

This is a repository copy of On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/133251/

Version: Accepted Version

### Article:

Barco, A, Ingham, E orcid.org/0000-0002-9757-3045, Fisher, J orcid.org/0000-0003-3833-3700 et al. (2 more authors) (2018) On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration. Journal of Peptide Science, 24 (8-9). e3114. ISSN 1075-2617

https://doi.org/10.1002/psc.3114

© 2018 European Peptide Society and John Wiley & Sons, Ltd. This is the peer reviewed version of the following article:Barco A, Ingham E, Fisher J, Fermor H, Davies RPW. On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration. J Pep Sci. 2018;24:e3114, which has been published in final form at https://doi.org/10.1002/psc.3114. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy.

#### Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ 1 On the design and efficacy assessment of self-assembling peptide-based

2 hydrogel-glycosaminoglycan mixtures for potential repair of early stage

3 cartilage degeneration.

4 A.Barco,<sup>a</sup> E. Ingham,<sup>a</sup> J. Fisher,<sup>a</sup> H. Fermor,<sup>a</sup> and R.P.W. Davies<sup>b</sup>

5 a. Institute of Medical and Biological Engineering, Leeds, United Kingdom.

6 b. Department of Oral Biology, Leeds, United Kingdom.

7 Peptide-based hydrogels are of interest for their potential use in regenerative medicine. 8 Combining these hydrogels with materials that may enhance their physical and biological 9 properties, such as glycosaminoglycans (GAGs), has the potential to extend their range of 10 biomedical applications, for example in the repair of early cartilage degeneration. The aim of 11 this study was to combine three self-assembling peptides (SAPs) (P<sub>11</sub>-4, P<sub>11</sub>-8 and P<sub>11</sub>-12) 12 with chondroitin sulphate at two molar ratios of 1:16 and 1:64 in 130 mM and 230 mM Na<sup>+</sup> 13 salt concentrations. The study investigates the effects of mixing SAP and GAG on the 14 physical and mechanical properties at 37°C. Peptide alone, chondroitin sulphate alone and 15 peptide in combination with chondroitin sulphate were analysed using Fourier transform 16 infrared (FTIR) spectroscopy to determine the  $\beta$ -sheet percentage, transmission electron 17 microscopy (TEM) to determine the fibril morphology and rheology to determine the elastic 18 and viscous modulus of the materials. All of the variables (peptide, salt concentration and 19 chondroitin sulphate molar ratio) had an effect on the mechanical properties, β-sheet 20 formation and fibril morphology of the hydrogels. P<sub>11</sub>-4 and P<sub>11</sub>-8-chondroitin sulphate 21 mixtures, at both molar ratios, were shown to have a high  $\beta$ -sheet percentage, dense 22 entangled fibrilar networks as well as high mechanical stiffness in both (130 mM and 230 23 mM)  $Na^+$  salt solutions when compared to the P<sub>11</sub>-12/chondroitin sulphate mixtures. These 24 peptide/ chondroitin sulphate hydrogels show promise for biomedical applications in 25 glycosaminoglycan depleted tissues.

## 26 Introduction

27 The poor regenerative capacity of human articular cartilage contributes to the 28 development of debilitating osteoarthritis (OA) and remains a major clinical challenge. 29 Osteoarthritis is a disease which contributes to 2.8% disability adjusted life years 30 amongst high income countries.<sup>(1)</sup> Around nine million people in the UK have sought 31 treatment for OA and of these, 4.71 million are related to knee OA, which could 32 increase to 8.3 million by 2035.<sup>(2)</sup> A net depletion of glycosaminoglycan's (GAGs) in osteoarthritic cartilage has been reported in the literature.<sup>(3, 4)</sup> This has been shown to 33 34 result in the loss of mechanical properties and function in vitro, and is considered to be 35 a major contributor to disease progression.<sup>(5)</sup>

There is considerable interest in the development of novel early interventions to repair or replace damaged cartilage. Delaying the progression of severe OA will subsequently reduce the need for joint replacement. One approach to repair early cartilage degradation is to restore GAG levels with the aim of maintaining functional cartilage material properties.<sup>(5, 6)</sup>

Peptides are of a particular interest and have been shown to readily self-assemble into higher order structures that create very stable hydrogels under physiological conditions. They have been used to develop novel materials for regenerative medicine applications.<sup>(7-19)</sup> The P<sub>11</sub>-X family of self-assembling peptides(SAPs) are rationally designed to form a hierarchy of supramolecular structures which include single molecule thick tapes, ribbons (double tapes), fibrils (stacks of ribbons) and fibres (entangled fibrils). The design principles include an odd number of amino acids which

1 maximises intermolecular interactions driving anti-parallel beta-sheet formation. They 2 are based on polar amino acids, which form strong intermolecular interactions (polar 3 zippers) increasing  $\beta$ -tape stability. They have alternating polar/apolar side chains situated in the middle of the peptide, maximising β-strand formation. Hydrophobic 4 5 residues (trp, phe) are placed in the middle of the peptide and on the same side in order 6 to drive ribbon formation. Finally, charged residues were included to drive anti-7 parallel β-sheet formation and impart 'a trigger' to induce hierarchical assembly by 8 virtue of the protonation and deprotonation of the charged moieties. The P<sub>11</sub>-X family and their physico-chemical properties have been studied extensively.<sup>(6, 14, 20, 21)</sup> The SAPs 9 in this study, have the ability to form hydrogels form an initial non Newtonian fluid 10 11 state upon application of a trigger, they have been shown to be biocompatible and studies have indicated that they have potential as a visco-supplementation treatment 12 13 for early stage OA.<sup>(8, 14)</sup>. P<sub>11</sub>-4 is a glutamine-based peptide with a net negative charge 14 at physiological pH, Similarly  $P_{11}$ -8 is also glutamine based but it has a net positive 15 charge at physiological pH. For P<sub>11</sub>-12 the glutamine residues are replaced with serine 16 residues, this will have the effect of increasing the relative hydrophilicity whilst 17 maintaining the same charge distribution and pH phase behaviour  $P_{11}$ -8. The 18 combination of SAPs with GAGs may provide increased bio-functionality and 19 additionally they have the ability to be delivered in a minimally invasive manner. This 20 makes them ideal candidates for use as injectable materials and potential effective 21 interventions for early stage OA.

