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Robust DOA Estimation for Sources with Known

Waveforms Against Doppler Shifts via Oblique

Projection
Yang-Yang Dong, Chun-Xi Dong, Wei Liu, Senior Member, IEEE, Ming-Ming Liu, and Zheng-Zhao Tang

Abstract—As known, utilization of the information about signal
waveform can improve the direction of arrival (DOA) estimation
results. However, with a fast moving platform, Doppler effect
occurs, which distorts the known waveforms and may result
in large DOA estimation bias and even error for conventional
DOA estimation methods for sources with known waveforms.
To deal with this problem, a robust DOA estimation method
for sources with known waveforms against Doppler shifts is
developed. The proposed method first transforms the nonlinear
mixing of Doppler shifts in the model to an approximately
linear one using discrete-time Fourier transform (DTFT) and
finite Taylor series expansion. Then, multiple oblique projectors
are constructed to separate each component corresponding to
different order of derivatives. Finally, estimations of DOAs, com-
plex amplitudes and Doppler shifts are obtained simultaneously.
Simulation results show that the proposed method has a much
more robust DOA estimation performance than existing methods
for sources with known waveforms.

Index Terms—Direction of arrival estimation, known wave-
form, Doppler shift, Taylor series expansion, oblique projection.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation of multiple

sources is a key problem in array signal processing, and

it has been applied widely in wireless communications, radar,

sonar, and electronic reconnaissance, etc [1]–[4]. Conventional

DOA estimation methods, such as multiple signal classification

(MUSIC) [5], estimation of signal parameters via rotational

invariance technique (ESPRIT) [6], and the propagator method

(PM) [7], can only utilize the statistical properties of the array

received data. However, in many real applications, such as

communications [8] and radar [9], prior information of the

signal waveform can be available. It has been proved that

the Cramer-Rao bound (CRB) of DOA estimation for signals

with known waveforms is much lower than the case without

[10], and there has been an increasing interest in studying the

DOA estimation problem for known waveform sources [10]–

[20]. They can be classified into two classes: the first one can

only handle uncorrelated sources, such as decouple maximum
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likelihood (DEML) [11], subarray beamforming (SB) [12], and

linear regression (LR) [15], while the other one can handle

coherent sources in the presence of multipath, such as coherent

decoupled maximum likelihood (CDEML) [17], white coher-

ent decoupled maximum likelihood (WCDEML) [18], parallel

decomposition (PADEC) [19], and linear propagator (LP) [20].

In this work, the DOA estimation problem with known

signal waveforms is further studied and the case with fast

moving platforms is considered. When the array system is

placed on such a platform, the Doppler effect cannot be

neglected, which results in Doppler shifts from the known

waveforms. If we apply the above mentioned methods directly,

the estimation result may have a large bias and even some

error.

Moreover, although the estimation problem for Doppler

shifts and DOA angles can also be solved in the context

of joint angle and frequency estimation [21]–[24], to our

best knowledge, there has not been any method available

which can exploit the known waveform information in the

solution. To solve the problem, we first construct a new DOA

estimation model incorporating the Doppler effect. Then, to

avoid multidimensional spectrum peak search or nonlinear

optimization, we transform the new model into an approximate

linear model in digital frequency domain via discrete-time

Fourier transform (DTFT) and finite order Taylor series expan-

sion. To handle the large number of components of different

order derivatives, an oblique projector is employed with the aid

of known waveforms. Finally, the DOAs, complex amplitudes

and Doppler shifts are obtained via the inherent relationship

of these derivatives simultaneously. Simulation results show

that the proposed method can achieve a much more robust

estimation performance than the DEML method [11] in the

presence of unknown Doppler shifts.

This remaining part of the paper is organised as follows.

In Section 2, the studied signal model is introduced, while

the proposed estimation method is derived in Section 3.

Simulation results are provided in Section 4 and conclusions

are drawn in Section 5.

Notations: matrices and vectors are denoted by boldfaced

capital letters and lower-case letters, respectively. (·)∗, (·)T

(·)H , (·)−1, and (·)† stand for conjugate, transpose, conjugate

transpose, inverse, and Moore-Penrose inverse, respectively.

