
This is a repository copy of Performance and Energy-Based Cost Prediction of Virtual
Machines Auto-Scaling in Clouds.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133235/

Version: Accepted Version

Proceedings Paper:
Aldossary, M and Djemame, K orcid.org/0000-0001-5811-5263 (2018) Performance and
Energy-Based Cost Prediction of Virtual Machines Auto-Scaling in Clouds. In: Proceedings
of the 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2018). 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2018), 29-31 Aug 2018, Prague, Czech Republic. IEEE , pp. 502-509.
ISBN 978-1-5386-7383-6

https://doi.org/10.1109/SEAA.2018.00086

© 2018 IEEE. This is an author produced version of a paper published in Proceedings of
the 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2018). Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Performance and Energy-based Cost Prediction of
Virtual Machines Auto-Scaling in Clouds

Moahammad Aldossary1, 2, and Karim Djemame2

1Prince Sattam Bin Abdulaziz University, KSA
MM.Aldossary@psau.edu.sa

2School of Computing, University of Leeds, Leeds, U.K.
{scmmald, k.djemame}@leeds.ac.uk

Abstract— Virtual Machines (VMs) auto-scaling is an
important technique to provision additional resource capacity in a
Cloud environment. It allows the VMs to dynamically increase or
decrease the amount of resources as needed in order to meet
Quality of Service (QoS) requirements. However, the auto-scaling
mechanism can be time-consuming to initiate (e.g. in the order of
a minute), which is unacceptable for VMs that need to scale up/out
during the computation, besides additional costs due to the
increase of the energy overhead. This paper introduces a
Performance and Energy-based Cost Prediction Framework to
estimate the total cost of VMs auto-scaling by considering the
resource usage and power consumption, while maintaining the
expected level of performance. A series of experiments conducted
on a Cloud testbed show that this framework is capable of
predicting the auto-scaling workload, power consumption and
total cost for heterogeneous VMs, with a cost-saving of up to 25%
for the predicted total cost of VM self-configuration as compared
to the current approaches in literature.

Keywords— Cloud Computing, Cost Prediction, Workload
Prediction, Auto-Scaling, Power Consumption, Energy Efficiency.

I. INTRODUCTION

Cost mechanisms that are employed by different cloud
service providers significantly influence the role of cloud
computing within the IT industry. With the increasing cost of
electricity, cloud providers consider energy consumption as one
of the biggest operational cost factors to be managed within
their infrastructures.

Most of the existing studies have focused on minimising the
energy consumption and maximising the total resource usage,
instead of improving the performance of applications. Further,
cloud providers such as Amazon EC2 [1], have established their
Service Level Agreements (SLAs) based on service availability
without such an assurance of the performance. For instance,
during service operation, consider the situation where a number
of VMs are running on the same Physical Machine (PM), and
each VM is allocated its fair share of resources. If the VM’s
workload increases and no resources are available to handle that
increment (e.g. the workload exceeds the acceptable level of
CPU such as 95% threshold), resource competition may occur
leading to VMs’ performance degradation which may affect the
fulfilment of the SLAs and hence the cloud infrastructure
provider’s revenue. Hence, to prevent such performance loss
effects, it is necessary to have preventive actions, e.g. VMs
auto-scaling or VMs re-allocation through live migration.

VMs auto-scaling is an important technique to provision
additional capacity to the VMs on the fly. There are two types
of VMs auto-scaling: 1) vertical scaling (scale-up): request for
more resources (e.g. virtual CPUs and memory) inside the
VMs, and 2) horizontal scaling (scale-out): request for creating
additional VMs. However, VMs auto-scaling may take a few
minutes to initiate, which is unacceptable for VMs that need to
quickly scale up/out during the computation. Besides, there are
additional costs in terms of scaling time (booting/rebooting)
and energy overhead that need further consideration. Hence,
understanding the impact of VMs auto-scaling is essential for
the design of an effective resource provision technique.

To enable VMs auto-scaling on the fly without any
performance loss or latency, some form of prediction
mechanism is needed to prepare the VMs in advance. Thus, a
proactive framework has the advantage of taking preventive
actions (e.g. VMs auto-scaling) at earlier stages to avoid service
performance degradation. The effectiveness of such framework
will depend on potential actuators/decisions to implement at
service operation. Accordingly, predicting the future cost of
cloud services can help the service providers offer suitable
services that meet their customers’ requirements.

The first step towards this is a Performance and Energy-
based Cost Prediction Framework that supports the potential
actuators (e.g. VMs auto-scaling) to handle the performance
variation. Therefore, this framework is proposed to predict
PMs, and VMs workload using an Autoregressive Integrated
Moving Average (ARIMA) model. The relationship between
the predicted VMs and PMs workload (CPU utilisation) is
investigated using regression models in order to estimate the
VMs power consumption, as well as predict the total cost of the
VMs incurred by auto-scaling decision. This paper’s main
contributions are summarised as follows:

 A Performance and Energy-based Cost Prediction
Framework that predicts the auto-scaling cost for
heterogeneous VMs/PMs by considering their performance,
resource usage and power consumption.

 An evaluation of the proposed framework in an existing
Cloud testbed in order to demonstrate its usability with clear
cost savings.

