

Ẇd =
2EdĖd

E2
max

+ 2EdqĖdq. (17)

By replacing in (17) Ėd and Ėdq from the controller dynamics

(12) and (13), then

Ẇd = −2kd

(

E2
d

E2
max

+ E2
dq − 1

)

E2
dq. (18)

As can be seen from (18), Ẇd = 0 when Edq = 0 or for every

values of Ed and Edq on the ellipse:

Wd0 =

{

Ed, Edq ∈ R :
E2

d

E2
max

+ E2
dq = 1

}

. (19)

Based on the initial conditions of the controller states, Ed and

Edq will always stay on the ellipse Wd0 as mathematically

expressed below:

Ẇd = 0 ⇒Wd(t) =Wd(0) = 1, ∀t ≥ 0. (20)

Hence, Ed ∈ [−Emax, Emax], ∀t ≥ 0. By considering the

transformation

Ed = Emax sinφ and Edq = cosφ (21)

then taking into account (12)-(13), Ed and Edq will travel on

the ellipse Wd0 with an angular velocity

φ̇ =
cd (Ke(E

∗ − VC)− n(P − Pset))Edq

Emax

. (22)

From (22), when Ke(E
∗ − VC) − n(P − Pset) is zero, the

angular velocity becomes zero and the controller states can

converge to the desired equilibrium point defined by the

P ∼ V droop control. Considering a similar analysis for the

controller dynamics (14)-(15), then Eq and Eqq are proven to

remain on a similar ellipse

Bq0 =

{

Eq, Eqq ∈ R :
E2

q

E2
max

+ E2
qq = 1

}

(23)

and travel with angular velocity

ψ̇ =
−cq (ω

∗ − ωg +m(Q−Qset))Eqq

Emax

. (24)

Therefore, the Q ∼ −ω droop can be implemented in a similar

way, while Eq satisfies Eq ∈ [−Emax, Emax] ∀t ≥ 0.
It should be noted that, the proposed controller can easily

change from the droop control to accurate regulation of P and

Q at their reference values by removing the term Ke(E
∗−VC)

from (12)-(13) and the term ω∗−ωg from (14)-(15). Thus, real

and reactive power can be set to their desired values at any

time and transition between the two modes can be seamlessly



realized.

C. Stability analysis and current-limiting property

By implementing the proposed controller (10)-(11) into the

grid side current equations (5)-(6) and taking into account

the fast regulation of the inner current and voltage loops, the

closed-loop grid-side current equations are expressed as

Lg

dIgd

dt
= −(Rg + rv)Igd + Ed (25)

Lg

dIgq

dt
= −(Rg + rv)Igq + Eq (26)

It is clear that the dynamics of Igd and Igq can be han-

dled independently taking into account that Ed, Eq ∈
[−Emax, Emax] for all t ≥ 0, as proven in the previous

subsection. Hence for d-axis grid current dynamics (26),

consider the Lyapunov function candidate as

V =
1

2
LgI

2
gd. (27)

The time derivative of V is calculated using (25) as

V̇ = −(Rg + rv)I
2
gd + EdIgd

≤ −(Rg + rv)I
2
gd + |Ed||Igd|. (28)

Thus,

V̇ < 0, ∀ |Igd| >
|Ed|

Rg + rv
(29)

which proves that system (25) is input-to-state stable by con-

sidering Ed as the input. Since it is proven that |Ed| ≤ Emax,

∀t ≥ 0, then Igd will be bounded for all t ≥ 0. In particular, if

initially |Igd(0)| ≤
Emax

Rg+rv
then from the input-to-state stability

analysis, there is

|Igd(t)| ≤
Emax

Rg + rv
, ∀t ≥ 0. (30)

In order to limit the current Igd below a maximum value Imax,

the controller parameters Emax and rv can be suitably selected

to satisfy

Emax = (Rg + rv)Imax. (31)

By substituting (31) into (30), it is proven that

|Igd(t)| ≤ Imax, ∀t ≥ 0, (32)

which proves the desired current-limiting property.

A similar approach for the q-axis grid current dynamics (26)

can easily show that if initially it holds that |Igq(0)| ≤
Emax

Rg+rv
,

then

|Igq(t)| ≤ Imax, ∀t ≥ 0. (33)

As a result, the grid currents are proven to remain below

a defined maximum value Imax independently from each

order or the nonlinear droop control expressions by suitably

selecting the controller parameters Emax and rv according

to (31). This is achieved without using any saturation units,

which is a common approach in conventional controllers and

can lead to instability [13]-[14]. Since the current-limiting

property is achieved using nonlinear Lyapunov theory and

input-to-state stability analysis, then the grid current limitation

is guaranteed at all times, even during transients. It is worth

mentioning that if |Igd| → Imax or |Igq| → Imax, then

|Ed| → Emax or |Eq| → Emax, respectively, which leads to

Edq → 0 or Eqq → 0 since the controller states are restricted

on the ellipses Wd0 and Bq0. Then from (12) and (14), it

becomes clear that Ėd → 0 and Ėq → 0, which proves

that the integration slows down near the limits resulting in

an inherent anti-windup property of the proposed controller.