E{·}, ◦, diag{·}, Re{·}, and Im{·} denote the statistical

expectation, Hadamard product, diagonalization, real part and

imaginary part of a complex number, respectively.
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Fig. 1. Configuration for DOA estimation in the presence of Doppler effect.

II. SIGNAL MODEL

As shown in Fig. 1, an M -element uniform linear array

(ULA) with inter-sensor spacing d is placed on a high speed

moving platform. Q narrowband far-field uncorrelated sources

with known waveforms {sq(n)}
Q
q=1 (n = 0, · · · , N − 1, N

is the number of snapshots ) of wavelength λ from distinct

directions {θq}
Q
q=1 (unknown) impinge on the array. The

signal received by the mth element (m = 1, · · · ,M ) can be

expressed as

xm(n) =
∑Q

q=1
am(θq)γqe

j2πfDqnsq(n) + wm(n) (1)

where am(θq) = exp[−j2π(m − 1)d sin θq/λ], γq denotes

the complex amplitude of the received qth known waveform

signal, fDq denotes the Doppler shift of the qth signal resulting

from the relative movement of the source to the ULA, 1 and

wm(n) represents the noise.

The received signal vector of the ULA at the nth snapshot

x(n) can be represented by

x(n) = H(θ,γ)(sD(fD, n) ◦ s(n)) +w(n) (2)

where

x(n)= [x1(n), x2(n), · · · , xM (n)]T ,

H(θ,γ)= A(θ)Γ(γ),

sD(fD, n)= [ej2πfD1n, ej2πfD2n, · · · , ej2πfDQn]T ,

s(n)= [s1(n), s2(n), · · · , sQ(n)]
T ,

w(n)= [w1(n), w2(n), · · · , wM (n)]T ,

A(θ)= [a(θ1),a(θ2), · · · ,a(θQ)],

Γ(γ)= diag{γ1, γ2, · · · , γQ},

a(θq)= [a1(θq), a2(θq), · · · , aM (θq)]
T ,

θ= [θ1, θ2, · · · , θQ]
T .

fD= [fD1, fD2, · · · , fDQ]
T ,

Similar to [11], it is assumed that the additive noises are

temporally and spatially white with zero-mean and variance

σ2
w, and are uncorrelated with the incident signals.

1The Doppler shift here is digital and can be easily transformed into analog
via multiplication by the sampling rate.

III. PROPOSED METHOD

A. Proposed Method

Since the unknown Doppler shifts are nonlinearly mixed

with the known waveforms, the existing methods, such as

DEML [11], SB [12], and LR [15], cannot handle this problem

effectively. According to the statistical parameter estimation

theory [25], we can use the maximum likelihood (ML) method

to solve this problem. However, a multidimensional search is

needed, leading to extremely high computationsal complexity.

To estimate DOAs in the presence of the unknown Doppler

shifts with low computational complexity, we first transform

the mth element received signal xm(n) into the digital fre-

quency domain via discrete-time Fourier transform (DTFT) as

follows,

x̃m(ω) =
+∞
∑

n=−∞

xm(n)e−jωn

=

Q
∑

q=1

am(θq)γq

N−1
∑

n=0

ej2πfDqnsq(n)e
−jωn + w̃m(ω)

=

Q
∑

q=1

am(θq)γq

N−1
∑

n=0

sq(n)e
−j(ω−2πfDq)n + w̃m(ω)

=

Q
∑

q=1

am(θq)γq s̃q(ω − 2πfDq) + w̃m(ω)

(3)

where ω ∈ [0, 2π), s̃q(ω) =
∑N−1

n=0 sq(n)e
−jωn, w̃m(ω) =

∑N−1
n=0 wm(n)e−jωn.

From Eq. (3), s̃q(ω − 2πfDq) involves fDq and cannot

be separated linearly. Since fDq is often much smaller

than the frequency resolution 1/N , we can approximate

s̃q(ω − 2πfDq) with the P th order Taylor series expansion

around ω as follows, 2

s̃q(ω − 2πfDq) ≈

P
∑

p=0

s̃
(p)
q (ω)

p!
(−2πfDq)

p
(4)

where s̃
(p)
q (ω) and ! denote the pth order derivative of s̃q(ω)

and the factorial operation, respectively. (See Appendix A for

the calculation of s̃
(p)
q (ω).)