 The remainder of this paper is organised as follows: a
discussion of the related work is summarised in Section II.

Section III presents the performance and energy-based cost
prediction framework. Section IV presents the experimental
setup followed by results and discussion in Section V. Finally,
Section VI concludes this paper and discusses the future work.

II. RELATED WORK

 Previous work has addressed specific issues relating to the
cost of VMs auto-scaling in a Cloud environment. For example,
a lightweight scaling approach to enable cost-effective
elasticity for cloud applications is proposed in [2]. The
approach uses fine-grained scaling mechanism at resource-level
scaling and VM-level scaling in order to improve resource
utilisation while reducing cloud providers' operating costs.
However, the work only mentions the impact of vertical scaling
on the cloud providers' cost without taking horizontal scaling
into account. Likewise, an automatic scaling framework called
(SmartScale) is presented in [3]. The framework uses a
combination of horizontal and vertical scaling in order to
minimise the operating costs. However, the authors claim that
horizontal scaling allows the application to achieve higher
performance while the cost incurred due to this scaling is higher
than vertical scaling. Therefore, this leads us to investigate
further the vertical scaling technique and the impact on
performance and cost. Another approach for auto-scaling is
proposed in [4]. It used a second order Auto-Regressive
Moving Average (ARMA) model for workload prediction
based on historical workload. The model aims to minimise the
resource usage and satisfy QoS requirements while keeping
operational costs low. Further, a reactive auto-scaling
framework that allows a broker to obtain resources from a
public cloud to handle customers’ requests is proposed in [5].
This framework can effectively lead to a profit for the broker
and a cost reduction for the customers’. However, all of the
studies presented above do not consider the energy overhead
caused by auto-scaling.
 Other work in the literature has proposed an auto-scaling
approach to improve the performance in Clouds. For instance,
a new performance metric called the Auto-scaling Demand
Index (ADI) is introduced in [6]. The approach evaluates
several auto-scaling strategies, including (reactive,
conservative and predictive) using log traces from Google
datacentres and used the utilisation level as a performance
indicator. However, this approach is dealing with VM
utilisation only, without reference to the auto-scaling costs,
including (e.g. energy cost) or the SLA violation. Besides, no
details are provided on where/how the experiments were
conducted. An efficient auto-scaling approach to dynamically
scale cloud instances based on task's deadline constraints and
cost is presented in [7]. This approach is implemented on
Microsoft Azure platform using both simulated and real
applications. However, the energy efficiency of the candidate
PM that will host the scaled instance is not considered when
designing such mechanism.
 Several prediction techniques have been proposed to predict
the resource provisioning for Cloud applications. For example,

1 http://rubis.ow2.org/

a Cloud Resource Prediction and Provisioning scheme (RPPS)
based on the ARIMA model is presented in [8]. The scheme
automatically predicts future demand (CPU usage of VMs) and
perform proactive resource provisioning for cloud applications.
The results show that the prediction error on average is less than
10% in most time. However, the energy consumption and the
characterisation of the workload before making the prediction
decision are not considered. Moreover, a predictive elastic
resource scaling scheme (PRESS) for Cloud systems is
presented in [9]. The approach uses a short-term pattern
matching and state driven approach (Markov chain) to predict
the workloads. This approach is implemented on top of Xen
using RUBiS1 and an application load traces from Google.
Nonetheless, in this work only the workload as standalone
application is predicted. In contrast, our approach predicts the
workload that will be added to the existing VMs that are already
overloaded. Likewise, an automatic elastic resource scaling
system for multi-tenant cloud computing infrastructures called
(CloudScale) is presented in [10]. The framework automatically
scales VMs according to predicted workloads while considering
energy consumption and SLA. CloudScale can increase or
decrease the CPU frequency/voltage to achieving energy
savings without impact the SLA. However, this approach does
not consider the costs caused by scaling.
 Compared with the work presented in this paper, we propose
a proactive auto-scaling technique that considers the
heterogeneity of PMs/VMs with respect to predicting the
performance variation, resource usage, power consumption and
the total cost. Our approach dynamically determines the most
cost-effective scaling decision, including (scale-out/scale-up)
that will result in the agreed performance for any given
workload.

III. PERFORMANCE AND ENERGY-BASED COST PREDICTION

FRAMEWORK

 In this paper, we extend our work [11] by taking the
performance variation into account and introduce a new
Performance and Energy-based Cost Prediction
Framework. This framework supports decision-making
regarding auto-scaling cost while at the same time being aware
of the impact on other quality characteristics such as energy
consumption and performance of the application [12]. The auto-
scaling resource provisioning technique is usually driven by the
MAPE control loop (Monitor, Analyse, Plan and Execute) to
provision resources when needed, as depicted in Figure 1.

Fig. 1. Performance and Energy-based Cost Prediction Framework.