22 A key challenge is the control over the mechanical properties of these hydrogels 23 which can be affected by the concentration of the peptide, the net charge of the peptide 24 and also the environmental conditions such as pH and ionic strength.<sup>(20, 22)</sup> For potential 25 application in the treatment of early stage OA, SAP-GAG mixtures with three 26 favourable properties would be desirable: High  $\beta$ -sheet percentage (which is pivotal, 27 as the hierarchical supramolecular structures formed are dependent on the amount of 28  $\beta$ -sheet formed), long-woven fibrilar networks and a high stiffness. All of which must 29 occur in specific physiological conditions.

30

31 Previous studies have shown that the addition of large amounts of GAG does not 32 inhibit self-assembly of P<sub>11</sub>-4, 8 and 12 when in a physiological buffer of phosphate 33 buffered solution (PBS).<sup>(22)</sup> We are exploring the efficacy of this SAP/GAG 34 multicomponant system in conditions specifically realted to cartilage. Imperitive to fulfil its function as an anchor in the cartilage for delivering GAGs, our SAP/GAG 35 36 system would be required to be a stable gel over time. Our system should not show 37 any shear thining at fequencies including (but not limited to) that of walking 38 frequency, which is ca. 1Hz (60 strides per minute).<sup>(24)</sup>

Rheology is used to mimic the mechanical process that these hydrogels may undergo,
such as the shear of cartilage under load. Walking frequency (stride length) is ca. 1Hz
(60 strides per minute).<sup>(24, 25)</sup> Therefore, the rheological behaviour of the assembled
peptides and assembled SAP/GAG mixtures were compared at this frequency.

43 The overall aim of this work is to develop a system whereby GAGs are delivered 44 into the surface of GAG depleted cartilage using a carrier self-assembling peptide. The 45 SAPs would initially be delivered as a non-viscous fluid. Subsequently once in place 46 the SAPs are triggered by the natural environment to self-assemble (into hierarchical 47 supramolecular structures-driven by  $\beta$ -sheet formation) and induce anchorage of 48 applied GAG. In this study, we therefore; 1) Determine the  $\beta$ -sheet percentage in 49 model physiological conditions; 2) Assess the fibril morphology and 3) Determine the 50 biomechanical properties (stiffness) of three SAPs, P<sub>11</sub>-4, P<sub>11</sub>-8 and P<sub>11</sub>-12 (Table 1). 51 The effects of combining the SAPs with chondroitin sulphate (GAG) at two molar ratios of 1:16 and 1:64 in 130 mM and 230 mM Na<sup>+</sup> salt solutions, which are 52

- 1 representative of normal physiological conditions and the physiological environment
- 2 within the surface of articular cartilage were considered. 3

# Table 1

#### 4 **Results and discussion**

5

6 Cartilage contains varying counter ions, the amounts and species depend on the region of the 7 cartilage and are important to its biomechanical function.<sup>(23)</sup> Urban summarised the range of 8 ion concentration in two discreet areas of the cartilage, at the surface ([Na<sup>+</sup>] 210-230 mM, 9 [K<sup>+</sup>] 7mM [Ca<sup>2+</sup>] 4-6 mM, [Cl<sup>-</sup>] 100-110 mM) and in deep cartilage ([Na<sup>+</sup>] 260-320 mM, 10 [K<sup>+</sup>] 9-11 mM, [Ca<sup>2+</sup>] 8-15 mM, [Cl<sup>-</sup>] 70-90 mM). Our focus is in replacing GAG depletion 11 near the surface and fixing it in place with a hydrogel network. It is important to investigate

12 the behaviour of SAPs and SAP-GAG mixtures in the relevant physiological conditions.

#### 13 Secondary structure- Fourier transform infrared (FTIR)

14 The  $\beta$ -sheet formation of the SAPs is central to the proposed mechanism of action in 15 replacing depleted GAGs in cartilage. FTIR analysis was used to study the secondary 16 structure of peptides; P<sub>11</sub>-4, P<sub>11</sub>-8 and P<sub>11</sub>-12 in the presence and absence of 17 chondroitin sulphate at molar ratios of 1:16 and 1:64 in two concentrations of Na<sup>+</sup> salt 18 solution. The primary structure of the de-novo SAPs studied are designed so that they 19 adopt a  $\beta$ -sheet conformation, which can be identified in the amide I region using 20 FTIR.<sup>(26-28)</sup>

21

22 The FTIR data shows that the self-assembled peptide conformation is rich in  $\beta$ -sheet 23 for all three SAPs (alone) in both Na<sup>+</sup> salt solutions and in most of the SAP-GAG 24 mixtures in both Na<sup>+</sup> salt solutions, as demonstrated in Figure 1. Of particular interest, 25 was the relative  $\beta$ -sheet percentage formed by the SAPs alone, which are indicative of self-assembled hydrogel state.<sup>(29, 30)</sup> Increasing the Na<sup>+</sup> ion concentration had different 26 effects depending on the SAP. SAP P<sub>11</sub>-4 at the higher Na<sup>+</sup> salt concentration indicated 27 28 a slight decrease in the percentage of  $\beta$ -sheet formed, which is possibly due to the 29 monovalent cation interaction in the unassembled (monomeric) state. The monovalent 30 cations could interact with the negatively charged peptide forming an electric layer 31 around the negatively charged monomer, which in turn increases the energy barrier for  $\beta$ -sheet formation, preventing self-assembly. For P<sub>11</sub>-8 and P<sub>11</sub>-12 the percentage of  $\beta$ -32 sheet formed increased (Figure 1), as these monomeric peptides carry a net positive 33 34 charge, there is a repulsion of cations and no increase in the energy barrier for  $\beta$ -sheet 35 formation. This shows the potential effects of the surrounding environment on the 36 biochemical properties of the peptide.

#### 37 38

## Figure 1

39 40 The addition of chondroitin sulphate at molar ratios of 1:16 and 1:64 in conjunction 41 with the two varying concentrations of Na<sup>+</sup> ions in the salt solutions had a very 42 different effect on the percentage of  $\beta$ -sheet formed. A small addition of GAG to P<sub>11</sub>-4 43 (1:64) caused the peaks observed in the region of 1672-1690cm<sup>-1</sup> (anti-parallel  $\beta$ -sheet 44 conformation) to decrease in intensity. This indicated a decrease in the percentage of 45  $\beta$ -sheet formed compared to the peptide alone (Figure 1). Interestingly, the addition of 46 more GAG (1:16) caused an increase in the overall percentage  $\beta$ -sheet. This could 47 indicate that a small addition of GAG disrupted the ability of the peptide to self-48 assemble due to the electrostatic repulsion between the highly negatively charged GAG molecules and the negatively charged peptide, while the addition of more GAG seemed to drive the self-assembly further (Figure 1). A similar effect was seen when comparing  $P_{11}$ -4 at the same GAG molar ratio and increasing the concentration of Na<sup>+</sup> ions in the salt solution. This could be explained by the screening of electrostatic repulsions between the positive and negative side chains of  $P_{11}$ -4 with the increasing concentration of Na<sup>+</sup> ions.