Obviously, Eq. (3) can be expressed approximately as

x̃m(ω) ≈

Q
∑

q=1

am(θq)γq

P
∑

p=0

s̃
(p)
q (ω)

p!
(−2πfDq)

p
+ w̃m(ω)

(5)

For numerical realization, we discretize ω in the manner

of DFT, i.e., ωk = 2πk/N with k = 0, 1, · · · , N − 1. Then,

x̃m(ωk) = x̃m(2πk/N), s̃
(p)
q (ωk) = s̃

(p)
q (2πk/N), w̃m(ωk) =

w̃m(2πk/N). Without causing confusion and for simplicity,

we use x̃m(k), s̃
(p)
q (k), and w̃m(k) to denote them.

With Eqs. (2) and (5), we can express x(n) in the frequency

domain with the P th order Taylor series expansion as

x̃(k) ≈ H(θ,γ)
∑P

p=0

(−2π)p

p!
F

p
D s̃(p)(k) + w̃(k) (6)

2The choice of P depends on the application and is related to the relative
value of Doppler shift to frequency resolution.



3

where x̃(k) is the simplification of x̃(ωk).

s̃(p)(k) = [s̃
(p)
1 (k), s̃

(p)
2 (k), · · · , s̃

(p)
Q (k)]T , FD =

diag{fD1, fD2, · · · , fDQ}. The superscript p for FD

denotes its pth power.

Eq. (6) can be written in a matrix form compactly as

follows,

X̃ = H(θ,γ)FS̃+ W̃ (7)

where

F= [IQ,FD, · · · ,FP
D],

S̃= [̃s(0), s̃(1), · · · , s̃(N − 1)],

s̃(k)= [(̃s(0)(k))T ,−2π(̃s(1)(k))T , · · · ,
(−2π)p

P !
(̃s(P )(k))T ]T ,

W̃= [w̃(0), w̃(1), · · · , w̃(N − 1)].

Since s̃(p)(k) is known, we can design an oblique projector

Ep to separate the components corresponding to the pth order

derivative of the expansion. According to [26], Ep can be

designed as

Ep = S̃T
p (S̃

∗
pPS̃T

rp
S̃T
p )

−1S̃∗
pPS̃T

rp
(8)

where S̃p = (−2π)p

p! · [̃s(p)(0), s̃(p)(1), · · · , s̃(p)(N −

1)], P
S̃T

rp
= IN − S̃T

rp(S̃
T
rp)

†, and S̃rp =

[S̃T
0 , S̃

T
1 , · · · , S̃

T
p−1, S̃

T
p+1, · · · , S̃

T
P ]

T .

Then, we have 3

X̃save
p = H(θ,γ)FS̃Ep + W̃Ep

= H(θ,γ)Fp
DS̃p + W̃Ep

(9)

We can use the known S̃p to calculate the following,

B̂p = X̃save
p S̃†

p (10)

where Bp = H(θ,γ)Fp
D.

Repeat the process of Eq. (9)-(10) (P + 1) times, we can

obtain B̂0, B̂1, · · · , B̂P .

Therefore, the DOAs and Doppler shifts can be estimated

as

θ̂q = arcsin{
−λ

2πd
· angle[

1

(P + 1)(M − 1)

·

P
∑

p=0

M−1
∑

m=1

B̂p(m+ 1, q)

B̂p(m, q)
]} (11)

f̂Dq =
1

PM

P−1
∑

p=0

M
∑

m=1

B̂p+1(m, q)

B̂p(m, q)
(12)

where B̂p(m, q) denotes the (p, q)th element of B̂p. arcsin{·}
and angle[·] represents the arcsine value of a real number and

the phase angle of a complex number.

