UNIVERSITY OF LEEDS

This is a repository copy of Performance and Energy-Based Cost Prediction of Virtual
Machines Auto-Scaling in Clouds.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133235/

Version: Accepted Version

Proceedings Paper:

Aldossary, M and Djemame, K orcid.org/0000-0001-5811-5263 (2018) Performance and
Energy-Based Cost Prediction of Virtual Machines Auto-Scaling in Clouds. In: Proceedings
of the 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2018). 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2018), 29-31 Aug 2018, Prague, Czech Republic. IEEE , pp. 502-509.
ISBN 978-1-5386-7383-6

https://doi.org/10.1109/SEAA.2018.00086

© 2018 IEEE. This is an author produced version of a paper published in Proceedings of
the 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2018). Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/


mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Performance and Energy-based Cost Prediction of
Virtual Machines Auto-Scaling in Clouds

Moahammad Aldossaty, and Karim Djemante
IPrince Sattam Bin Abdulaziz University, KSA
MM.Aldossary@psau.edu.sa
2School of Computing, University of Leeds, Leeds, U.K.
{scmmald, k.djemame}@leeds.ac.uk

Abstract— Virtual Machines (VMs) auto-scaling is an
important techniqueto provision additional resour ce capacity in a
Cloud environment. It allows the VM sto dynamically increase or
decrease the amount of resources as needed in order to meet
Quality of Service (QoS) requirements. However, the auto-scaling
mechanism can be time-consuming to initiate (e.g. in the order of
aminute), which isunacceptablefor VM sthat need to scale up/out
during the computation, besides additional costs due to the
increase of the energy overhead. This paper introduces a
Performance and Energy-based Cost Prediction Framework to
estimate the total cost of VMs auto-scaling by considering the
resource usage and power consumption, while maintaining the
expected level of performance. A series of experiments conducted
on a Cloud testbed show that this framework is capable of
predicting the auto-scaling workload, power consumption and
total cost for heterogeneous VM, with a cost-saving of up to 25%
for the predicted total cost of VM self-configuration as compared
to the current approachesin literature.

Keywords— Cloud Computing, Cost Prediction, Workload
Prediction, Auto-Scaling, Power Consumption, Energy Efficiency.

I.  INTRODUCTION

VMs auto-scaling is an important technique to provision
additional capacity to the VMs on the fly. There are two types
of VMs auto-scaling: 1) vertical scaling (scale-up): request for
more resources (e.g. virtual CPUs and memory) inside the
VMs, and 2) horizontal scaling (scale-out): request for creating
additional VMs. However, VMs auto-scaling may take a few
minutes to initiate, which is unacceptable for VMs that need to
quickly scale up/out during the computation. Besides, there are
additional costs in terms of scaling time (booting/rebooting)
and energy overhead that need further consideration. Hence,
understanding the impact of VMs auto-scaling is essential for
the design of an effective resource provision technique.

To enable VMs auto-scaling on the fly without any
performance loss or latency, some form of prediction
mechanism is needed to prepare the VMs in advance. Thus, a
proactive framework has the advantage of taking preventive
actions (e.g. VMs auto-scaling) at earlier stages to avoid service
performance degradation. The effectiveness of such framework
will depend on potential actuators/decisions to implement at
service operation. Accordingly, predicting the future cost of
cloud services can help the service providers offer suitable

Cost mechanisms that are employed by different cloudervices that meet their customers’ requirements.

service providers significantly influence the role of cloud The first step towards this is a Performance and Energy-
computing within the IT industry. With the increasing cost ofpased Cost Prediction Framework that supports the potential
electricity, cloud providers consider energy consumption as orgctuators (e.g. VMs auto-scaling) to handle the performance
of the biggest operational cost factors to be managed withivariation. Therefore, this framework is proposed to predict
their infrastructures. PMs, and VMs workload using an Autoregressive Integrated
Most of the existing studies have focused on minimising th@loving Average (ARIMA) model. The relationship between
energy consumption and maximising the total resource usagge predicted VMs and PMs workload (CPU utilisation) is
instead of improving the performance of applications. Furthelinvestigated using regression models in order to estimate the
cloud providers such as Amazon EC2 [1], have established thejMs power consumption, as well as predict the total cost of the
Service Level Agreements (SLAs) based on service availabilityMs incurred by auteealing decision. This paper’s main
without such an assurance of the performance. For instanagantributions are summarised as follows:
during service operation, consider the situation where a number
of VMs are running on the same Physical Machine (PM), and A Performance and Energy-based Cost Prediction
each VM is allocated its fair share of resources. If thes&/M  Framework that predicts the auto-scaling cost for
workload increases and no resources are available to handle thaheterogeneous VMs/PMs by considering their performance,
increment (e.g. the workload exceeds the acceptable level of resource usage and power consumption.
CPU such as 95% threshold), resource competition may occer An evaluation of the proposed framework in an existing
leading to VMS performance degradation which may affect the Cloud testbed in order to demonstrate its usability with clear
fulfilment of the SLAs and hence the cloud infrastructure COSt savings.
provider’s revenue. Hence, to prevent such performance loss
effects, it is necessary to have preventive actions, e.g. VM&
auto-scaling or VMs re-allocation through live migration 1S