7 Conversely, the addition of a small amount of GAG to  $P_{11}$ -8 and  $P_{11}$ -12 in the 130 8 mM Na<sup>+</sup> salt solution caused the percentage of  $\beta$ -sheet formed to initially increase but 9 as more GAG was added the percentage of  $\beta$ -sheet formed decreased, more so in  $P_{11}$ -10 12 than  $P_{11}$ -8 (Figure 1). Nevertheless, it is important to note that the use of GAG with 11  $P_{11}$ -12 had a detrimental effect on the percentage of  $\beta$ -sheet formed, specifically at the 12 higher GAG molar ratio (Figure 1).

13 As with all techniques, FTIR has its limitations especially when used to analyse 14 peptidic hydrogels <sup>(31)</sup>, as these biomaterials are very sensitive to the way they are 15 treated. The biphasic solutions/gels analysed in the FTIR can dissociate upon the application of mechanical force between the CaF<sub>2</sub> discs, resulting in sheer thinning. 16 17 This leads to a disproportionate amount of gel and fluid between the IR discs which 18 could lead to inaccurate determination of  $\beta$ -sheet content. However, every effort was 19 made to reduce this with the use of a known path length of 0.025mm. Nevertheless 20 due to the concentration regime and aqueous salt conditions used, FTIR was the only 21 available means in assessing the conformation of the system studied. Despite the 22 possible limitations of the technique FTIR analysis clearly highlighted that two of the 23 three SAPs ( $P_{11}$ -4 and  $P_{11}$ -8) demonstrated a greater percentage of  $\beta$ -sheet in the 24 presence of the GAG at 130mM and 230mM Na<sup>+</sup> salt concentrations, when compared 25 to  $P_{11}$ -12. This higher percentage of  $\beta$ -sheet, demonstrates that self-assembly has taken 26 place at physiological conditions and makes  $P_{11}$ -4 and  $P_{11}$ -8, good candidates to take 27 forward into biological studies, depending on their fibril morphology and 28 biomechanical properties. The formation of peptide gels are subject to a difference in 29 the kinetics of self-assembly which can be influenced by the surrounding conditions 30 and the molar ratio of GAG. Therefore, the values of  $\beta$ -sheet percentage presented in 31 this study may not be indicative of values that the peptide and peptide-GAG mixtures may have achieved if they had been left to reach a full equilibrium state. The 32 33 SAP/GAG multicomponent systems were investigated two days after initial 34 preparation, to replicate the practical application.

#### 35 Hydrogel morphology and fibril formation - TEM

36 Physical differences between the fibre morphology of the different samples were observed by TEM. Representative images are shown in Figure 2, Figure 3 and Figure 37 38 4. Varying networks of entangled fibres or bundles were observed, which are essential 39 for gel formation. Overlapping of the fibrils and fibres made it difficult to definitively 40 assess the morphology, hence regions in which individual fibrils could clearly be 41 observed were chosen to measure the lengths and widths. The peptides in different salt 42 solutions exhibited a twist pitch, meaning two widths were recorded; a wide width and 43 a narrow width (where the twist occurred), values of width and twist pitch are 44 presented in Figure 5. Average lengths ranging from ca. 410 to 990 nm for the 45 peptides alone and ca. 498 to 3518 nm for the peptide-GAG mixtures were recorded 46 (Figure 6). 47

| <b>Figure</b> | 2 |
|---------------|---|
|               |   |

# <u>Figure 3</u>

# Figure 4

51 52 53

48

1 The effect that the Na<sup>+</sup> ion concentration in the salt solution and the GAG molar 2 ratio had on the lengths and widths of the fibrils formed varied from peptide to 3 peptide. For P<sub>11</sub>-4 and P<sub>11</sub>-8, Na<sup>+</sup> ion concentration in the salt solution, GAG molar 4 ratio and their combined effects all had a significant effect (2-way ANOVA; p<0.05) 5 on the morphology of the fibrils. The data indicates that in the 230 mM Na<sup>+</sup> salt 6 solution, the P<sub>11</sub>-4 fibrils were longer than in the 130 mM Na<sup>+</sup> salt solution.

7 Interestingly, for  $P_{11}$ -8 there were multiple types of structure observed. Fibrils were by 8 far the most frequent structure but there were instances of nanotube formation. P<sub>11-8</sub> 9 fibrils were longer in the 130 mM Na<sup>+</sup> salt solution when compared to the P<sub>11</sub>-8 fibrils in the 230 mM  $Na^+$  salt solution. For P<sub>11</sub>-12, only the GAG molar ratio had a 10 significant effect (2-way ANOVA; p < 0.05) on the length of the P<sub>11</sub>-12 fibrils. The 11 analysis also revealed that, Na<sup>+</sup> ion concentration in the salt solution, GAG molar ratio 12 and the combination of the two had a significant effect (2-way ANOVA; p<0.05) on 13 14 the widths of the P<sub>11</sub>-12 fibrils. The data shown in Figure 6 indicates that the longest 15 fibrils formed by the P<sub>11</sub>-12 peptide were at a GAG molar ratio of 1:16 in both 130 16 mM and 230 mM Na<sup>+</sup> salt solutions. 17

#### <u>Figure 5</u>

#### Figure 6

23 When considering the overall morphology of the SAPs and SAP-GAG mixtures 24 (Figure 2, 3 and 4), generally those SAP and SAP-GAG mixtures that exhibited higher 25  $\beta$ -sheet formation tended to exhibit denser networks of fibrils and fibres, with a greater 26 proportion of junction points. The presence of these nanofibrilar networks with 27 interwoven morphology indicated the formation of self-supporting hydrogels. This 28 was not the case for  $P_{11}$ -12 at both GAG molar ratios and in both Na<sup>+</sup> salt solutions. 29 SAP P<sub>11</sub>-12 precipitated out of solution and formed solid white floculates, some of which were observed in the TEM images (Figure 4, images B & E). These clumps 30 31 appeared to interact with each other to form bundles and small networks as was the 32 case in the other gels. The low percentage of  $\beta$ -sheet formation exhibited in the FTIR 33 analysis could be linked to the irregular fibril morphology and this may be due to the 34 unexpected formation of nanotubes although these were not widely observed.