With {θ̂q}
Q
q=1, we can obtain {a(θ̂q)}

Q
q=1 and Â =

[a(θ̂1),a(θ̂2), · · · ,a(θ̂Q)]. Then, the estimations of complex

amplitude γq (q = 1, 2, · · · , Q) can be calculated as follows,

γ̂q =
1

M

M
∑

m=1

B̂0(m, q)

Â(m, q)
(13)

3Since it can be proved that s̃(p)(k) and s̃
(q)(k) (p 6= q) are correlated,

i.e., E{s̃(p)(k)̃s(q)(k)} 6= 0, the oblique projector instead of the orthogonal
projector is applied in Eq.(9).

B. Computational Complexity Analysis

In this subsection, we analyse the computational complexity

of the proposed method compared with the DEML method

[11] in terms of the number of complex-valued multiplications.

For the proposed method, it consists of

(i) DFT using (6): O{MN log2N},

(ii) oblique projector construction via (8): O{(P +1)[N3+
(P + 2)QN2 + (P 2 + 2)Q2N +Q3]},

(iii) X̃save
p and Bp estimation with (9)-(10): O{(P +

1)(MN2 +QMN +Q2N)},

(iv) DOA, complex amplitude, and Doppler shift estimation

using (11)-(13): O{2PQM +QM}.

Then, with N ≫ M > Q and P being small for con-

ventional applications (see Section IV for details), the overall

computational complexity of the proposed method can be

approximately expressed as O{MN log2N + (P + 1)N3 +
(P + 1)(P + 2)QN2 + (P + 1)QMN}.

Similarly, for the DEML method, it includes

(i) B̂ and Q̂ estimation using (17)-(18) in [11]: O{M2N +
QMN +Q2(N + 3M) + 2Q3},

(ii) DOA and complex amplitude estimation using Eq.(24)-

(25) in [11]: O{2NθM
2+M3}, where Nθ denotes the number

of angle searches.

For conventional case, i.e., Nθ ≈ N ≫ M > Q, its overall

computational complexity is about O{2NθM
2 + M2N +

QMN +M3}.

According to the above analysis, the proposed method has

a larger computational complexity than the DEML method

owing to the oblique projector construction step.

Remark 1: Nθ and N are usually the same in terms of

magnitude, since some simple search strategy such as in [27],

can be applied to reduce the number of searches.

IV. SIMULATION RESULTS

In this section, the performance of the proposed method

is investigated in comparison with that of DEML [11] , and

the Cramer-Rao bound (CRB) for known waveforms (see

Appendix B for the derivation) and unknown waveforms [25],

respectively. It is assumed that d = λ/2, and the waveforms

of all sources are known with unit power. The angle search

range for the DEML method is fixed as [−90◦, 90◦] with an

interval of 0.01◦.

Example 1: In the first example, we focus on the selection

of the optimum order P of Taylor series expansion under

different fD and different number of snapshots. DOAs and

complex amplitudes of two sources are set to 10◦, 12◦, ej0.3π ,

and e−j0.4π , respectively. For convenience, the two sources

have the same Doppler shift fD. With M = 4 and SNR = 10

dB, for each fixed fD, N and P , 500 Monte Carlo trials are

performed.

The optimum values of P are shown in Table I.

It can be seen that the smaller the value of fD and N , the

smaller the optimum P . The reason may be that with a larger

P , the power of
(−2π)P

P ! FP
D s̃(P )(k) becomes smaller, which

may be lower than that of noise, leading to a larger P used

for the proposed method, and therefore a larger error occurs.

Besides, if the optimum P = 0, the Doppler shifts cannot be
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Fig. 2. RMSE versus SNR, K = 2, M = 4, N = 500.

estimated. To avoid this problem, we can set P = 1 to balance

the performance of DOA and Doppler shift estimation.

TABLE I
OPTIMUM P FOR DOA ESTIMATION UNDER DIFFERENT fD AND N

fD = 10−4 fD = 10−3 fD = 10−2 fD = 10−1

N = 100 0 0 2 > 50
N = 500 0 1 > 50 > 50
N = 1000 0 2 > 50 > 50

Example 2: In this example, the performance of the pro-

posed method with respect to SNR is investigated. The DOAs,

complex amplitudes and Doppler shifts of two sources are set

to 10◦, 12◦, ej0.3π , e−j0.4π , 10−3 and 10−3, respectively. With

M = 4, N = 500, and P = 1, the input SNR varies from -15

dB to 30 dB with an interval of 5 dB. The root mean square

error (RMSE) results are shown in Fig. 2.