 The proposed framework is aimed towards predicting
workload and power consumption as well as the total cost of the
VMs incurred by the auto-scaling decision. To achieve this aim,
several steps are required in order to first predict the PMs/VMs
workload and power consumption, then estimate the total cost
of auto-scaled VMs as explained below.
 Step 1: The CPU utilisation and RAM usage upper and
max_upper thresholds (e.g. 85% and 95%) are set and the VMx
workload is monitored. If the VMx workload is in the range of
[upper and max_upper threshold], then predict the VMx
workload for the next time interval (e.g. every 5 minutes) using
the ARIMA model based on historical workload patterns (see
Step 3). This prediction helps detect the workload and avoid
unnecessary scaling caused by the small peaks in the workload
(false alarm). If the predicted workload for the next interval
exceeds the max_upper threshold, VM auto-scaling decision is
performed as described in Algorithm 1. The list of parameters
and their notations is shown in Table I.
 Step 2: if the VMx workload equals or exceeds the
max_upper threshold (e.g. 95%), VM auto-scaling decision is
performed as shown in Algorithm 1. Algorithm 1 is used to
identify the overloaded VMx to be scaled and potentially the
most energy efficient candidate PMj to host it, if there is no
capacity to perform a vertical scaling in the first place. The VMs
are ranked in decreasing order of their workload whereas the
PMs are ranked in decreasing order according to their energy
efficiency. The energy efficiency of the hosts (source PMi and
candidate PMj) can be computed as: PM power = ୔୑௜ ሺ୧ୢ୪ୣ ୮୭୵ୣ୰ሻ ୔୑௝ ሺ୧ୢ୪ୣ ୮୭୵ୣ୰ሻ. It is also checked that the candidate PMs would

have sufficient resources to handle the scaled VMx workload in
order to prevent service performance degradation (e.g. when
VM resource utilisation increases beyond the predefined
threshold). Furthermore, this Algorithm demonstrates the
comparison between vertical scaling (scale-up) and horizontal
scaling (scale-out) in order to obtain the most cost-effective
scaling decision. The task is to scale the overloaded VMx and
select the candidate PM to host it. To do so, the following
conditions are tested in this order and the subsequent action
performed: 1) vertical scaling on the same PMi (vertical scaling
is limited to the capacity of PMi); 2) horizontal scaling on the
PMj with the most energy efficient; 3) horizontal scaling on
similar source configuration PMj (e.g. on any homogeneous
PMj with same source PMi configuration such as the CPU type
and the ratio of idle power), or 4) horizontal scaling takes place
on a less energy efficient PMj, as illustrated in Figure 2.

Fig. 2. The process of VM auto-scaling (vertical scaling vs. horizontal scaling).

TABLE I. List of parameters and their notations.
PMi
PMj
VMx
C_CPU_PM
C_RAM_PM
U_CPU_PM
U_RAM_PM
C_CPU_VM
C_RAM_VM
U_CPU_VM
U_RAM_VM
I_CPU_VM
I_RAM_VM

the source physical machine
the candidate physical machine
the overloaded VM to scale
total CPU capacity of the PM
total memory capacity of the PM
used CPU capacity of the PM (σ ሺvCPU௏ெ஼௢௨௡௧௬ୀଵ))

used memory capacity of the PM (σ ሺRAM௏ெ஼௢௨௡௧௬ୀଵ))

total CPU capacity of the VM
total memory capacity of the VM
used CPU capacity of the VM
used memory capacity of the VM
increment CPU capacity of the VM
increment memory capacity of the VM

Algorithm 1: VMs Workload Prediction and Auto-Scaling Decision

Initialise: VM workload = ቀ୙̴େ୔୙̴୚୑େ̴େ୔୙̴୚୑ ǡ ୙̴ୖ୅୑̴୚୑େ̴ୖ୅୑̴୚୑ቁ;

VM upper threshold = 0.85 ൈ (C_CPU_VM, C_RAM_VM);
VM max_upper threshold = 0.95 ൈ (C_CPU_VM, C_RAM_VM);

PM workload = ቀ୙̴େ୔୙̴୔୑େ̴େ୔୙̴୔୑ ǡ ୙̴ୖ୅୑̴୔୑େ̴ୖ୅୑̴୔୑ቁ;

PM upper threshold = 0.85 ൈ (C_CPU_PM, C_RAM_PM);

PM power =
୔୑௜ ሺ୧ୢ୪ୣ ୮୭୵ୣ୰ ୭୤ ୲୦ୣ ୱ୭୳୰ୡୣሻ୔୑௝ ሺ୧ୢ୪ୣ ୮୭୵ୣ୰ ୭୤ ୲୦ୣ ୡୟ୬ୢ୧ୢୟ୲ୣሻ; // to check the energy efficiency