It is important to note that variations and trends identified in the widths and lengths of the SAPs and SAP-GAG mixtures may not be directly related to the GAG molar ratio and concentration of the Na<sup>+</sup> salt solution. Peptide and peptide-GAG samples were left to dry before TEM analysis and therefore it is possible that the drying process could have had an effect on the fibril/fibre formation and/or association of the structures.

41 Nevertheless, images show that P<sub>11</sub>-4 and P<sub>11</sub>-8 alone and with GAG demonstrated 42 a characteristic network of entangled fibres/fibrils, an indicator that the SAPs have 43 undergone hierarchical self-assembly to form these structures. Despite having some of 44 the longest and thickest fibrils, P<sub>11</sub>-12, did not demonstrate this characteristic network. 45 Considering the morphological data and coupling this with the FTIR P<sub>11</sub>-12 would not 46 be considered a good candidate for future biological studies. It would appear that the 47 GAGs have a negative effect on the self-assembling and morphological properties of 48 P<sub>11</sub>-12, which is not desirable for the intended application.

#### 49 Rheology

18

19 20

21 22

50 Rheology has previously been used to explore the biomechanical properties of various

51 peptide hydrogels and also, to study their gelation mechanisms during and after flow.

52 (6) The peptides were firstly subjected to an amplitude sweep in a shear strain

1 controlled mode from 0.01-100% at 1Hz and 20Hz (with a 10 minute pause inbetween 2 to allow for recovery). A strain value that lay within the linear viscoelastic region 3 (LVER) was chosen. Frequency sweeps were then run to determine the dynamic 4 modulus of the hydrogel samples. The sweeps were run between 1 and 20 Hz at the 5 pre-determined strain that was established from the amplitude sweep. Peptide 6 hydrogels were allowed to equilibrate for 15 minutes once loaded, prior to the start of 7 testing. All tests were performed in replicates of three and at 37°C (Figure 7).

8

9 For the peptides alone, the shear moduli of P<sub>11</sub>-4 and P<sub>11</sub>-8 were higher than those 10 of P<sub>11</sub>-12 by two orders of magnitude. This indicates that there was significant variation between the glutamine based peptide gels ( $P_{11}$ -4 and  $P_{11}$ -8) and the serine 11 12 based peptide gels (P<sub>11</sub>-12) in both Na<sup>+</sup> salt solutions throughout the frequency range 13 (Figure 7). Increasing the Na<sup>+</sup> salt concentration increased the moduli of  $P_{11}$ -12, 14 indicating that the positively charged serine based peptide was interacting positively 15 with the increased concentration of Na<sup>+</sup> ions in the higher ionic strength solution. This increased its mechanical stiffness 3 fold (Figure 7C & F). This was concurrent with 16 17 the FTIR analysis, as its  $\beta$ -sheet component also increased. A very slight increase in 18 the shear moduli was observed in the 130mM Na<sup>+</sup> salt solution for peptides  $P_{11}$ -4 and P<sub>11</sub>-8. This effect was not as apparent in the P<sub>11</sub>-12 samples in either of the Na<sup>+</sup> salt 19 20 solutions, suggesting that as the frequency is increasing the P<sub>11</sub>-4 and P<sub>11</sub>-8 samples 21 are getting stiffer.

22 The addition of a higher amount of GAG (1:16) to  $P_{11}$ -4, caused a significant variation in the shear modulus of  $P_{11}$ -4 in the 130 mM Na<sup>+</sup> salt solution but this was 23 not the case in the 230 mM Na<sup>+</sup> salt solution (Figure 7A & D). In the 230 mM Na<sup>+</sup> salt 24 25 solution and increasing the GAG molar ratio showed no significant variation in the 26 stiffness of the gel produced. However, an increase in the shear moduli was also 27 observed across the frequencies studied. This was very noticeable in the 130mM Na<sup>+</sup> 28 salt solution. Nevertheless, the data indicated that the gels of P<sub>11</sub>-4 in the 230 mM Na<sup>+</sup> 29 salt solution at both GAG molar ratios were stiffer than those prepared in the 130 mM 30 Na<sup>+</sup> salt solution.

Similarly with the  $P_{11}$ -8 gels in the 130 mM Na<sup>+</sup> salt solution, there was no significant variation in the mechanical stiffness of the control gels (peptide alone) compared to the gels with a small amount of GAG (1:64). Significant variation in the shear moduli (p<0.05) was observed when a larger amount of GAG (1:16) was added; when compared to both the control and the 1:64 GAG molar ratio. In this case increasing the amount of GAG reduced the stiffness of the gels (Figure 7B & E).

37 Conversely, with  $P_{11}$ -8 in the 230 mM Na<sup>+</sup> salt solution, there was significant 38 variation observed in the mechanical stiffness's when the control gels were compared 39 to the gels with both molar ratios of GAG, across all frequencies. In this particular Na<sup>+</sup> salt solution the addition of more GAGs, decreased the shear moduli and reduced the 40 41 gel stiffness. Comparing the effects that the Na<sup>+</sup> salt solution had on the shear moduli 42 and mechanical properties of the gels revealed that, there was significant variation 43 between the P<sub>11</sub>-8 control samples. An increase in the ionic strength of the Na<sup>+</sup> salt 44 solution (230 mM) increased the mechanical stiffness of the gel. The data indicated 45 that the gels formed at 230 mM with no GAG (control sample) had the highest 46 mechanical stiffness.

47

48

49  $P_{11}$ -12 samples exhibited solid-like behaviour (Figure7C & F) as the samples tested 50 were biphasic (i.e. fluid and flocculated peptide). As the GAG molar ratio was 51 increased in the 130 mM Na<sup>+</sup> salt solution, an increase in the mechanical stiffness of 52 the  $P_{11}$ -12 gels was observed, across all frequencies. Conversely, for  $P_{11}$ -12 in the 230 53 mM Na<sup>+</sup> salt solution a different effect on the mechanical stiffness was observed. The addition of a small amount of GAG (1:64) decreased the shear moduli but a further
increase in the amount of GAG added caused the opposite effect, across all
frequencies (Figure 7C & F). The gels produced at the higher GAG molar ratio (1:16)
were less stiff than the P<sub>11</sub>-12 control sample.

