
This is a repository copy of Laguerre-based adaptive MPC for attitude stabilization of
quad-rotor.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133221/

Version: Accepted Version

Proceedings Paper:
Gonzalez Villarreal, O., Rossiter, J.A. orcid.org/0000-0002-1336-0633 and Shin, H. (2018)
Laguerre-based adaptive MPC for attitude stabilization of quad-rotor. In: Proceedings of
2018 UKACC 12th International Conference on Control (CONTROL). Control 2018: The
12th International UKACC Conference on Control, 05-07 Sep 2018, Sheffield, UK. IEEE ,
pp. 360-365. ISBN 978-1-5386-2864-5

https://doi.org/10.1109/CONTROL.2018.8516876

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Laguerre-based Adaptive MPC for Attitude

Stabilization of Quad-rotor

1st O. J. Gonzalez Villarreal

Dept. of ACSE

The University of Sheffield

Sheffield, UK

ojgonzalezvillarreal1@sheffield.ac.uk

2nd J. A. Rossiter

Dept. of ACSE

The University of Sheffield

Sheffield, UK

j.a.rossiter@sheffield.ac.uk

3rd H. Shin

Center for A.C.P.S

Cranfield University

Cranfield, UK

h.shin@cranfield.ac.uk

Abstract—The application of predictive control methods in
real-time to fast systems, such as quad-rotors, remains a challenge
for its implementation in low-power embedded systems. This
paper presents the application of an Adaptive Laguerre-based
Model Predictive Controller (MPC) to the Attitude Stabiliza-
tion of a Quadrotor. The formulation uses an Online System
Identification algorithm based on Recursive Least Squares (RLS)
with forgetting factor for parameter estimation, and a Laguerre-
based Model Predictive Controller for achieving real-time calcu-
lation/update of the control law. The developed control system
was experimentally tested in a real quad-rotor, and the results
demonstrate its real-time applicability in a low-power embedded
platform.

Index Terms—MPC, Laguerre, Adaptive, UAV, Quadrotor

I. INTRODUCTION

Over the last decade, quad-rotors have become a very

popular research topic, given their relatively low-cost, complex

nonlinear dynamics and high maneuverability. This has led to

all kinds of different applications, such as surveillance, aerial

photography, surface mapping, search and rescue, inspection,

transport, military and the recently, more popular, FPV racing

[1]. Apart from their own inherent complexity, these vehicles

are constantly affected by external disturbances, such as wind,

as well as changes in the systems’ dynamics, which can

affect their performance and may require re-tuning to achieve

good stability characteristics. As an example, the payload

in transportation quad-rotors affects the inertia and mass

properties. Similarly, it is common to constantly attach/detach

components such as cameras, batteries and external sensors

to the vehicle, once again, changing the vehicle’s dynam-

ics. These challenges require the implementation of flexible

control schemes that are capable of dealing with these uncer-

tainties and sudden changes, and are therefore the motivation

behind using the adaptive predictive control scheme presented

in this paper.

Model Predictive Control is an advanced optimization-based

control strategy that uses an inner model of the system to

predict and optimize its future behavior [2], [3]. With the ad-

vances in computation platforms and optimization algorithms,

the implementation of predictive control algorithms to fast

system is now looking more feasible [1]. In the area of UAVs,

several authors have implemented MPC, or even Nonlinear

MPC, both in simulation and real experiments [1]. In [4], a

Laguerre-based MPC was developed and experimentally vali-

dated for an hexacopter based on the methodology described

in [5], but with no parameter estimation. Other authors, such

as [6] and [7] looked at the combination of nonlinear MPC

with parameter and state estimation techniques for improving

the systems’ performance, but only in simulation.