100 200 300 400 500 600 700 800 900 1000

Number of snapshots

10-2

10-1

100

101

102

R
M

SE
 (

de
gr

ee
s)

Proposed
DEML
CRB  (known waveform)

CRB  (unknown waveform)

(a) DOA

100 200 300 400 500 600 700 800 900 1000

Number of snapshots

10-3

10-2

10-1

100

101

R
M

SE

Proposed
DEML
CRB  (known waveform)

CRB  (unknown waveform)

(b) Complex amplitude

100 200 300 400 500 600 700 800 900 1000

Number of snapshots

10-6

10-5

10-4

10-3

10-2

R
M

SE
f D

Proposed
CRB

f
D

 (known waveform)

CRB
f
D

 (unknown waveform)

(c) Doppler shift

Fig. 3. RMSE versus number of snapshots, K = 2, M = 4, SNR = 10 dB.

Example 3: In this example, we examine the performance

of the proposed method against the number of snapshots. The

settings are the same as Example 2 except that SNR = 10 dB

and N ranges from 100 to 1000 with an interval of 100. The

estimation results are provided in Fig. 3.

For DOA estimation, as shown in Fig. 2a and 3a, the

proposed method can work for values of N from 100 to

1000 effectively, while the DEML method can only work

for N ≤ 800 under the simulation conditions here, which

shows that the proposed method is more robust to Doppler

shifts for DOA estimation. Furthermore, the DOA estimation

performance of the DEML method becomes worse as N
increases, which is completely in contrast to the performance

of conventional DOA estimation methods for sources with

unknown waveforms. The reason is that for a fixed fD, with

the increase of N , the difference between true waveforms
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and known waveforms becomes larger, which results in worse

DOA estimation performance. Besides, the DOA estimation

RMSEs of the proposed method are always lower than the

CRB with unknown waveforms, which proves the superiority

of proposed method in comparison with conventional joint

DOA, complex amplitude and Doppler shift estimation meth-

ods without prior information of the signal waveform.

In terms of complex amplitude estimation, from Fig. 2b

and 3b, we can see that the proposed method and the DEML

method have a similar estimation performance. Especially, for

the proposed method, when N is small, such as N ≤ 500, it

outperforms the DEML method. That is to say, the proposed

method has a robust complex amplitude estimation perfor-

mance against Doppler shifts. In addition, compared with

the CRB for unknown waveforms, the proposed method has

a better performance for lower SNR and a smaller number

of snapshots. When the SNR and the number of snapshots

increase, the error resulting from the finite order Taylor

series expansion approximation dominates, which degrades the

estimation performance.

For the estimation of Doppler shifts, according to Figs.

2c and 3c, the performance mainly depends on the ratio

of Doppler shift to frequency resolution (i.e., fD/(1/N) =
fDN ), showing an approximately negative relationship, i.e.,

when fDN is very small, the proposed method has a good

Doppler shift estimation performance, which may be helpful

for velocity measurement and is a great advantage of the

proposed method. Moreover, due to the same reason, the

estimation performance for Doppler shifts using the proposed

method still has a similar problem as that of complex ampli-

tude estimation in comparison with the CRB of sources with

unknown waveforms.

V. CONCLUSIONS

A robust DOA estimation method for sources with known

waveforms in the presence of unknown Doppler shifts has been

introduced. It first transforms the nonlinear model including

Doppler shifts into an approximately linear one using DTFT

and Taylor series expansion; then, with the known waveforms

and their derivatives, components corresponding to derivatives

of different order are separated via a series of oblique projec-

tors; finally, DOAs, complex amplitudes and Doppler shifts

of the impinging signals are estimated simultaneously. As

demonstrated by simulation results, the proposed method has a

robust DOA estimation performance against Doppler shifts in

comparison with algorithms available for known waveforms

which do not take the Doppler effect into consideration.