5 The  $P_{11}$ -12-GAG gels behaved very differently to  $P_{11}$ -4 and  $P_{11}$ -8, which was 6 observed solely from comparing Figure 7C & F to Figure 7A, B, D & E. There was 7 significant variation in the mechanical stiffness's between both  $P_{11}$ -12 control gels and 8 between the gels at higher GAG molar ratio in both Na<sup>+</sup> salt solutions (across all 9 frequencies). The control gel in the 230 mM Na<sup>+</sup> salt solution was stiffer than all the 10 gels studied for  $P_{11}$ -12.

11

Given the two salt solutions that these peptides were tested under, it was clear that the addition of the GAG allows for the mechanical properties of the peptide hydrogels to be tuned over a range of up to four orders of magnitude. In all peptide samples tested the, elastic component was found to be greater than the viscous component, demonstrating solid-like behaviour of these hydrogels and in some cases, even exhibiting shear thinning characteristics, that may be advantageous for their future uses in cartilage regeneration.

## 19 Experimental

### 20 Materials

Peptides,  $P_{11}$ -4,  $P_{11}$ -8 and  $P_{11}$ -12 were purchased from CS-BIO, and had percentage purities of 95%, 77.6% and 79.7% respectively. The peptides were evaluated at 10 mg.ml<sup>-1</sup> in all experiments. The amount of each peptide supplied that was weighed to achieve the desired concentration was calculated based upon the peptide purity.

The GAG selected for evaluation was chondroitin sulphate sodium salt (C4484 Sigma, CAS No. 9007-28-7). Two molar ratios of GAG: peptide of 1:64 and 1:16 were assessed. In order to calculate the weight of peptide to obtain the correct molarity, the average molecular weight of the chondroitin sulphate (54,000 Da) was taken into consideration.

## **30 Preparation of Na<sup>+</sup> salt solutions**

31 The peptides, GAG and peptide/GAG mixtures were studied in two aqueous salt

solutions containing varying Na<sup>+</sup> ion concentrations (130 mM and 230 mM). The two

33 salt solutions were prepared as described by Urban (1994) representing the highest and

34 lowest ion concentrations present in articular cartilage.<sup>(23)</sup> For the Fourier transform

infrared spectroscopy analyses the salts were dissolved in deuterated water ( $D_2O$ ). For all other analyses the salts were dissolved in distilled water.

## 37 Preparation of peptide controls: P<sub>11</sub>-4, P<sub>11</sub>-8, and P11-12

By lyophilised peptide controls. I field, if field, and if field By lyophilised peptides were weighed and 3.5 ml of the 130 mM or 230 mM Na<sup>+</sup> salt solution was added, samples were immediately sonicated for 10 min. Peptides were then monomerised by adjusting the pH or [pD] (above pH 12 [11.6] for P<sub>11</sub>-4 and below pH 3 [2.6] for P<sub>11</sub>-8 and P<sub>11</sub>-12) using 10-50  $\mu$ l of 0.1–3 M HCl or NaOH. Measured pD values quoted here were those following a 0.4 correction value subtracted to the pH meter reading for those samples in deutrated solutions (FTIR samples).<sup>(32)</sup> The monomeric state was determined by observing the fluidity of the gels (monomeric peptides were clear and exhibited water like properties).

- 45 (monomeric peptides were clear and exhibited water like properties).
- 46 The peptide solutions were then carefully adjusted to pH 7.4 using varying molar 47 aliquots of HCl and NaOH (0.1-3 M). Peptide solutions were then placed in a water
- 48 bath at 37°C for two hours and stored at 4°C overnight to allow them to equilibrate and

1 prevent any contamination. The pH was re-measured and re-adjusted to pH 7.4 the

2 following day, making sure to make the final solution up to 4 ml before testing.

# **3** Preparation of peptide: chondroitin sulphate (GAG) mixtures:

4 Mixtures of P<sub>11</sub>-4, P<sub>11</sub>-8, and P<sub>11</sub>-12 with chondroitin sulphate at molar ratios of 1:16 5 and 1:64 (GAG: peptide) were prepared in the two Na<sup>+</sup> salt solutions. Peptides were 6 weighed, rehydrated in 3 ml of Na<sup>+</sup> salt solution and monomerised as described above. 7 For each desired peptide/ GAG mixture, the corresponding weight of chondroitin 8 sulphate was hydrated in 950 µl of Na<sup>+</sup> salt solution. This GAG suspension was 9 vortexed for approx. 40 secs and sonicated for 5 min at 37°C. The GAG suspension 10 was added to the monomerised peptide and vortexed for a further 40 secs. The pH was adjusted to 7.4 and the mixture incubated at 37°C for two hours. Samples were 11 12 refrigerated overnight (4°C) to allow them to equilibrate and the pH was re-measured 13 and re-adjusted to pH 7.4 the following day, making sure to make the final solution up 14 to 4 ml before testing.

# 15 Preparation of GAG control

Pre-weighed chondroitin sulphate was hydrated in 3.95 ml of Na+ salt solution.
Samples were vortexed for approx. 40 secs and sonicated for 10 min at 37°C. The pH

- 18 was then adjusted to 7.4 using the remaining 50  $\mu$ l volume of HCl and NaOH aliquots
- 19 to make the total volume up to 4 ml.
- 20

# 21 Methods

# 22 1. Fourier Transform Infrared Spectroscopy.

23 Secondary structures of the peptides were determined using FTIR on a Thermo Nicolet 24 6700 spectrometer, controlled with OMINC 7.3 SP1 software. Aliquots of approx. 40 25  $\mu$ l of the samples prepared in D<sub>2</sub>O, were placed into Thermo HT-32 demountable cells 26 between two CaF<sub>2</sub> windows and a 0.025 mm copper spacer. Each spectrum was an 27 average of 32 scans taken at a resolution of 4 cm<sup>-1</sup> at room temperature, one replicate 28 per sample was analysed. A background spectrum of the two D<sub>2</sub>O Na<sup>+</sup> salt solutions 29 was taken prior to any sample analysis and subtracted from all sample spectra. The 30 relative content of  $\beta$ -sheet was calculated by fitting the experimental spectra peaks to the second derivative of the amide I' region (1720-1580 cm<sup>-1</sup>) and assigning the peaks 31 as stated in the literature.<sup>(33, 34)</sup> The relative amount of  $\beta$ -sheet structure present was 32 33 then estimated by calculating the percentage area corresponding to the  $\beta$ -sheet band.<sup>(35)</sup>