The remainder of this paper is organised as follows: a
cussion of the related work is summarised in Section Il.



Section lll presents the performance and energy-based cas€loud Resource Prediction and Provisioning scheme (RPPS)
prediction framework. Section IV presents the experimentabased on the ARIMA model is presented in [8]. The scheme
setup followed by results and discussion in Section V. Finallyautomatically predicts future demand (CPU usage of VMs) and
Section VI concludes this paper and discusses the future workerform proactive resource provisioning for cloud applications.
The results show that the prediction error on average is less than
Il RELATED WORK 10% in most time. However, the energy consumption and the
Previous work has addressed specific issues relating to tleharacterisation of the workload before making the prediction
cost of VMs auto-scaling in a Cloud environment. For examplegecision are not considered. Moreovarpredictive elastic
a lightweight scaling approach to enable cost-effectiveesource scaling scheme (PRESS) for Cloud systems is
elasticity for cloud applications is proposed in [2]. Thepresented in [9]. The approach uses a short-term pattern
approach uses fine-grained scaling mechanism at resource-lewahtching and state driven approach (Markov chain) to predict
scaling and VM-level scaling in order to improve resourcethe workloads. This approach is implemented on top of Xen
utilisation while reducing cloud providers' operating costsusing RUBIS and an application load traces from Google.
However, the work only mentions the impact of vertical scalingNonetheless, in this work only the workload as standalone
on the cloud providers' cost without taking horizontal scalingapplicationis prediced In contrast, our approach predicts the
into account. Likewise, an automatic scaling framework calledvorkload that will be added to the existing VMs that are already
(SmartScale) is presented in [3]. The framework uaes overloaded. Likewise, an automatic elastic resource scaling
combination of horizontal and vertical scaling in order tosystem for multi-tenant cloud computing infrastructures called
minimise the operating costs. However, the authors claim th&€CloudScale) is presented in [10]. The framework automatically
horizontal scaling allows the application to achieve highescales VMs according to predicted workloads while considering
performance while the cost incurred due to this scaling is highe@nergy consumption and SLA. CloudScale can increase or
than vertical scaling. Therefore, this leads us to investigatdecrease the CPU frequency/voltage to achieving energy
further the vertical scaling techniqgue and the impact orsavings without impact the SLA. However, this approach does
performance and cost. Another approach for auto-scaling %ot consider the costs caused by scaling.
proposed in [4]. It used a second order Auto-Regressive Compared with the work presented in this paper, we pgopos
Moving Average (ARMA) model for workload prediction & proactive auto-scaling technique that considers the
based on historical workload. The model aims to minimise theterogeneity of PMs/VMs with respect to predicting the
resource usage and satisfy QoS requirements while keepiﬁgrformance variation, resource usage, power consumption and
operational costs low. Further, a reactive auto-scalindi€ total cost. Our approach dynamically determines the most
framework that allows a broker to obtain resources from &ost-effective scaling decision, including (scale-out/scale-up)

public cloud to handleustomers® requests is proposed in [5] that will resultin the agreed performance for any given
This framework can effectively lead to a profit for the brokerworkload'
and a cost reduction for theistomers’. However, all of the Ill. PERFORMANCE AND ENERSY-BASED COST PREDICTI®
studies presented above do not consider the energy overhead FRAMEWORK

caused by auto-scaling.

Other work in the literature has proposed an auto-scaling
approach to improve the performance in Clouds. For instanc e -
a new performance metric called the Auto-scaling Deman erformance a_nd Energy-based  Cot Er_edlctlon_
Index (ADI) is introduced in [6]. The approach evaluates ramework. This framework supports decision-making

several auto-scaling strategies, including (reactivefegarding auto-scaling cost while at the same time being aware

conservative and predictive) using log traces from Googlé’f the impact on other quality characteristic_s such as energy
datacentres and used the utilisation level as a performanEg@nSUmption and performance of the application [12]. The auto-

indicator. However, this approach is dealing with VM scaling resource provisioning technique is usually driven by the
utilisation only, without reference to the auto-scaling costs'vIAPE control loop (Monitor, Analyse, Plan and Execute) to

including (e.g. energy cost) or the SLA violation. Besides, n rovision resources when needed, as depicted in Figure 1.