However, further research is needed in the future regarding

its performance in Doppler shift estimation.

APPENDIX A

CALCULATION OF THE pTH ORDER DERIVATIVE OF s̃q(ω)

For p = 1, we have

s̃(1)q (ω) =
∂

∂ω
s̃q(ω) =

∂

∂ω

N−1
∑

n=0

sq(n)e
−jωn

=

N−1
∑

n=0

[−jn · sq(n)]e
−jωn

(14)

With Eq.(14), for p = 2, it can be derived that

s̃(2)q (ω) =
∂2

∂ω2
s̃q(ω) =

∂

∂ω
s̃(1)q (ω)

=

N−1
∑

n=0

[(−jn)
2
· sq(n)]e

−jωn

(15)

Hence, we can conclude that for any integer p,

s̃(p)q (ω) =

N−1
∑

n=0

[(−jn)
p
· sq(n)]e

−jωn (16)

It is noticed that for p = 0, s̃
(0)
q (ω) is the DTFT of sq(n).

APPENDIX B

DERIVATION OF THE CRAMER-RAO BOUND

To obtain the CRB, we collect all real-valued unknown

variables of the model in Eq. (2) into a vector as

µ = [θT , ξT ,ηT , fTD ]T (17)

where θ = [θ1, · · · , θQ]
T , ξ = [ξ1, · · · , ξQ]

T =
[Re(γ1), · · · ,Re(γQ)]

T , η = [ξ1, · · · , ξQ]
T =

[Im(γ1), · · · , Im(γQ)]
T , fD = [fD1, fD2, · · · , fDQ]

T .

For simplicity, A(θ) and Γ(γ) are denoted as A and Γ.

Besides,
⌢
s(n) = sD(fD, n) ◦ s(n), and x0(n) = AΓ

⌢
s(n).

According to [25], when the noise is white guassian, the

Fisher information matrix can be calculated with the gradient

of x0(n) with respect to µ,

I(µ) =
2

σ2
w

Re

(

N−1
∑

n=0

DH
n (µ)Dn(µ)

)

(18)

where

Dn(µ)= [Dn(θ),Dn(ξ),Dn(η),Dn(fD)],

Dn(θ)= [
∂x0(n)

∂θ1
, · · · ,

∂x0(n)

∂θQ
] = [

∂A

∂θ1
Γ

⌢
s(n), · · · ,

∂A

∂θQ
Γ

⌢
s(n)],

Dn(ξ)= [
∂x0(n)

∂ξ1
, · · · ,

∂x0(n)

∂ξQ
] = [A

∂Γ

∂ξ1

⌢
s(n), · · · ,A

∂Γ

∂ξQ

⌢
s(n)],

Dn(η)= [
∂x0(n)

∂η1
, · · · ,

∂x0(n)

∂ηQ
] = [A

∂Γ

∂η1

⌢
s(n), · · · ,A

∂Γ

∂ηQ

⌢
s(n)],

Dn(fD)= [
∂x0(n)

∂fD1
, · · · ,

∂x0(n)

∂fDQ

] = [AΓ
∂

⌢
s(n)

∂fD1
, · · · ,AΓ

∂
⌢
s(n)

∂fDQ

].

I(µ) in (18) can be expressed compactly in matrix form as

follows,

I(µ) =
2

σ2
w

Re

















Iθθ Iθξ Iθη IθfD
Iξθ Iξξ Iξη IξfD
Iηθ Iηξ Iηη IηfD
IfDθ IfDξ IfDη IfDfD

















(19)

where Iθθ =
∑N−1

n=0 DH
n (θ)Dn(θ), Iθξ = IHξθ =

∑N−1
n=0 DH

n (θ)Dn(ξ), Iθη = IHηθ =
∑N−1

n=0 DH
n (θ)Dn(η),

IθfD = IH
fDθ =

∑N−1
n=0 DH

n (θ)Dn(fD), Iξξ =
∑N−1

n=0 DH
n (ξ)Dn(ξ), Iξη = IHηξ =

∑N−1
n=0 DH

n (ξ)Dn(η),

IξfD = IH
fDξ =

∑N−1
n=0 DH

n (ξ)Dn(fD),

Iηη =
∑N−1

n=0 DH
n (η)Dn(η), IηfD = IH

fDη =
∑N−1

n=0 DH
n (η)Dn(fD), and IfDfD =

∑N−1
n=0 DH

n (fD)Dn(fD).
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To derive the analytical expressions of Iθθ , Iθξ,Iθη , IθfD ,