The main contribution of this paper is the formulation of

a simple SISO model of a quad-rotor, which differs from

models presented in [1] by including actuator (or possibly

sensor) dynamics. This model is then used by a real-time

feasible Laguerre-based MPC control law, able to match a

PD control law with the main advantage of including the

desired frequency content of the Laguerre Polynomials in the

design. Furthermore, this is combined with a computation-

ally inexpensive Online System Identification algorithm for

estimation of 3 parameters that define the systems dynam-

ics with the goal of achieving auto-tuning. Moreover, the

entire formulation is experimentally tested in a quad-rotor

UAV, and the tests demonstrate successful implementation in

the relatively new Beaglebone Blue board, which is a low-

power embedded platform. The entire formulation is available

from https://github.com/OscarJGV26/LaguerreMPC using ob-

ject oriented programming and Matlab codes. In summary, the

paper presents the application of a novel Adaptive Laguerre-

based Model Predictive Controller (MPC) for Attitude Stabi-

lization, experimentally tested in a Quad-rotor using relatively

new hardware.

Section II presents the full nonlinear attitude model of

a quad-rotor, and derives a linear SISO model to be used

by the formulation presented in this paper with its respec-

tive assumptions. Section III presents the formulated Online

System Identification using Recursive Least Squares (RLS)

with a forgetting factor and discusses important aspects to

be considered for its implementation. Section IV outlines the

Laguerre-based MPC formulation and discusses some impor-

tant remarks. Section V presents the results obtained from real

experiments where the system dynamics were automatically

excited using a sinusoidal signal for auto-tuning, and the

convergence and computational benefits of the overall control

systems are discussed. Finally, Section VI gives conclusions

and future work.

II. QUADROTOR MODELING

It is well known that the attitude model of a quad-rotor has

several sources of nonlinear dynamics such as quaternion/euler

dynamics, thrust relations and coriolis-centripetal crossed-

coupled angular velocity effects [6]. Nevertheless, many au-

thors have simplified them into linear models [4]. This section

presents the fully nonlinear attitude model of a quad-rotor, and

derives the associated simple linear SISO model to be used for

the control design presented in this paper.

Recalling the modeling done in [6], [4] and [2]; the full

nonlinear attitude dynamics of a quad-rotor can be represented

by:









q̇0
q̇1
q̇2
q̇3









=
1

2









0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0

















q0
q1
q2
q3









(1)





ṗ

q̇

ṙ



 =







kT l
Ixx

0 0

0 kT l
Iyy

0

0 0 kτ

Izz











1 −1 1 −1
1 1 −1 −1
1 −1 −1 1













ω2
1

ω2
2

ω2
3

ω2
4









+







Iyy−Izz
Ixx

qr
Izz−Ixx

Iyy
pr

Ixx−Iyy

Izz
pq







(2)

where [q0, q1, q2, q3]
T is the quaternion in the inertial

frame, [p, q, r]T are the angular velocities in the body axes

frame, [ω1, ω2, ω3, ω4]
T are the propellers’ angular velocities,

Ixx, Iyy, Izz are the vehicle’s inertias, kT , kτ are constants

relating the propellers’ angular velocities and thrust/torque

respectively, and l is the distance parallel to the respective

axis from center of gravity (CG) to the propeller.

The dynamics of the quaternion (1) are affected by the data-

fusion method used to correct drift, e.g. using accelerometer

data [8]. Therefore, in order to avoid being affected by this in

the Online System Identification phase, the formulation will

focus on the rate dynamics (2) and use a cascade proportional

control loop as common control loops. This can be improved

further by using a quaternion based control such as in [9] or

[10].

Now, assuming the cross-coupled angular velocity terms

are negligible around the operating point p ≈ q ≈ r ≈ 0,

and assuming that at this operation point there exist a linear

relationship between the input signal ui (i.e. the signal that

goes into the Electronic Speed Controllers (ESCs)) and the

propellers’ angular velocities ωi, the rate dynamics can now

be represented by:





ṗ

q̇

ṙ



 = K





L

M

N



 (3)

where K is a diagonal matrix with the gains of each axis given

by:

K =





kx 0 0
0 ky 0
0 0 kz



 (4)

L,M,N represent the allocated ”virtual moments” as in [11]

given by:









L

M

N

Z









=
1

4









1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
1 1 1 1

















u1

u2

u3

u4









(5)

and the resulting control allocation is given by:









u1

u2

u3

u4









=









1 1 1 1
−1 1 −1 1
1 −1 −1 1
−1 −1 1 1

















L

M

N

Z









(6)

We introduce Z to represent a potential offset of ”thrust” to

be produced by each of the 4 motors. The derivation of the

control allocation matrices is out of the scope of this paper.