In this paper, we extend our work [11] by taking the
rformance variation into account and introduce a new

details are provided on where/how the experiments were |monitoring ‘Analysing Update  Executing
conducted. An efficient auto-scaling approach to dynamically ! MWJW Auts-Scoliy fraliction Mideli
scale cloud instances based on task's deadline constraints ant termetond s Hll woroad forhe J Jf} G orioanon
cost is presented in [7]. This approach is implemented on | wonr i upper thrsshdld " eMclent 24
Microsoft Azure platform using both simulated and real |ue" [ Planning | ——
applications. However, the energy efficiency of the candidate | **** Trigger VMIx il [
PM that will host the scaled instanisenot considexd when uhxworkinad >= | || | BURSRE ]| I
designing such mechanism. st 1 receonian YT scae it s ower ot |
Several prediction techniques have been proposed to predict - . |

the resource provisioning for Cloud applications. For example,
Fig. 1 Performance and Energy-based Cost Prediction Framework.

L http://rubis.ow2.org/



The proposed framework is aimed towards predicting TABLE 1. List of parameters and their notations.

; PMi the source physical machine
worklload and power consumption as yvgll as th.e total cost of the PM; the candidate physical machine
VMs incurred by the auto-scaling decisidio. achieve this aim VMx the overloaded VM to scale
i i i i C_CPU_PM | total CPU capacity of the PM
several steps are required in order to first pr.ed|ct the PMs/VMs CTRAMCPM | total memory capacity of the PM
workload and power consumption, then estimate the total cost U_CPU_PM | used CPU capacity of the PR/ce (vcPU))
of auto-scaled VMs as explained below. g_gébﬂ_\m used memory capacity of the R~ (RAM))
. oA : _ _ total CPU capacity of the VM
Step 1: The CPU utilisation and RAM usage upper and C_RAM_VM | total memory capacity of the VM
max_upper thresholds (e.g. 85% and 95%) are set and the VMx U_CPU_VM | used CPU capacity of the VM
i ; e U_RAM_VM | used memory capacity of the VM
workload is monitored. If the VMx workload is in the range of LCPU VM | increment GPU capacty of the VM
[upper and max_upper threstdpl then predict the VMx I_RAM_VM | increment memory capacity of the VM

workload for the next time interval (e.g. every 5 minutes) using
the ARIMA model based on historical workload patterns (se@lgorithm 1: VMs Workload Prediction and Auto-Scaling Decision
Step 3). This prediction helps detect the workload and avoigigise: vM workioad :(Egsﬁzxtclxmx)

unnecessary scaling causfed by the small peaks in the_worklo upper threshold = 0.85 (C_CPU_VM, C. RAM_VM):

(false alarm). If the predicted workload for the next intervaly max_upper threshold = 0.95 (C_CPU_VM, C_RAM_VM);

exceeds the max_upper threshold, VM auto-scaling decision j§; workioad :(U,cPU,PM,u,RAM,PM);

performed as described in Algorithm 1. The list of parameters C.CPUPM"CRAM.PM

and their notations is shown in Table I. PM upper threshold = 0.86 (C_CPU_PM, C_RAM_PM);

Step 2: if the VMx workload equals or exceeds the PM power = mrCeebonerdte e . jf 1o check the energy efficiency
max_upper threshold (e.g. 95%), VM auto-scaling decision isredicted VM workload = null;
performed as shown in Algorithm 1. Algorithm 1 is used toResource Increments = (I_CPU_VM, I_RAM_VM) = (null, hul
identify the overloaded VMx to be scaled and potentially theScaling Decision = null. _ _ _ _
most energy efficient candidate PMj to host it, if there is ndnput: VMs I|§t, PMs_Il_st. /IAssuming all the PMs in running/active status

. . Lo . Output: Scaling Decision.
capacity to p_erform a vc_art|cal scalingin _the first place. The VMS 1. 's 1 the PMs list in decreasing order of the PMao
are ranked in decreasing order of their workload whereas thep: sort the VMs list on PMi in a decreasing order efworkload;
PMs are ranked in decreasing order according to their energ)g: for each (VMxin VMs list) do
efficiency. The energy efficiency of the hosts (source PMi and 4 if (VMxworkload> VMx upper threshold) &&

. . . _ (VM x workload< VM x max_upper thresholdhen
gﬁ?g;i%tfwerl)jw”) can be CompUted as: PM power = 5: Predicted VMx workloag— predict the (VMx workload) for the next