Iξξ, Iξη , IξfD , Iηη , IηfD and IfDfD , respectively, we calculate

the (p, q)th element of them firstly, as follows

Iθpθq =
∑N−1

n=0

⌢
s
H
(n)ΓH ˙̄A

H

θp
˙̄AθqΓ

⌢
s(n)

= N · tr{ΓH ˙̄A
H

θp
˙̄AθqΓR⌢

s
⌢
s
}

= N · (eTp Γ
HȦHȦΓeq) · (e

T
p R

T
⌢
s

⌢
s
eq) (20)

Iθpξq =
∑N−1

n=0

⌢
s
H
(n)ΓH ˙̄A

H

θp
A ˙̄Γξq

⌢
s(n)

= N · tr{ΓH ˙̄A
H

θp
A ˙̄ΓξqR⌢

s
⌢
s
}

= N · (eTp Γ
HȦHAΓ̇ξeq) · (e

T
p R

T
⌢
s

⌢
s
eq) (21)

Iθpηq
=
∑N−1

n=0

⌢
s
H
(n)ΓH ˙̄A

H

θp
A ˙̄Γηq

⌢
s(n)

= N · tr{ΓH ˙̄A
H

θp
A ˙̄Γηq

R⌢
s

⌢
s
}

= N · (eTp Γ
HȦHAΓ̇ηeq) · (e

T
p R

T
⌢
s

⌢
s
eq) (22)

IθpfDq
=
∑N−1

n=0

⌢
s
H
(n)ΓH ˙̄A

H

θp
AΓ

∂
⌢
s(n)

∂fDq

= N · tr{ΓH ˙̄A
H

θp
AΓEqR⌣

s
⌢
s
}

= N · (eTp Γ
HȦHAΓeq) · (e

T
p R

T
⌣
s

⌢
s
eq) (23)

Iξpξq =
∑N−1

n=0

⌢
s
H
(n) ˙̄ΓH

ξp
AHA ˙̄Γξq

⌢
s(n)

= N · tr{ ˙̄ΓH
ξp
AHA ˙̄ΓξqR⌢

s
⌢
s
}

= N · (eTp Γ̇
H
ξ AHAΓ̇ξeq) · (e

T
p R

T
⌢
s

⌢
s
eq) (24)

Iξpηq
=
∑N−1

n=0

⌢
s
H
(n)Γ̇H

ξp
AHAΓ̇ηq

⌢
s(n)

= N · tr{ ˙̄ΓH
ξp
AHA ˙̄Γηq

R⌢
s

⌢
s
}

= N · (eTp Γ̇
H
ξ AHAΓ̇ηeq) · (e

T
p R

T
⌢
s

⌢
s
eq) (25)

IξpfDq
=
∑N−1

n=0

⌢
s
H
(n) ˙̄ΓH

ξp
AHAΓ

∂
⌢
s(n)

∂fDq

= N · tr{ ˙̄ΓH
ξp
AHAΓEqR⌣

s
⌢
s
}

= N · (eTp Γ̇
H
ξ AHAΓeq) · (e

T
p R

T
⌣
s

⌢
s
eq) (26)

Iηpηq
=
∑N−1

n=0

⌢
s
H
(n) ˙̄ΓH

ηp
AHAΓ̇ηq

⌢
s(n)

= N · tr{ ˙̄ΓH
ηp
AHAΓ̇ηq

R⌢
s

⌢
s
}

= N · (eTp
˙̄ΓH
ηp
AHAΓ̇ηq

eq) · (e
T
p R

T
⌢
s

⌢
s
eq) (27)

IηpfDq
=
∑N−1

n=0

⌢
s
H
(n) ˙̄ΓH

ηp
AHAΓ

∂
⌢
s(n)