Predicted VM workload = null;
Resource Increments = (I_CPU_VM, I_RAM_VM) = (null, null);
Scaling Decision = null.
Input: VMs list, PMs list. // Assuming all the PMs in running/active status
Output: Scaling Decision.
 1: Sort the PMs list in decreasing order of the PM power;
 2: Sort the VMs list on PMi in a decreasing order of the workload;
 3: for each (VMx in VMs list) do
 4: if (VMx workload ൒ VMx upper threshold) &&
 (VMx workload ൏ VMx max_upper threshold) then
 5: Predicted VMx workload ึ predict the (VMx workload) for the next
 interval using the ARIMA model.
 6: if (Predicted VMx workload ൐ VMx workload) then
 7: Resource Increments = Predicted VMx workload െ VMx workload
 8: else
 9: break.
 10: end if
 11: end if
 12: if (Predicted VMx workload ൒ VMx max_upper threshold) then
 13: if (PMi workload + Resource Increments) ൏ PMi upper threshold) then
 // The resource availability on the same host is met (Resize VMx)
 14: {Scaling Decision ึ perform VMx vertical scaling based on
 (Resource Increments);
 15: break.
 16: else // Lack of resources on the same host (PMi)
 17: for each (PMj in PMs list) do
 18: if ((PMj workload + Resource Increments) ൏ PMj upper threshold) then
 19: {Scaling Decision ึ perform VMx horizontal scaling based on
 (Resource Increments);
 // Create a New VM on: a) the most energy efficient host, if possible;
 or b) a similar host configuration to source,
 or c) the less energy efficient host
 20: break.
 21: end if
 22: end for
 23: end if
 24: end if
 25: return Scaling Decision.
 26: end for

 Step 3: Algorithm 2 is used to select the right size of the VMs
to be scaled in an economic way based on the closest predefined
instance sizes set by Cloud providers (e.g. small, medium and
large). However, this mechanism sometimes leads to resource
over-provisioning (e.g. if the requested resources for the auto-
scaling are less than the predefined instance sizes set by Cloud

providers). This may result in resource wasted (needless
capacity is created) and the customers might pay more without
any benefit, which is not the aim of VMs auto-scaling.
Therefore, a self-configuration approach to resize/create the
VMs based on the right size of the requested resources is
proposed. Thus, this mechanism will help Cloud providers to
maximise their resources usage and the customers will pay for
what they actually use, as described in Algorithm 2.

Algorithm 2: Self-configuration – Resizing/Creating VMs
Initialise: Scaling VM = null.
Input: Scaling Decision; // From Algorithm 1 (Vertical or Horizontal Scaling)
VMs size list; // List of VMs sizes set by Cloud providers
VM size. // Based on the predefined VM-sizes list such as (small, medium and
large)
Resource Increments = (I_CPU_VM, I_RAM_VM) // From Algorithm 1
Output: Scaling VM.
 1: Sort the VMs size list in increasing order of the VM sizes;
 2: for each (VM size i in VMs size list) do
 3: if (Resource Increments ൌ VM size i) then // To ensure that the
 predefined VM capacity is matched with the actual load
 4: Scaling VM = VM size i; // Resize or Create using a predefined VM
 size based on the Scaling Decision
 5: else
 6: if (Resource Increments ൏ VM size i) then
 7: Scaling VM = Resource Increments; // Resize or Create using
 a Self-configuration VM size based on the Scaling Decision
 8: break;
 9: end if
 10: end if
 11: end for
 12: return Scaling VM.

 After identifying the right size of the VMx to be scaled and
the candidate PMj to host it, an ARIMA model is used to predict
the scaled VMx workload (including CPU, memory, disk and
network) utilisation and identify the best fit model. The
ARIMA model is a time series prediction model that has been
used widely in different domains, including finance, owing to
its sophistication and accuracy. Unlike other prediction
methods, like sample average, ARIMA takes multiple inputs as
historical observations and outputs multiple future observations
depicting the seasonal trend; further details about the ARIMA
model can be found in [13]. Once the scaled VMx workload is
predicted using the ARIMA model based on historical data, the
next step is to predict the PMs (source and candidate) workload
and PMs/VMx power consumption using regression models.
Before predicting the power consumption for PMs/VMx,
understanding how the resource usage affects the power
consumption is required. Therefore, an experimental study is
setup to investigate the effects of the resource usage on the
power consumption. An experiment was carried out on a local
Cloud Testbed (see Section IV), and the findings show that the
CPU utilisation correlates well with the power consumption, as
supported, for example, by [14].
 Step 4: to predict the PMs workload represented as (PMs
CPU utilisation), would require measuring the relationship
between the number of virtual CPUs (vCPUs) and the PM CPU
utilisation for the PMs, as shown in Figures 3, 4 and 5.

Fig. 3. Number of vCPUs (VMx) vs PM CPU Utilisation (Source PMi).

Fig. 4. Number of vCPUs (VMx) vs PM CPU Utilisation (candidate PMj -
most energy efficient).

Fig. 5. Number of vCPUs (VMx) vs PM CPU Utilisation (candidate PMj - less
energy efficient).

 A linear regression model has been applied to predict the
PMs CPU utilisation based on the used ratio of the requested
number of vCPU for the VMx with consideration of its current
workload as the PMs may be running other VMs already [15].
The following equation is used (1):

 PM݅௉௥௘ௗ̴௎ ൌ ቀȽ ൈ ቀσ ሺVMݔோ௘௤௩஼௉௎௦௏ெ̴஼௢௨௡௧௬ୀଵ ൈ ௏ெ௫ುೝ೐೏̴ೆଵ଴଴ ሻቁ ൅ ቁߚ ൅ ൫ܲ݅ܯ஼௨௥௥̴௎ െ ூௗ௟௘̴௎൯ (1)݅ܯܲ

 PM݅௉௥௘ௗ̴௎ is the predicted PMi CPU utilisation;  is the

slope and  is the intercept of the CPU utilisation. The VMݔோ௘௤௩஼௉௎௦ is the number of requested vCPU for each VM
and ܸ ܲ ஼௨௥௥̴௎ is the current PMi utilisation and݅ܯܲ ௉௥௘ௗ̴௎ is the predicted utilisation for each VM. Theݔܯ ூௗ௟௘̴௎ is the݅ܯ
idle PMi utilisation. Consequently, the workload for the
candidate PMj will be predicted using Equation 1, but
substituting PMi with PMj.
 Step 5: the PMi power consumption is predicted based on
the relationship between the predicted PMi workload (PM CPU
utilisation) with PMi power consumption on the PMi. Using a

regression analysis, the relation is best described as linear
regression for this particular PMi, as shown in Figure 6.