— . It is also checked that the candidate PMs would interval using the ARIMA model.
PMj (idle power) . 6: if (Predicted VMx workload> VM x workload)then
have sufficient resources to handle the scaled VMx workload in7- Resource Incremert®redicted VMx workload- VM x workload
order to prevent service performance degradation (e.g. whers:  ese
VM resource utilisation increases beyond the predefined 91_ db_rfeak-
threshold). Furthermore, this Algorithm demonstrates th engr}f !

comparison between vertical scaling (scale-up) and horizontaly. if (Predicted VMx workload VM x max_upper thresholdhen
scaling (scale-out) in order to obtain the most cost-effectivel3: if (PMiworkload + Resource Increments)PMi upper thresholdjhen
scaling decision. The task is to scale the overloaded VMx and  // The resource availability on the same host is met (Ra#itx)
select the candidate PM to host it. To do so, the following'*  {Scaling Decision— pe&fgmc\g'\’l':c‘gmgﬁ'tss)c,a“”g based on
conditions are tested in this order and the subsequent actios. break. '

performed: 1) vertical scaling on the same PMi (vertical scalinglé:  else// Lack of resources on the same h&3uli)

is limited to the capacity of PMi); 2) horizontal scaling on the 17: for each (PMj in PMs list)do

H— < . ; ; 18: if ((PMj workload + Resource Increments)PMj upper thresholdghen
PMj with the most energy efficient; 3) horizontal scaling o {Scaling Decisior— perform VMx horizontal scaling based on

similar source configuration PMj (e.g. on any homogeneous Resource Increments);
PM;j with same source PMi configuration such as the CPU type Il Create a New VM on: a) the mestergy efficient hostf possible;
and the ratio of idle power), or 4) horizontal scaling takes place or b) a simikast configuration to source,
on a less energy efficient PMj, as illustrated in Figure 2. 20, break or c) the less energy efficient host
P e 2L end if
Horizontal scalin; orizontal scaling  Horizontal scalin .
on less energyg on similar on most energyg Vertical scaling 22: end for
efficient host  configuration host  efficient host  on the same host 23: end if
I\ 24:end if
VM w3 M i S 25: return Scaling Decision.
4 | 26: end for
a d,
- \-—______g
i Step 3: Algorithm 2 is used to select the right size of the VMs
to be scaled in an economic way based on the closest predefined
WM 1 W ] [ i J ‘ i ] instance sizes set by Cloud providers (e.g. small, medium and
large). However, this mechanism sometimes leads to resource

Candidate PMj  Candidate PV Candidate PMj Source PMi

over-provisioning (e.g. if the requested resources for the auto-
Fig. 2 The process of VM auto-scaling (vertical scaling vsizental scaling, scaling are less than the predefined instance sizes set by Cloud



providers). This may result in resource wasted (needless .
capacity is created) and the customers might pay more without 8 yzz;;gf 2:’;:;5347

any benefit, which is not the aim of VMs auto-scaling.
Therefore,a self-configuration approach to resize/create the
VMs based on the right size of the requested resousces
proposed. Thus, this mechanism will help Cloud providers to W
maximise their resources usage and the customers will pay for 0

what they actually use, as described in Algorithm 2. ° ' : ’ ¢

No of VCPUs

CPU Utilisation (%)

Algorithm 2: Self-configuration- Resizing/Creating VMs Fig. 3. Number of vCPUs (VMX) vs PM CPU Utilisation (SceiPM).
Initialise: Scaling VM = null.
Input: Scaling Decision; // From Algorithm 1 (Vertical ooHzontal Scaling) 100 —=
VMs size list; // List of VMs sizes set by Cloud providers
VM size. // Based on the predefined VM-sizes list sucfsiamll, medium and
large
Re%o)urce Increments = (I_CPU_VM, |_RAM_VM) // From Aldgbm 1
Output: Scaling VM.
1: Sort the VMs size list in increasing order of the ¥izes; |
2:for each (VM size i in VMs size listdo 0 5 4 5 8
3: if (Resource Increments VM size ) then // To ensure that the —
predefinedM capacity is matched with the actual load

4: Scaling VM = VM size if Resize or Create usimpredefined VM Fig. 4. Number of vCPUs (VMXx) vs PM CPU Utilisation (citate PM -
size based on the Scaling Decision most energy efficient).

o~

o ®
S O

CPU Utilisation (%)
»
=]