∂fDq

= N · tr{ ˙̄ΓH
ηp
AHAΓEqR⌣

s
⌢
s
}

= N · (eTp Γ̇
H
η AHAΓeq) · (e

T
p R

T
⌣
s

⌢
s
eq) (28)

IfDpfDq
=
∑N−1

n=0

∂
⌢
s
H
(n)

∂fDp

ΓHAHAΓ
∂

⌢
s(n)

∂fDq

= N · tr{EpΓ
HAHAΓEqR⌣

s
⌣
s
}

= N · (eTp Γ
HAHAΓeq) · (e

T
p R

T
⌣
s

⌣
s
eq) (29)

where R⌢
s

⌢
s

= 1/N
∑N−1

n=0
⌢
s(n)

⌢
s
H
(n), Ȧ =

[∂a(θ1)
∂θ1

, · · · ,
∂a(θQ)
∂θQ

], ˙̄A = [ ˙̄Aθ1 , · · · ,
˙̄AθQ ] = [ ∂A

∂θ1
, · · · , ∂A

∂θQ
],

˙̄Aθq = Ȧeqe
T
q , ˙̄Γξ = [ ˙̄Γξ1 , · · · ,

˙̄ΓξQ ] = [ ∂Γ
∂ξ1

, · · · , ∂Γ
∂ξQ

],
˙̄Γη = [ ˙̄Γη1

, · · · , ˙̄ΓηQ
] = [ ∂Γ

∂η1

, · · · , ∂Γ
∂ηQ

], Γ̇ξ =

[∂γ1

∂ξ1
, · · · ,

∂γQ

∂ξq
], Γ̇η = [∂γ1

∂ξ1
, · · · ,

∂γQ

∂ξq
], ˙̄Γξq = Γ̇ξeqe

T
q ,

Γ = [γ1, · · · ,γQ],
∂
⌢
s (n)

∂fDq
= Eq

⌣
s(n),

⌣
s(n) = j2πn

⌢
s(n),

R⌣
s

⌣
s
= 1/N

∑N−1
n=0

⌣
s(n)

⌣
s
H
(n), Eq = eqe

T
q , eq is the qth

column of an identity matrix.

Hence,

Iθθ = N · (ΓHȦHȦΓ) ◦RT
⌢
s

⌢
s

(30)

Iθξ = N · (ΓHȦHAΓ̇ξ) ◦R
T
⌢
s

⌢
s

(31)

Iθη = N · (ΓHȦHAΓ̇η) ◦R
T
⌢
s

⌢
s

(32)

IθfD = N · (ΓHȦHAΓ) ◦RT
⌣
s

⌢
s

(33)

Iξξ = N · (Γ̇H
ξ AHAΓ̇ξ) ◦R

T
⌢
s

⌢
s

(34)

Iξη = N · (Γ̇H
ξ AHAΓ̇η) ◦R

T
⌢
s

⌢
s

(35)

IξfD = N · (Γ̇H
ξ AHAΓ) ◦RT

⌣
s

⌢
s

(36)

Iηη = N · (Γ̇H
η AHAΓ̇η) ◦R

T
⌢
s

⌢
s

(37)

IηfD = N · (Γ̇H
η AHAΓ) ◦RT

⌣
s

⌢
s

(38)

IfDfD
= N · (ΓHAHAΓ) ◦RT

⌣
s

⌣
s

(39)

Therefore, given the relationship between CRB and the

Fisher information matrix, define ∆ = I−1(µ), and conse-

quently we have

CRBθ=

√

√

√

√

1

Q

Q
∑

q=1

∆q,q (40)

CRBγ=

√

√

√

√

1

Q

Q
∑

q=1

(∆Q+q,Q+q +∆2Q+q,2Q+q) (41)

CRBfD=

√

√

√

√

1

Q

Q
∑

q=1

∆3Q+q,3Q+q (42)

where CRBDOA, CRBγ , and CRBfD represent the abso-

lute Cramer-Rao bounds for DOAs, complex amplitudes, and

Doppler shifts, respectively. ∆p,q denotes the (p, q)th element

of ∆.
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