Fig. 6. The PM CPU Utilisation vs Power Consumption (Source PMi).

 Thus, the predicted PMi power consumption PM݅௉௥௘̴௉ measured by Watt, can be identified using the
following formula (2). PM݅௉௥௘ௗ̴௉ ൌ ൫Ƚ ൈ PM݅௉௥௘ௗ̴௎ ൅ ൯ (2)ߚ

 Where  is the slope,  is the intercept and PM݅௉௥௘ௗ̴௎ is
predicted PMi CPU utilisation.

 In the candidate PMj other regression models such as
polynomial can be used to characterise the relation between the
power consumption and CPU utilisation for these particular
hosts, as shown in Figures 7 and 8.
 The predicted PMj power consumption PM݆௉௥௘ௗ̴௉ measured
by Watt, can be identified using the following formula (3).
 PM݆௉௥௘ௗ̴௉ ൌ ൫ȽሺPM݆௉௥௘ௗ̴௎ሻଷ ൅ ɀሺPM݆௉௥௘ௗ̴௎ሻଶ ൅ ɁሺPM݆௉௥௘ௗ̴௎ሻ ൅ ൯ (3)ߚ

 Where ,  and  are all slopes,  is the intercept and PM݆௉௥௘ௗ̴௎ is predicted PMj CPU utilisation.

Fig. 7. The PM CPU Utilisation vs Power Consumption (candidate PMj -
most energy efficient).

Fig. 8. The PM CPU Utilisation vs Power Consumption (candidate PMj - less
energy efficient).

 Step 6: based on the requested number of vCPU and the
predicted vCPU utilisation, the VMx power consumption is
predicted on PMi using the proposed formula, as shown in
equation (4). VMݔ௉௥௘ௗ̴௉̴௉ெ௜ ൌ ூௗ௟௘̴௉݅ܯܲ ൈ ൬ ୚୑௫ೃ೐೜ೡ಴ುೆೞσ ୚୑௫ೃ೐೜ೡ಴ುೆೞೇಾ̴೎೚ೠ೙೟೤సభ ൰ ൅ ൫ܲ݅ܯ௉௥௘ௗ̴௉ െ ூௗ௟௘̴௉൯݅ܯܲ ൈ ൬ ୚୑௫ሺುೝ೐೏̴ೆൈೃ೐೜ೡ಴ುೆೞሻσ ୚୑௫ሺುೝ೐೏̴ೆൈೃ೐೜ೡ಴ುೆೞሻೇಾ̴೎೚ೠ೙೟೤సభ ൰ (4)

 Where VMݔ௉௥௘ௗ̴௉̴௉ெ௜ is the predicted power consumption
for VMx running on the PMi measured by Watt. VMݔோ௘௤௩஼௉௎௦ is the requested number of vCPU and VMݔ௣௥௘ௗ̴௎ is the predicted VM CPU utilisation. σ VMݔோ௘௤௩஼௉௎௦௏ெ̴௖௢௨௡௧௬ୀଵ is the total requested number of vCPU
for all VMs on the PMi. ܲ݅ܯூௗ௟௘̴௉ is the idle power
consumption and ܲ݅ܯ௉௥௘ௗ̴௉ is the predicted power
consumption for PMi. Hence, the VMx power consumption on
the candidate PMj will be predicted using Equation 4, but
substituting PMi with PMj.
 The energy providers usually charge by the Kilowatt per
hour (kWh). Therefore, the conversion of the power to energy VMݔ௉௥௘ௗ̴ா̴௉ெ௜ is required using the following equation (5): VMݔ௉௥௘ௗ̴ா̴௉ெ௜ ൌ VM݅ܯ̴̴ܲܲ݀݁ݎܲݔͳͲͲͲ (5)

 Substituting PMi with PMj to get the energy consumption
for the VMx on the candidate PMj.