\

- y = 12.266x + 2.5049
R? = 0.99983

o

5: ese
6: if (Resource IncrementsVM size i) then 100
7 Scaling VM = Resource Increments; // Resize or Cresitey y = 14.832x + 40,101
a Self-configuration VM size baseah the Scaling Decision 8 R?=0.97648
8: break;
9: end if
10:  endif
11:end for
12:return ScalingVM. 20

CPU Utilisation (%)

After identifying the right size of the VMx to be scaled and 0 1 2 3 4
the candidat®M,j to host it, an ARIMA model is used to predict NoofveeLs
the scaled/Mx workload (including CPU, memory, disk and ¢y 5 number of vePUSs (VMx) vs PM CPU Utilisation (cidfade PM - less
network) utilisation and identify the best fit model. The energy efficient).
ARIMA model is a time series prediction model that has been
used widely in different domains, including finance, owing to A linear regression model has been applied to predict the
its sophistication and accuracy. Unlike other predictionPMs CPU utilisation based on the used ratio of the requested
methods, like sample average, ARIMA takes multiple inputs agumber of vCPU for the VMx with consideration of its current
historical observations and outputs multiple future observationgorkload as the PMs may be running other VMs already:. [15]
depicting the seasonal trend; further details about the ARIMAThe following equations used (1):
model can be found in [13Dnce the scaledMx workload is
predicted using the ARIMA model based on historical data, the  PMipreas = (& X (Z7% " (VMXpequeps X Emmet)) 4 B) +
next step is to predict the PMs (source and candidatekload (PMicypr y = PMijgie ) (1)
and PMs/VMx power consumption using regression models.
Before predicting the power consumption for PMs/\/Mx PMi ) ] ) S
understanding how the resource usage affects the power' ' ‘Pred.U is the predicted PMi CPU utilisation is the
consumption is required. Therefore, an experimental study islope andp is the intercept of the CPU utilisatior! Ne
setup to investigate the effects of the resource usage on ti®lxy,,,cpys is the number of requested vCPU for each VM
power consumption. An experiment was carried out on & loC&{nd VMx,,,, , is the predicted utilisation for eaatM. The
Cloud Testbed (see Sectibr), and the findings show that the pps; . is the currenPMi utilisation andPMi,y,, , is the
CPU utilisation correlates well with the power consumption, asyje PMi utilisation. Consequently, the workload for the

supported, for example, by [14]. candidate PMj will be predicted using Equation 1, but
Step 4: to predict the PMs workload represented as (PM§ubstitutingPMi with PM;.

CPU uutilisation), would require measuring the relationship Step 5: the PMi power consumption is predicted based on
between the number of virtual CPUs (vCPUs) and the PM CPY\e rejationship between the predicted PMi workidaid CPU
utilisation for the PMs, as shown in Figufst and 5. utilisation) with PMi power consumption on the PMi. Using a



regression analysis, the relation is best described as linear Step 6: based on the requested number of vCPU and the

regression for this particular PMi, as shown in Figure 6. predicted vCPU utilisation, the VMx power consumption is
% predicted on PMi using the proposed formula, as shown in
g — equation (4).
= il . VMXReqv s
5§ o VMXprea_p_pmi = PMigie p X (EVM_count}:nZ[ xc _~ ) +
E 20 | g y=1 RequCPUs
2 S y =0.7254x + 53.88 PMi _ pMi % ( VMX(pred_UxRequCPUs) ) 4
E 6: o RZ=0.99337 ( Pred_P Idle_P) Ezlz‘qfcountVMx(Pred_UxRequPUs) ( )
a
€ WhereVMxp,..q p py; iS the predicted power consumption
" " i e " for VMx running on the PMi measured by Watt.
PM CPU Utilisation (%) VMXgequcpus IS the requested number of vCPU and
Fig. 6. The PM CPU Uitilisation vs Power Consumptioru8e PM). VMxpreq yis the predicted VM CPU utilisation

Y 2% VMt gequepys IS the total requested number of vCPU

Thus, the predicted PMi power consumption for all VMs on the PMi PMi, pis the idle power
PMip, p measured by Watt, can be identified using theconsumption and PMip,eq pis the predicted —power
following formula (2). consumption for PMiHence, th&/Mx power consumptionn

. _ . the candidatePMj will be predicted using Equation 4, but
PM = PM + 2
tprea.p = (o X PMipreay + f) @ substitutingPMi with PM;.
Wherea is the slope is the intercept an8Mipreq v is The energy providers usually charge by the Kilowatt per
predicted PMi CPU utilisation. hour (kwWh). Therefore, the conversion of the power to energy