This highlights the superiority of the proposed controller

with respect to existing approaches that introduce saturation

limits and require additional anti-windup mechanisms that

further complicate the controller implementation and closed-

loop system stability analysis.

TABLE I: System and controller parameters

Parameters Values

Lf , Lg 0.0139H

Rf , Rg 0.8752Ω

n 0.0661

ωg 2π49.97 rad/s

Vdc 700V

Ke 10

KPi,KIi 0.3, 10

cd 0.65

cq 22.5

Vgd 220
√

2V

Parameters Values

Cf 1.8186µF

rv 2Ω

m 0.0019

kd, kq 1

Imax 2.5A

KPv ,KIv 2, 10

ω∗ 2π50 rad/s

E∗ 218V

Emax 7.188V

Vgq 0V

IV. SIMULATION RESULTS

In order to validate the effectiveness of the proposed control

strategy, a three-phase grid-connected inverter is simulated

using the Matlab/Simulink software. The system and controller

parameters are given in Table I. In this section, the main aim

is to illustrate that the proposed controller can change between

set mode, i.e. accurate real and reactive power regulation and

droop control mode and at the same time limits the grid

currents when an unrealistic power reference value is provided

to the controller.

Initially, the set control mode is enabled by removing the

terms Ke(E
∗−VC) and ω∗−ωg from (12)-(13) and (14)-(15),

respectively, where Pset and Qset are set to zero. At the time

instant t = 1s, the active power reference value Pset changes

to 400W and at t = 2s, it is further increased to 1650W .

As it can be seen from Fig. 2, initially P is regulated to the

desired 400W value but when Pset becomes very high, the

proposed controller regulates the real power to a lower value.

This is because the current Igd tries to violate its maximum

value Imax = 2.5A in Fig. 4 and the proposed controller

maintains the desired current limitation to protect the inverter

under unrealistic power demands. However, the reactive power

is always regulated to the desired zero value and the current

Igq remains also limited below its maximum value. At t = 3s,
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Pset is decreased to 800W and the real power is regulated

to the desired value after a short transient. At the time instant

t = 4s, the reactive power reference Qset increases to 200V ar
and at t = 5 it changes to 400V ar to verify the ability of the

controller to regulate the reactive power. As it can be seen from

Fig. 2, the reactive power injected by the inverter is accurately

regulated to both reference values. The P ∼ V droop control

is enabled at t = 7s, and the real power decreases to 760W
in order to regulate the RMS voltage VC closer to the rated

E∗. The response of the system states VCd and VCq , which

define the RMS value VC as VC =

√

V 2
Cd

+V 2
Cq

2
, is shown in

Fig. 3. At the time instant t = 8s, the Q ∼ −ω droop control

is enabled and the reactive power is decreased to 301V ar
since the frequency of the grid ωg is slightly lower than the

rated ω∗, as given in the parameters of Table I. Hence, both

accurate regulation of the real and reactive power and droop

control modes can be implemented by the proposed nonlinear

controller with an inherent grid current limitation that protects

the inverter from unrealistic values of the power demand.

In order to verify the theoretic analysis, the trajectory of the

controller states Ed, Edq and Eq , Eqq is plotted on the Ed −
Edq and Eq −Eqq planes, respectively, in Fig. 5 for the entire

simulation. One can easily observe that the controller states

remain on the corresponding ellipses Wd0 and Bq0, which are

the same in this case. From the controller analysis, as the state

Edq tends to zero, state Ed reaches its maximum value Emax,

as shown in Fig. 5, leading to the current-limiting property for

Igd. Since Igq does not reach its upper limit (Fig. 4), then the

trajectory of the controller states Eq and Eqq remains on the

top of the ellipse Bq0 and is regulated at the corresponding

steady-state values depending on the reference value Qset and

the Q ∼ −ω droop.

V. CONCLUSIONS

A nonlinear current-limiting droop controller for a three-

phase inverter connected to the grid through and LCL filter

was proposed in this paper. The proposed controller includes

traditional PI controllers with decoupling terms for the inner

control loops and a nonlinear dynamic controller for the outer
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power control loop. Using the nonlinear dynamics of the

system and input-to-state stability theory, the current-limiting

property of the grid-side inverter currents was analytically

proven based on the bounded controller dynamics and the

virtual resistance that was introduced in the proposed control

design. Both active and reactive power regulation and droop

control with a guaranteed upper limit for the grid currents

can be accomplished by the proposed nonlinear controller,

which was validated via extensive simulation results of a

grid-connected three-phase inverter to support the theoretical

analysis of the proposed control approach.
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