 Step 7: this step predicts the total cost for the scaled VMx
based on the predicted VMx resource usage in step 3 and the
predicted VMx energy consumption in step 6.
 The total time required for auto-scaling VMx can be given
by: ௌܶ௖௔௟௜௡௚̴௏ெ௫ ൌ ሺ ாܶ௡ௗ̴ௌ௖௔௟௜௡௚ െ ௌܶ௧௔௥௧̴ௌ௖௔௟௜௡௚ሻ (6) ாܶ௫௜௦௧௜௡௚̴௏ெ௫ ൌ ൫ ாܶ௡ௗ̴ோ௨௡ െ ௌܶ௧௔௥௧̴ோ௨௡൯ െ ሺ ௌܶ௖௔௟௜௡௚̴௏ெ௫ሻ (7)

 where ௌܶ௖௔௟௜௡௚̴௏ெ௫ is the time required for scaling VMx
measured by seconds. ௌܶ௧௔௥௧̴ௌ௖௔௟௜௡௚ is the time when the scaling
is started and ܶா௡ௗ̴ௌ௖௔௟௜௡௚ is the time when the scaling is ended. ாܶ௫௜௦௧௜௡௚̴௏ெ௫ is the running time of the existing VMx before
scaling. ܶ ௌ௧௔௥௧̴ோ௨௡ is the start time of the running task and ாܶ௡ௗ̴ோ௨௡ is the end time of the running task.
 To predict the cost of VMx before scaling, equation (8) is
proposed: VMݔ௉௥௘ௗ̴஼௢௦௧̴௉ெ௜ ൌ ቆ൬VMݔோ௘௤௩஼௉௎௦̴௉ெ௜ ൈ ௉௥௘ௗ̴௎̴௉ெ௜ͳͲͲݔܯܸ ൰ൈ ൫ܷܲܥݒ̴ݐݏ݋ܥ ൈ ாܶ௫௜௦௧௜௡௚̴௏ெ௫൯ቇ൅ ቀVMݔ௉௥௘ௗ̴ோ̴௎̴௉ெ௜ ൈ ൫ܤܩ̴ݐݏ݋ܥ ൈ ாܶ௫௜௦௧௜௡௚̴௏ெ௫൯ቁ൅ ቀVMݔ௉௥௘ௗ̴஽̴௎̴௉ெ௜ ൈ ൫ܤܩ̴ݐݏ݋ܥ ൈ ாܶ௫௜௦௧௜௡௚̴௏ெ௫൯ቁ൅ ቀVMݔ௉௥௘ௗ̴ே̴௎̴௉ெ௜ ൈ ൫ܤܩ̴ݐݏ݋ܥ ൈ ாܶ௫௜௦௧௜௡௚̴௏ெ௫൯ቁ൅ ቀVMݔ௉௥௘ௗ̴ா̴௉ெ௜ ൈ ൫̴݄ܹ݇ݐݏ݋ܥ ൈ ாܶ௫௜௦௧௜௡௚̴௏ெ௫൯ቁ

 (8)

 where VMݔ௉௥௘ௗ̴஼௢௦௧̴௉ெ௜ is the predicted total cost of the
VMx before scaling on the source PMi. VMݔ௉௥௘ௗ̴ோ̴௎̴௉ெ௜ is the
predicted resource usage of RAM times the cost for that
resource for a period of time before scaling ாܶ௫௜௦௧௜௡௚̴௏ெ௫. We

consider the similar notation for the CPU, disk and network
resources on PMi. VMݔ௉௥௘ௗ̴ா̴௉ெ௜ is the predicted energy
consumption of the VMx times the electricity cost as announced
by the energy providers. Thus, the cost of the scaled VMx after
scaling decision on the destination PMj will be predicted using
Equation 8, but substituting PMi with PMj, ாܶ௫௜௦௧௜௡௚̴௏ெ௫ with ௌܶ௖௔௟௜௡௚̴௏ெ௫ and so on for each resource such as CPU, RAM,
disk, network and energy. Besides, additional license fees Į for
the new VM when (horizontal scaling) is performed which
considered as constant (£0.1/hr).
 To get the predicted total cost for VMx before and after
scaling can be given by: VM்ݔ௢௧௔௟̴௉௥௘ௗ̴஼௢௦௧ = VMݔ௉௥௘ௗ̴஼௢௦௧̴௉ெ௜ + VMݔ௉௥௘ௗ̴஼௢௦௧̴௉ெ௝ (9)

IV. EXPERIMENTAL SETUP

 This section describes the environment and the details of the
experiments conducted in order to evaluate the proposed
Performance and Energy-based Cost Prediction Framework.
The prediction process starts by firstly predicting the PMs/VMs
workload using the (auto.arima) function in R package2 and
then completing the cycle of the framework and considering the
correlation between the physical and virtual resources to predict
power consumption of the VMs on multiple PMs. After that, the
total cost is predicted for the scaled VMs’ based on their
predicted workload and power consumption.
 A number of experiments have been designed and
implemented on a local Cloud Testbed with the support of the
Virtual Infrastructure Manager (VIM), OpenNebula3 version
4.10, and KVM hypervisor for the Virtual Machine Manager
(VMM). This Cloud Testbed includes a cluster of 8 commodity
Dell servers. Four of these servers with four core X3430 and
eight core E31230 V2 Intel Xeon CPU were used. The servers
include 16GB RAM and 500GB hard drives. Also, each server
has a Watt meter4 attached to directly measure the power
consumption. Heterogeneous VMs are created and their
monitoring is performed through Zabbix5, which is also used
for resources usage monitoring. Rackspace6 is used as a
reference for the VMs configurations. Three types of VMs,
small, medium and large are provided with different capacities.
The VMs are allocated with 1, 2 and 4 vCPUs, 1, 2 and 4 GB
RAM, 10 GB disk and 1 GB network, respectively. The cost of
the virtual resources are set according to ElasticHosts7 and
VMware8; and the cost of energy according to
CompareMySolar9.
 In terms of the workload patterns, Cloud applications can
experience different workload patterns based on the customers’
usage behaviours, and these workload patterns consume power
differently based on the resources they utilise. Several cloud
workload patterns are identified in [16]. The periodic workload
pattern is considered as it fits nicely with the performance
variation modelling. Thus, a number of direct experiments have