In the candidate PMj other regression models such aéMxpreq £ pui IS required using the following equation (5):

polynomial can be used to characterise the relation between the VMXproq £ pui = VMXpred_p_pMi (5)
power consumption and CPU utilisation for these particular o 1000
hosts, as shown in Figures 7 and 8. SubstitutingPMi with PMj to get the energy consumption

The predicted PMj power consumptiBMj,., » measured for the VMx on the candidateM;.

by Watt, can be identified using the following formula (3). Step 7: this step predicts the total cost for the scalédix

_ . X . ) based on the predicted VMx resource usage in step 3 and the
PMjprea_p = (€(PMjpreav)® + Y(PMjprea v)? + predicted VMx energy consumption in step 6.
8(PMjpreav) + B) (3) The total time required for auto-scaliMx can be given

Where a, y and & are all slopesp is the intercept and by:

. Tscai = (T ing — T ing) (6)
PM . . . . . Scaling_VMx End_Scaling Start_Scaling
Jpred_u is predicted PMj CPU utilisation. Texisting vmx = (TEnd_Run - TStart_Run) = (Tscating_.vmx) (7
90
80 p——— where Tseqing vmx iS the time required for scalingMx
: o ol measured by secondS;q,¢ scaiing iS the time wheithescaling
HE — Y= 6E05K" - 0016741 + L5712x+ 28.3 is started andy,.4 scqiing iS the time when thecaling is ended.
R ek Texisting vux 1S the running time of the existingMx before
i scaling. Tsqre run IS the start time of the running task and
13 Tena_run 1S the end time of the running task.
0 20 a0 60 80 100 To predict the cost of VMx before scaling, equation (8) is
PM CPU Utilisation (%) proposed
VMx, i
Fig. 7. The PM CPU Utilisation vs Power Consumptiom(tidate PN - VMXpreq cost pmi = ((VMxRequPUSipMi X W)
most energy efficient
» x (Cost_vCPU x TEximng_VMx)>

= (VMxPred_R_U_PMi X (CUSt_GB X TExisting_VMx)

+ )
100
y = 3E-05x* - 0.00822 + 0.9209x + 94.661 + (VMxprea,D,u,pMi x (Cost_GB x TExisnngny))
R? = 0.99867
+ (VMxPred_N_U_PMi X (C ost_GB X TExisting_VMx))
+

(VMxPred,E,PMi X (COSt_kWh X TExisting,VMx))

Power Cansumption (W)
@
g

(8)
0 2 B & 100 where VMxp,..q cost pmi IS the predicted total cost of the
I ceu Ltllsstion &) VMx before scaling on the source PMMxp,4 & v pui iS the

Fig. 8. The PM CPU Utilisation vs Power Consumptiom@idate PNl - less predicted resource usagt_a of RAM tImQS the cost for that
energy efficient resource for a period of time before scalig;sing v We



consider the similar notation for the CPU, disk and networloeen conducted to synthetically generate periodic workload by
resources on PMiVMuxp,.q ¢ pu; IS the predicted energy using Stressigl® in order to stress all resources on different
consumption of the VMx times the electricity cost as announcetypes of VMs. The generated workload of each VM type has
by the energy providers. Thus, the cost of the scaled VMx aftéour-time intervals of 30 minutes each. The first three intervals
scaling decision on the destinatiBivij will be predicted using will be used as the historical data set for prediction, and the last
Equation 8, but substitutinBMi with PMj, Tgyisting vax With interval will be used as the testing data set to evaluate the
Tscaling vux @Nd SO 0N for each resource such as CPU, RAMpredicted results.

disk, network and energBesides, additional license fees o for

the new VM when (horizontal scaling) is performed which V: RESULTS AND DISCUSSON

considered as constant (£0.1/hr). This section presents the quantitative evaluation of the
To get the predicted total cost for VMx before and aftePerformance and Energy-based Cost Prediction Framework.
scaling can be given by: The figures below show the predicted results for three types of

VMs, small, medium and large, running on multiple PMs based
on historical periodic workload pattern. Because of space
IV. EXPERIMENTAL SETUP limitation, only medium VM results are shown.