# 34 2. Transmission Electron Microscopy (TEM).

Carbon-coated copper grids (400 mesh grids, Agar scientific) were placed coated side 35 down on the surface of a 10 µl droplet of the sample to be analysed, for 1 min and then 36 blotted on filter paper to remove excess. Grids were then placed on a 10 µl droplet of 37 38 2% (20 mg.ml<sup>-1</sup>) of uranyl acetate for 30 secs for negative staining and then blotted 39 against double folded Whatman 50 filter paper and left to dry. Images were recorded 40 on a JEM-1400 Joel Microscope equipped with an AMT ERB bottom mounted digital 41 CCD camera. Only one replicate per sample was analysed. ImageJ was used to trace 42 over the fibrils to determine the lengths and widths of 20 individual fibres/fibrils for 43 each peptide and peptide-GAG mixtures in order to get an average length and width

- 44 for the SAP fibrils.
- 45

# 46 **3. Rheology.**

- 47 All rheological measurements were carried out on a Malvern Kinexus rheometer.
- 48 rSpace Kinexus by Malvern Instruments was used to control the rheometer and export

1 raw data. A coned-plate geometry (50 mm diameter, gap of 0.0330 mm) was used with 2 a cone angle of 1°. All tests were run at 37°C, using a solvent trap (SU0005 PLC). 3 Three replicate samples were measured in triplicate for each SAP-GAG mixture in the 4 two Na<sup>+</sup> salt solutions. Each sample had a total volume of 4 ml. For each replicate 1 5 ml was applied to the rheometer. Samples were firstly subjected to an amplitude 6 sweep. Two amplitude sweeps were performed in a shear strain controlled mode from 7 0.01-100%, one at 1 Hz and another at 20 Hz with a 10 minute pause in-between the 8 two to allow the peptides to equilibrate. A strain value that lay within the linear 9 viscoelastic region (LVER) was chosen. Frequency sweeps were then run to determine 10 the dynamic modulus of the hydrogel samples. The sweeps were run between 1 and 20 Hz at the pre-determined strain that was established from the amplitude sweep. 11 12 Peptide hydrogels were allowed to equilibrate for 15 minutes once loaded, prior to the 13 start of testing.

## 14 Data analysis

15 For the rheology study, the null hypothesis that was tested was that all three 16 independent variables (peptide, molar ratio and Na<sup>+</sup> salt concentration) would have no 17 significant effect on the dependant variable (shear modulus, stiffness) at 1Hz. A three 18 way analysis of variance (ANOVA) was performed on the rheological data acquired 19 using SPPS (Version 20). This was carried out using the univariate analysis of 20 variance tool and selecting the full factorial analysis, which not only showed the 21 significance of the individual independent variables but also showed the 2 way and 3 22 way interactions between the independent variables and their significances on the 23 dependant variable.

In the TEM study, the null hypothesis that was tested was that neither the GAG molar ratio nor concentration of Na<sup>+</sup> ions would have any effect on the lengths and widths of the peptide fibrils. Two-way ANOVA was used to analyse the data using SPSS. Similarly, the univariate analysis of variance tool was used with full factorial analysis, which showed the significant effects of the individual independent variables on the dependant variable.

# 30 Conclusions

31 The mechanical properties of the SAP-GAG mixtures were influenced by the ionic interactions between the negatively charged GAGs and the positively/negatively 32 charged peptides as well as their interaction with the surrounding ionic Na<sup>+</sup> salt 33 34 solution. This study showed that the addition of another charged bio-polymer and the change in the ionic strength of the surrounding solution had a large effect on the 35 36 stiffness of the individual peptide hydrogels by either promoting a greater number of 37 entanglements in particular peptides or by inhibiting the peptides ability to form 38 entanglements and junction points.

The addition of the GAG not only provided the high charge found in native tissue, which contributes to the hydration and function of cartilage, but at an optimum molar ratio it improved the rheological properties of some of the resulting gels. Increasing the Na<sup>+</sup> ion concentration (as found in the surface of cartilage) allowed for the investigation of how the peptides would behave in in vivo conditions and also the effect that this had on the rheological properties of the resulting gels.

Analysis of the rheology data by three-way analysis of variance revealed the combined effect of the three variables (peptide, GAG molar ratio and Na+ salt concentration) and their effect on the overall shear modulus at 1Hz. It was clear from the statistical analysis that all variables had a significant effect on the shear modulus (p<0.05). However, the combined effect of the choice of peptide and the Na+ ion concentration in the salt solution did not have a significant effect on the overall shear
 modulus (p>0.05).

Overall, the presence of GAG decreased the gel stiffness of the glutamine based peptides ( $P_{11}$ -4 and  $P_{11}$ -8) at high GAG concentration but slightly increased the stiffness at low GAG concentrations; however the corresponding peptides alone were mechanically stiffer. By contrast, for the serine based peptide ( $P_{11}$ -12) gel stiffness was increased at high GAG concentrations, but the stiffness values were still much lower than the glutamine based peptides.

9

10 New SAP-GAG hybrid materials have been developed with adjustable mechanical 11 properties. Their ability to self-assemble and the incorporation of chondroitin sulphate, 12 at the correct molar ratio makes them feasible candidates for a minimally invasive 13 therapy to aid in the restoration of mechanical properties to early stage osteoarthritic 14 cartilage. FTIR and TEM studies have highlighted the SAP-GAG combinations that 15 were able to form characteristic self-supporting gels able to produce characteristic entangled fibrilar networks similar to those found in native cartilage. Alongside this, 16 17 the rheological studies at (1Hz) determined that P<sub>11</sub>-4 and P<sub>11</sub>-8 peptide-GAG 18 combinations (Figure 8), were among the stiffest.

19 The combination of these studies has identified that two of the three SAPs 20 demonstrate all of the three favourable properties: high  $\beta$ -sheet percentage, 21 characteristic entangled fibrilar networks and a high stiffness coefficient.

In conclusion, the data presented in this study indicates that  $P_{11}$ -4 and  $P_{11}$ -8chondroitin sulphate mixtures have properties which make them suitable candidates for further investigation for their capacity to restore the biomechanical properties of GAG depleted tissues such as early stage OA cartilage.