2 http://www.r-project.org/
3 https://opennebula.org/
4 https://www.powermeterstore.com
5 https://www.zabbix.com/
6 https://www.rackspace.com/cloud/servers/pricing

been conducted to synthetically generate periodic workload by
using Stress-ng10 in order to stress all resources on different
types of VMs. The generated workload of each VM type has
four-time intervals of 30 minutes each. The first three intervals
will be used as the historical data set for prediction, and the last
interval will be used as the testing data set to evaluate the
predicted results.

V. RESULTS AND DISCUSSION

 This section presents the quantitative evaluation of the
Performance and Energy-based Cost Prediction Framework.
The figures below show the predicted results for three types of
VMs, small, medium and large, running on multiple PMs based
on historical periodic workload pattern. Because of space
limitation, only medium VM results are shown.
 In Algorithm 1, when VMx is overloaded and exceeds the
predefined (upper threshold), instead of immediately auto-
scaling VMs, the prediction model is used to minimise the
number of VMs scaling and avoid unnecessary scales caused by
the small peaks in the workload. However, when VMx is
overloaded and exceeds the predefined (max_upper threshold),
the overloaded VMx will be scaled in order to prevent service
performance degradation and allocated to an appropriate PMj
which has sufficient resources and is potentially most energy
efficient. In order to achieve the auto-scaling without degrading
the performance of VMx, the candidate PMj (CPU and RAM)
resources need to be carefully managed. Since the PMi upper
threshold (85%) is predefined and PMj has available resources
to accept the allocated VMx, the performance of the auto-scaled
VMx is not affected. It is also checked that the candidate PMj
utilisation will not exceed the upper threshold for allocating of
the incoming VMx. Figure 9 (a, b, c and d) depict the results of
the scaled VMx predicted versus the actual workload, including
CPU, RAM, disk, and network usage for the VMx. Despite the
periodic utilisation peaks, the predicted VMx CPU, RAM and
network workload results closely match the actual results,
which reflects the capability of the ARIMA model to capture
the historical seasonal trend and give a very accurate prediction
accordingly. The predicted VMx disk workload also matches
the actual workload, but with less accuracy as compared to the
CPU, RAM and network prediction results. This can be justified
because of the high variations in the generated historical
periodic workload pattern of the disk not closely matching in
each interval. Beside the predicted mean values, the figures also
show the high and low 95% and 80% confidence intervals.
 In terms of prediction accuracy, a number of metrics have
been used to evaluate the results, such as Mean Error (ME),
Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Percentage Error (MPE), and Mean Absolute
Percent Error (MAPE); further details about these accuracy
metrics can be found in [17].

7 https://www.elastichosts.co.uk/pricing/
8 https://www.vmware.com/cloud-services/pricing-guide
9 http://blog.comparemysolar.co.uk/electricity-price-per-kwh-

comparison-of-big-six-energy-companies/
10 http://kernel.ubuntu.com/~cking/stress-ng/

(a) (b)

(c) (d)

Fig. 9. Prediction Results for a Medium VM.

 The accuracy of the predicted VMx workload (CPU, RAM,
disk, network) based on periodic workload is evaluated using
these accuracy metrics, as summarised in Table II.

TABLE II . Prediction Accuracy for a Medium VM.

Parameters ME RMSE MAE MPE MAPE

CPU 0.019355 0.2451 0.12275 -3.1443 3.576033

RAM 0.001976 0.0189 0.00588 0.11509 0.333648

Disk -0.00005 0.0030 0.00181 -0.2380 2.716369

Network 0.000197 0.0940 0.01848 -181.96 190.5482

 The proposed framework can predict the power
consumption for a number of VMs when running on the source
PMi and the candidate PMj (based on Step 6, Equation 4 in
Section III). Figures 10 and 11 show the results of the predicted
power consumption for the VMx running on a number of PMs
using different scaling strategies based on the predefined
instance size and the self-configuration instance size. By
observing the figures, the self-configuration auto-scaling
outperforms the predefined one, since the predicted power
consumption is lower. It should be mentioned that the predicted
power consumption attribution for each VM is affected by the
variation in the predicted PM CPU utilisation of all the VMs.

Fig. 10. Predicted VMx Power Consumption using a Predefined VM Size -

Scaling on a number of candidate PMs.

Fig. 11. Predicted VMx Power Consumption using Self-Configuration VM

Size - Scaling on a number of candidate PMs.

 This framework is also capable of predicting the auto-
scaling total cost for VMx running on a number of PMs using
different scaling strategies as shown in Figure 12, along with
self-configuration cost (based on Step 7, Equation 9 in Section
III). This helps select the most suitable cost-efficient scaling
strategy. As shown in Figure 12, the choice of scaling can have
a significant impact on the cost of the scaled VMx (e.g.
horizontal scaling using most energy efficient PM can be more
cost-effective than horizontal scaling when using less energy
efficient PM).