This section describes the environment and the details of the N Algorithm 1, when VMx is overloaded and exceeds the
experiments conducted in order to evaluate the proposdii€defined (upper threshold), instead of immediately auto-
Performance and Energy-based Cost Prediction Frameworkcaling VMs, the prediction model is used to minimise the
The prediction process starts by firstly predicting the PMs/vVMmdiumber of VMs scaling and avoid unnecessary scales caused by
workload using thesfuto . arima) function inR packagéand the small peaks in the workload._ However, when VMX is
then completing the cycle of the framework and considering th@verloaded and exceeds the predefined (max_upper threshold),
correlation between the physical and virtual resources to preditte overloadedMx will be scaled in order to prevent service
power consumption of the VMs on multiple PMs. After that, thePerformance degradation and allocated to an appropriate PMj
total cost is predicted for the scaled VMsased on their which has sufficient resources and is potentially most energy
predicted workload and power consumption. efficient. In order to achieve the auto-scaling without degrading

A number of experiments have been designed anf'e Performance ofMx, the candidate PMCPU and RAM)
implemented on a local Cloud Testbed with the support of thEESources need to be carefully managed. Since the PMi upper
Virtual Infrastructure Manager (VIM), OpenNeblgersion threshold (85%) is predefined and PMj has available resources
4.10, and KVM hypervisor for the Virtual Machine Managerto accept the allocated VM, the performance of the auto-scaled
(VMM). This Cloud Testbed includes a cluster of 8 commodityVMX is not affected. It is also checked that the candidate PMj
Dell servers. Four of these servers witlar core X3430 and  Utilisation will not exceed the upper threshold for allocating of
eight core E31230 V2 Intel Xeon CPU were used. The servef8€ incoming VMx. Figure 9 (a, b, ¢ and d) depict the results of
include 16GB RAM and 500GB hard drives. Also, each servel'€ Scaled’Mx predicted versus the actual workload, including
has a Watt metérattached to directly measure the powerCPY, RAM, disk, and network usage for the VMx. Despite the
consumption. Heterogeneous VMs are created and theeriodic utilisation peaks, the predicted VMx CPU, RAM and

monitoring is performed through ZabBjxwhich is also used network workload results closely match the actual results,
for resources usage monitoring. Rackspaise used as a which reflects the capability of the ARIMA model to capture

reference for the VMs configurations. Three types of VMs,the his'gorical seasonal_trend and gi_ve a very accurate prediction
small, medium and large are provided with different capacitieccordingly. The predicted VMx disk workload also maiches
The VMs are allocated with 1, 2 and 4 vCPUs, 1, 2 and 4 Gihe actual workload, but with less accuracy as compared to the
RAM, 10 GB disk and 1 GB network, respectively. The cost ofcPU, RAM and network prediction results. This can be justified
the virtual resources are set according to ElasticFiastd ~Pecause of the high variations in the generated historical
VMware® and the cost of energy according to penodm workload.pattern of t.he disk not closely ma;chmg in
CompareMySoldr each mterval. Beside the predicted mean v_alues, t_he figures also
In terms of the workload patterns, Cloud applications carsnOW the high and low 95% and 80% confidence intervals.

experience different workload patterns based on the customers " terms of prediction accuracy, a number of metrics have

usage behaviours, and these workload patterns consume po&€n used to evaluate the results, such as Mean Error (ME),
differently based on the resources they utilise. Several clodgoot Mean Squared Error (RMSE), Mean Absolute Error

workload patterns are identified in [16]. The periodic workloadMAE), Mean Percenta.ge Error (MPE), and Mean Absolute
pattern is considered as it fits nicely with the performancé €rcent Error (MAPE); further details about these accuracy

variation modelling. Thus, a number of direct experiments havEetrics can be found in [17].

VMX7otar_pred_cost = VMXprea_cost_pmi ¥ VMXprea_cost pmj 9

2 http://www.r-project.org/ 7 https://www.elastichosts.co.uk/pricing/

3 https://opennebula.org/ 8 https://www.vmware.com/cloud-services/pricing-guide

4 https://www.powermeterstore.com 9 http://blog.comparemysolar.co.uk/electricity-price-per-kwh-
5 https://www.zabbix.com/ comparisonef-big-six-energy-companies/

6 https://www.rackspace.com/cloud/servers/pricing 10 http://kernel.ubuntu.com/~cking/stress-ng/
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Fig. 9. Prediction Results for a Medium VM.
The accuracy of the predicted VMx workload (CPU, RAM, = 250 ) ‘

) . . . . 2 Horizontal scaling on
disk, network) based on periodic workload is evaluated using § 20 bl
these accuracy metrics, as summarised in Table Il. g

=3
210 ——  J X 4 N  meee- Horizontal scaling on
TABLE |l. Prediction Accuracy for a Medium VM. 8 similar configuration
T PMj (Host C|
Parameters | ME RMSE | MAE MPE MAPE 2 10 | \ e
a I K A
CPU 0.019355 | 0.2451 | 0.12275 | -3.1443 | 3.576033 3 S S \ W/ Y N— Vertical scaling on the
8 so T Y e . 1 same PMi (Host A)
RAM 0.001976 0.0189 0.00588 | 0.11509 | 0.333648 3 = /_/—\&/ R e
Disk -0.00005 0.0030 0.00181 | -0.2380 | 2.716369 ; 0 = —
> 1357 911131517192123252729 ~  Horizontalscalingon
Network 0.000197 | 0.0940 | 0.01848 | -181.96 | 190.5482 T Jess ey eficient
ime Index (1 per Minute PM] (Host D)
The proposed framework can predict the power Fig. 11. Predicted VMx Power Consumption using Self-Confiion VM
consumption for a number of VMs when running on the source Size - Scaling on a number of candidate PMs.