# 26 Acknowledgements

27 This work was supported by EPSRC and the Wellcome Trust.

JF is a NIHR Senior investigator. JF and EI are supported in part by the NIHR LeedsMusculoskeletal biomedical Research Unit

## **30** Statement of conflict of interests

31 JF acts as a consultant to DePuySynthes, Invibio, Simulation Solutions and Tissue Regenix

- 32 EI acts as a consultant to Tissue Regenix and DePuySynthes
- 33
  34
  35
  36
  37
  38
  39
  40
  41
  42
- 43

| 1                    |                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                    |                                                                                                                                                                                                                                                                                        |
| 3                    |                                                                                                                                                                                                                                                                                        |
| 4                    |                                                                                                                                                                                                                                                                                        |
| 5                    |                                                                                                                                                                                                                                                                                        |
| 6                    |                                                                                                                                                                                                                                                                                        |
| 7                    |                                                                                                                                                                                                                                                                                        |
| 8                    |                                                                                                                                                                                                                                                                                        |
| 9                    |                                                                                                                                                                                                                                                                                        |
| 10                   |                                                                                                                                                                                                                                                                                        |
| 11                   |                                                                                                                                                                                                                                                                                        |
| 12                   | References                                                                                                                                                                                                                                                                             |
| 13                   |                                                                                                                                                                                                                                                                                        |
| 14<br>15<br>16       | 1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. The Lancet. 2006;367(9524):1747-57.                                                                            |
| 17<br>18             | 2. Arthritis Research UK. Osteoarthritis in General Practice: Data and Perspectives. Arthritis Research UK, 2013.                                                                                                                                                                      |
| 19<br>20<br>21<br>22 | 3. Otsuki S, Nakajima M, Lotz M, Kinoshita M. Hyaluronic acid and chondroitin sulfate content of osteoarthritic human knee cartilage: Site-specific correlation with weight-bearing force based on femorotibial angle measurement. Journal of Orthopaedic Research. 2008;26(9):1194-8. |
| 23<br>24             | 4. Mankin HJ, Lippiello L. The glycosaminoglycans of normal and arthritic cartilage. Journal of Clinical Investigation. 1971;50(8):1712.                                                                                                                                               |
| 25<br>26<br>27<br>28 | 5. Katta J, Stapleton T, Ingham E, Jin Z, Fisher J. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2008;222(1):1-11.            |
| 29<br>30<br>31       | 6. Aggeli A, Bell M, Boden N, N. Keen J, C. B. McLeish T, Nyrkova I, et al. Engineering of peptide [small beta]-sheet nanotapes. Journal of Materials Chemistry. 1997;7(7):1135-45.                                                                                                    |
| 32<br>33             | 7. Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Seminars in Cancer Biology. 2005;15(5):413-20.                                                                                                                         |
| 34<br>35<br>36       | 8. Bell CJ, Carrick LM, Katta J, Jin Z, Ingham E, Aggeli A, et al. Self-assembling peptides as injectable lubricants for osteoarthritis. Journal of Biomedical Materials Research Part A. 2006;78A(2):236-46.                                                                          |
| 37<br>38<br>39       | 9. Firth A, Aggeli A, Burke JL, Yang X, Kirkham J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine. 2006;1(2):189-99.                                                                                                            |

- 1 10. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore R, et al. Self-2 assembling peptide scaffolds promote enamel remineralization. Journal of dental 3 research. 2007;86(5):426-30.
- 4 11. Kerstin MG, Adriana C, Virany Y, He D, Songtao S, Gottfried S, et al. Self5 Assembling Peptide Amphiphile Nanofibers as a Scaffold for Dental Stem Cells.
  6 Tissue Engineering Part A. 2008;14(12):2051-8.
- 7 12. Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds
   8 accelerate wound healing. PLoS One. 2008;3(1):e1410.
- 9 13. Kyle S, Aggeli A, Ingham E, McPherson MJ. Production of self-assembling
  10 biomaterials for tissue engineering. Trends in biotechnology. 2009;27(7):423-33.
- 11 14. Kyle S, Aggeli A, Ingham E, McPherson MJ. Recombinant self-assembling 12 peptides as biomaterials for tissue engineering. Biomaterials. 2010;31(36):9395-405.
- 15. Shah RN, Shah NA, Lim MMDR, Hsieh C, Nuber G, Stupp SI. Supramolecular
  design of self-assembling nanofibers for cartilage regeneration. Proceedings of the
  National Academy of Sciences. 2010;107(8):3293-8.
- 16. Brunton PA, Davies RPW, Burke JL, Smith A, Aggeli A, Brookes SJ, et al.
  17 Treatment of early caries lesions using biomimetic self-assembling peptides a
  18 clinical safety trial. Br Dent J. 2013;215(4):E6-E.
- 19 17. Maude S, Ingham E, Aggeli A. Biomimetic self-assembling peptides as 20 scaffolds for soft tissue engineering. Nanomedicine. 2013;8(5):823-47.
- 18. Boekhoven J, Stupp SI. 25th Anniversary Article: Supramolecular Materials
  for Regenerative Medicine. Advanced Materials. 2014;26(11):1642-59.
- 19. Rubert Pérez CM, Stephanopoulos N, Sur S, Lee S, Newcomb C, Stupp S.
  The Powerful Functions of Peptide-Based Bioactive Matrices for Regenerative
  Medicine. Ann Biomed Eng. 2015;43(3):501-14.
- 20. Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, et al.
  27 Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet
  28 tapes, ribbons, fibrils, and fibers. Proceedings of the National Academy of Sciences.
  29 2001;98(21):11857-62.
- Maude S, Miles DE, Felton SH, Ingram J, Carrick LM, Wilcox RK, et al. De
  novo designed positively charged tape-forming peptides: self-assembly and gelation
  in physiological solutions and their evaluation as 3D matrices for cell growth. Soft
  Matter. 2011;7(18):8085-99.
- 34 22. DE, EA, N, Beales PA, RK. Miles Mitchell Kapur Wilcox 35 Peptide: glycosaminoglycan hybrid hydrogels as an injectable intervention for spinal disc degeneration. Journal of Materials Chemistry B. 2016;4(19):3225-31. 36
- 37 23. Urban J. The chondrocyte: a cell under pressure. Rheumatology.38 1994;33(10):901-8.
- 24. Danion F, Varraine E, Bonnard M, Pailhous J. Stride variability in human gait:
  the effect of stride frequency and stride length. Gait & Posture. 2003;18(1):69-77.
- 41 25. Mason SJ, Legge GE, Kallie CS. Variability in the length and frequency of
  42 steps of sighted and visually impaired walkers. Journal of visual impairment &
  43 blindness. 2005;99(12):741.
- 44 26. Arrondo JLR, Muga A, Castresana J, Goñi FM. Quantitative studies of the
  45 structure of proteins in solution by fourier-transform infrared spectroscopy. Progress
  46 in Biophysics and Molecular Biology. 1993;59(1):23-56.

- 1 27. Barth A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA) Bioenergetics. 2007;1767(9):1073-101.
- Kong J, Yu S. Fourier Transform Infrared Spectroscopic Analysis of Protein
   Secondary Structures. Acta Biochimica et Biophysica Sinica. 2007;39(8):549-59.