Fig. 12. Predicted Auto-Scaling Total Cost (Predefined VMx Size Scaling vs

Self-Configuration VMx Size Scaling).

 In addition, Figure 13 shows the results of the predicted self-
configuration cost that can incur less VMx scaling cost
compared to predefined instance size choices. The cost
comparison shows that choosing self-configuration VMx size
can achieve 25% cost-saving compared to the predefined VMx
size on the same PMi when vertical scaling is performed. In
case of horizontal scaling, about 24% cost-saving can be gained
on a most energy efficient host, on a similar host configuration
as well as on a less energy efficient host PMj. Furthermore, a
similar cost-saving can be gained when performing the self-
configuration mechanism for small and large VMs, as shown in
Figure 14.

Fig. 13. Cost Saving by Self-Configuration VMx Size Scaling.

Fig. 14. Cost Saving by Self-Configuration for all VMs Size Scaling.

 Despite the high variation of the workload utilisation in the
periodic pattern, the accuracy metrics indicate that the predicted
VMs workload and power consumption achieve good
prediction accuracy along with the predicted auto-scaling total
cost.

VI. CONCLUSION AND FUTURE WORK

 This paper has presented and evaluated a new Performance
and Energy-based Cost Prediction Framework that dynamically
supports VMs auto-scaling decision, and demonstrates the
trade-off between cost, power consumption, and performance.
This framework predicts the auto-scaling total cost by
considering the resource usage, power consumption and
performance variation of heterogeneous VMs based on their
usage and size, which reflect the physical resource usage and
power consumption by each VM. The results show that the

proposed framework can predict the resource usage, power
consumption, total cost for the auto-scaled VMs with a good
prediction accuracy based on periodic workload patterns.
 As a part of future work, we intend to extend our approach
by considering the live migration aspects (re-allocation) to
further understand the capability of the proposed work.

REFERENCES
[1] Amazon_EC2, “Amazon EC2 Service Level Agreement,” 2013.

[Online]. Available: https://aws.amazon.com/ec2/sla/. [Accessed:
01-Oct-2017].

[2] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource
scaling for cloud applications,” in Proceedings - 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2012, 2012, pp. 644–651.

[3] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “SmartScale:
Automatic application scaling in enterprise clouds,” in Proceedings -
2012 IEEE 5th International Conference on Cloud Computing,
CLOUD 2012, 2012, pp. 221–228.

[4] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the
cloud using predictive models for workload forecasting,” in
Proceedings - 2011 IEEE 4th International Conference on Cloud
Computing, CLOUD 2011, 2011, pp. 500–507.

[5] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “An auto-
scaling framework for controlling enterprise resources on clouds,” in
Proceedings - 2015 IEEE/ACM 15th International Symposium on
Cluster, Cloud, and Grid Computing, CCGrid 2015, 2015, pp. 971–
980.

[6] M. A. S. Netto, C. Cardonha, R. L. F. Cunha, and M. D. Assuncao,
“Evaluating auto-scaling strategies for cloud computing
environments,” in Proceedings - IEEE Computer Society’s Annual
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, MASCOTS, 2015, pp.
187–196.

[7] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in Proceedings - 11th ACM/IEEE
International Conference on Grid Computing, 2010, no. Grid, pp. 41–
48.

[8] W. Fang, Z. H. Lu, J. Wu, and Z. Y. Cao, “RPPS: A novel resource
prediction and provisioning scheme in cloud data center,” in
Proceedings - 2012 IEEE 9th International Conference on Services
Computing, SCC 2012, 2012, pp. 609–616.

[9] Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic reSource
Scaling for cloud systems,” in Proceedings of the 2010 International
Conference on Network and Service Management, CNSM 2010,
2010, vol. 2010, no. Cnsm, pp. 9–16.

[10] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of
the 2nd Symposium on Cloud Computing, 2011, p. 5:1--5:14.

[11] M. Aldossary, I. Alzamil, and K. Djemame, “Towards Virtual
Machine Energy-Aware Cost Prediction in Clouds,” in 14h
International Conference on Economics of Grids, Clouds, Systems,
and Services, 2017, pp. 119–131.

[12] K. Djemame et al., “PaaS-IaaS Inter-Layer Adaptation in an Energy-
Aware Cloud Environment,” IEEE Trans. Sustain. Comput., vol. 2,
no. 2, pp. 127–139, 2017.

[13] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[14] W. Dargie, “A stochastic model for estimating the power
consumption of a processor,” IEEE Trans. Comput., vol. 64, no. 5,
pp. 1311–1322, 2015.

[15] I. Alzamil and K. Djemame, “Energy Prediction for Cloud Workload
Patterns,” in 13th International Conference on Economics of Grids,
Clouds, Systems, and Services, 2016, pp. 160–174.

[16] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter,
Cloud Computing Patterns. 2014.

[17] R. J. Hyndman and G. Athanasopoulos, “Measuring forecast
accuracy,” OTexts, 2013. [Online]. Available: at
www.otexts.org/fpp/2/5. [Accessed: 01-Oct-2017].