PMi and the candidate PMj (based on Step 6, Equation 4 in

Sectionlll). Figures 10 and 11 show the results of the predicted This framework is also capable of predicting the auto-
power consumption for the VMx running on a number of PMsscaling total cost for VMx running on a number of PMs using
using different scaling strategies based on the predefinedifferent scaling strategies as shown in Figure 12, along with
instance size and the self-configuration instance size. B§elf-configuration cost (based on StefEd@uation 9 in Section
observing the figures, the self-configuration auto-scalind!!)- This helps select the most suitable cost-efficient scaling
outperforms the predefined one, since the predicted powéfrategy. As shown in Figure 12, the choice of scaling can have
consumption is lower. It should be mentioned thapredicted @ significant impact on the cost of the scaMx (e.g.
power consumption attribution for each VM is affected by thehorizontal scaling using most energy efficient PM can be more
variation in the predicted PM CPU utilisation of all the VMs. cost-effective than horizontal scaling when using less energy

efficient PM).
__ 250
= Horizontal scaling on 3.50
= | most energy efficient
.g 200 PMj (Host B) 3.00 e 2.883
CEB [ 2.505 2.423
5 | _ ) = 2.50 2.187
g 150 1 | s e Horlzontal scaling.on = 200 1.879 1.842 1979 -
o K, H | ! Y \ similar configuration e
5 | i (. I PMj (Host C) 2 150 | [ |
i Foa ) : |
A - - " 100 ] |
E K \ e C ey SRR Vertical scaling on the |
L 5 <~ = = same PMi (Host A) 0.50 |
e
& 0.00
= 0 Vertical scaling on  Horizontal scaling  Horizontal scaling  Horizontal scaling
= 135 7 9111315171921 23 2527 29 Horizontal scaling on the same PMi on most energy on similar on less energy
. . less energy efficient efficient PMj configuration PMj efficient PM]j
Time Index (1 per Minute) PMj (Hast D)
mVM Predefined  m VM Self-Configuration
Fig. 10. Predicted VMx Power Consumption usmgredefined VM Size - Fig. 12. Predicted Auto-Scaling Total Cost (Predefinddx Size Scaling vs

Scaling on a number of candidate PMs. Self-ConfiguratiolVMx Size Scaling).



In addition, Figure 13 shows the results of the predicted selfproposed framework can predict the resource usage, power
configuration cost that can incur less VMx scaling costtonsumption, total cost for the auto-scaled VMs with a good
compared to predefined instance size choices. The cogtediction accuracy based on periodic workload patterns.

comparison shows that choosing self-configurattix size
can achieve 25% cost-saving compared to the predéefined

As a part of future work, we intend to extend our approach
by considering the live migration aspects (re-allocation) to

size on the samBMi when vertical scaling is performed. In further understand the capability of the proposed work.

case of horizontal scaling, about 24% cost-saving can be gained
onamost energy efficient hostn a similar host configuration

as well as oraless energy efficient ho§&tM|. Furthermorea  [1]
similar cost-saving can be gained when performing the self-
configuration mechanism for small and large VMs, as shown i iRy
Figure 14.
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(6]

Fig. 13. Cost Saving by Self-ConfiguratidrM x Size Scaling.
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Fig. 14. Cost Saving by Self-Configuration for 8Ms Size Scaling.
[11]

Despite the high variation of the workload utilisation in the
periodic pattern, the accuracy metrics indicate that the predicted
VMs workload and power consumption achieve gooqlz]
prediction accuracy along with the predicted auto-scaling total

cost.
[13]

VI. CONCLUSION AND FUTURE WORK [14]

This paper has presented and evaluated a new Performance
and Energy-based Cost Prediction Framework that dynamicalrl{y
supports VMs auto-scaling decision, and demonstrates t &
trade-off between cost, power consumption, and performance.
This framework predicts the auto-scaling total cost byie]
considering the resource usage, power consumption and
performance variation dfieterogeneous VMs based on their 171
usage and size, which reflect the physical resource usage and
power consumption by each VM. The results show that the
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