5 29. Elfrink K, Ollesch J, Stöhr J, Willbold D, Riesner D, Gerwert K. Structural
6 changes of membrane-anchored native PrPC. Proceedings of the National Academy
7 of Sciences. 2008;105(31):10815-9.

8 30. Lamm MS, Rajagopal K, Schneider JP, Pochan DJ. Laminated morphology of
 9 nontwisting β-sheet fibrils constructed via peptide self-assembly. Journal of the
 10 American Chemical Society. 2005;127(47):16692-700.

- 11 31. Kubelka J, Keiderling TA. Differentiation of  $\beta$ -Sheet-Forming Structures: Ab 12 Initio-Based Simulations of IR Absorption and Vibrational CD for Model Peptide and 13 Protein  $\beta$ -Sheets. Journal of the American Chemical Society. 2001;123(48):12048-14 58.
- 15 32. Glasoe PK, Long FA. USE OF GLASS ELECTRODES TO MEASURE
  16 ACIDITIES IN DEUTERIUM OXIDE1,2. The Journal of Physical Chemistry.
  17 1960;64(1):188-90.
- 33. Bradley M. Curve fitting in Raman and IR spectroscopy: basic theory of line
  shapes and applications. Thermo Fisher Scientific, Madison, USA, Application Note.
  2007;50733.
- 21 34. Stuart BH. Biological applications. Infrared spectroscopy: fundamentals and 22 applications. 2004:137-65.
- 23 35. Stuart BH, George B, McIntyre P. Modern Infrared Spectroscopy: Wiley; 1996.
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- **U**-1
- 35
- 36
- 37

- U

| Peptide                                              | Amino Acid Sequence                          | Net charge at pH 7.4 |
|------------------------------------------------------|----------------------------------------------|----------------------|
| P <sub>11</sub> -4                                   | CH <sub>3</sub> COQQRFEWEFEQQNH <sub>2</sub> | -2                   |
| P <sub>11</sub> -8                                   | CH <sub>3</sub> COQQRFOWOFEQQNH <sub>2</sub> | +2                   |
| P <sub>11</sub> -12                                  | CH <sub>3</sub> COSSRFOWOFESSNH <sub>2</sub> | +2                   |
| Q=Glutamine, R=Arginine, F=Phenylalanine, E=Glutamic |                                              |                      |
| acid, W=Tryptophan, O=Ornithine, S=Serine            |                                              |                      |

Table 1: Peptide primary structures, and their net charges at pH 7.4. Positively charged residues are
 coloured blue, negatively charged residues are red.



| 1 | Figure 1: Fitted IR amide I' band of P <sub>11</sub> -4, P <sub>11</sub> -8 & P <sub>11</sub> -12 at 10 mg.ml <sup>-1</sup> in presence of 130 mM (A) |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | and 230 mM (B) Na+ salt solution at varying GAG molar ratios. The $\beta$ -sheet percentage was                                                       |
| 3 | calculated by adding the total area of the peaks showing $\beta$ -sheet and then dividing them by the                                                 |
| 4 | areas of all the individual peaks combined for each graph and multiplying by 100. The $\beta$ -sheet                                                  |
| 5 | regions are defined by the peaks in the wavelength region of 1630-1613 $\text{cm}^{-1}$ and 1690-1672 $\text{cm}^{-1}$ . <sup>(28)</sup>              |
| 6 |                                                                                                                                                       |





Figure 2: Morphology of the P<sub>11</sub>-4 peptide in the presence of two Na<sup>+</sup> salt solutions at varying GAG
molar ratios (1:16 and 1:64) by TEM. (A) P<sub>11</sub>-4 in a 230mM Na<sup>+</sup> salt solution, (B) P<sub>11</sub>-4 at 1:64 GAG
molar ratio in a 230mM Na<sup>+</sup> salt solution, (C) P<sub>11</sub>-4 at 1:16 GAG molar ratio in a 230mM Na<sup>+</sup> salt
solution, (D) P<sub>11</sub>-4 in a 130mM Na<sup>+</sup> salt solution, (E) P<sub>11</sub>-4 at 1:64 GAG molar ratio in a 130mM Na<sup>+</sup>
salt solution, (F) P<sub>11</sub>-4 at 1:16 GAG molar ratio in a 130mM Na<sup>+</sup> salt solution. Magnification of 500.
Individual scale bars (10 µm) are shown for each image.





Figure 4: Morphology of the P11-12 peptide in the presence of two Na+ salt solutions at varying
GAG molar ratios (1:16 and 1:64) by TEM. (A) P<sub>11</sub>-12 in a 230mM Na<sup>+</sup> salt solution, (B) P<sub>11</sub>-12 at 1:64
GAG molar ratio in a 230mM Na<sup>+</sup> salt solution, (C) P<sub>11</sub>-12 at 1:16 GAG molar ratio in a 230mM Na<sup>+</sup>
salt solution, (D) P<sub>11</sub>-12 in a 130mM Na<sup>+</sup> salt solution, (E) P<sub>11</sub>-12 at 1:64 GAG molar ratio in a 130mM
Na<sup>+</sup> salt solution, (F) P<sub>11</sub>-12 at 1:16 GAG molar ratio in a 130mM
Na<sup>+</sup> salt solution, (F) P<sub>11</sub>-12 at 1:16 GAG molar ratio in a 130mM Na<sup>+</sup> salt solution. Magnification of
500. Individual scale bars (10 µm) are shown for each image.

.









2 Figure 8: The effect of varying the Na<sup>+</sup> ion concentration (130 mM or 230 mM) and GAG molar 3 ratio (1:64 or 1:16) on the mechanical properties of the P<sub>11</sub>-4, P<sub>11</sub>-8 and P<sub>11</sub>-12 gels. The shear 4 moduli were all taken from the frequency sweep test at 1 Hz. Data is presented as the mean (n=3)  $\pm$ 5 95% confidence intervals. Data was analysed using three-way analysis of variance and statistical 6 significance was determined at p<0.05. This showed that all the independent variables alone 7 (peptide choice, GAG molar ratio and salt solution) had a significant effect on the mechanical 8 properties across all three peptides (p=0.00). Their combined effects showed that peptide choice in 9 combination with the salt solution had no significant effect on the overall mechanical properties of 10 all three peptides (p=0.065). For the combined effects of peptide choice, GAG molar ratio and salt 11 solution, there was a significant effect observed in the mechanical properties of all three peptide 12 gels (*p=0.00*).

- 13
- 14