These dynamics represent a simple integrator and imple-

menting an MPC directly onto then result in a proportional

controller which is unlikely to give the desired tracking

performance in the rate dynamics whilst also being robust

to external disturbances. A key assumption for this model

is that the propeller angular velocities are ”instantaneously”

achieved, which is not true, and nevertheless, has been used by

many authors (see [1], [4]) Based on this potential problem,

the model was further augmented with unit-gain first-order

dynamics representing the actuators (or possibly even the sen-

sors) dynamics. Combining both models gives the following

second order dynamics with an integrator and with τ > 0
related to the time constant of the first order; these will be

used for the control law formulation.




p̈

q̈

r̈



 = −1

τ





ṗ

q̇

ṙ



+K





L

M

N



 (7)

III. ONLINE SYSTEM IDENTIFICATION

Although the parameters of the dynamic model of a vehicle

can be calculated and pre-stored off-line using for example

CAD or system identification methods, the application of

online system identification allows quick recalculation of the

system’s true dynamic model and therefore, can enhance

the system performance. Additionally, it can be used for

supervisory control and fault-detection/isolation, as well as

fault-tolerant control; however this is outside the scope of this

paper.

A. Algorithm and Modeling

In this case, the Online System Identification was based

on the Recursive Least Squares (RLS) with forgetting factor

formulation presented in [12]. The algorithm equations are

given by:

ek = zk −ΨTΘ

K = PΨ

1+ΨTPΨ

Θk = Θk−1 +Kek

P = I−KΨ
T

λ
P

(8)

where ek is the prediction error of the mode, Ψ is known

as the regressors vector, Θ is the parameters vector, P is the

covariance matrix, K is a Kalman-Filter-type gain and λ is

the forgetting factor. For our system, a forgetting factor of

λ = 0.999 was selected.

This formulation was combined with the assumed model

(7) given in the previous section. Although a classic approach

would formulate this model as a standard ARX model repre-

sented by a discrete difference equation of the form:

yk = a1yk−1 + a2yk−2 + b1uk−1 + b2uk−2 (9)

which has na = 2 recursive terms and nb = 2 exogenous

terms. In our case, we implemented the ∆ modeling and

identification approach given in [13]. This allows the embed-

ding of the desired model structure into the system whilst

also improving the precision of the coefficients by requiring

2 less coefficients to be estimated. Moreover, the learned

system must consider possible disturbances or un-modeled

biased errors. Therefore the parameters to be estimated were

augmented with a constant disturbance. The algorithm entry-

data (zk,Ψ) are then given by:

zk = yk − 2yk−1 + yk−2

Ψ =





yk−1 − yk−2

uk−1

1



 Θ =





a

b

d





(10)

where y is a general output-variable, which in this case

represents the angular velocity of the vehicle, and uk is a

general input-variable, which in this case represent the ”virtual

moments”. Once the model is learned, by rearranging the

equations, the state space model to be used later (see eqn.

(13)) can be found.

B. Execution Rules and Parameter Constraints

The performance of the algorithm presented above is known

to converge to the real parameters if and only if: (i) the

assumed model (7), or in general, the entry data (10) can

actually represent the system dynamics, and (ii) if the sys-

tem is under persistent excitation periods [12]. Therefore, in

order to prevent unwanted adaptation and learning actions in

period of low excitation, several execution rules and parameter

constraints were implemented and are listed and explained

below based on the ideas discussed in [12], with the selected

thresholds for our system.

1) Run the RLS algorithm only when the ”angular accel-

eration” yk−1 − yk−2 > 5 is greater than a threshold

to provide sufficient excitation and avoid running the

algorithm when steady, e.g. when hovering. Addition-

ally, the criteria found in [12] based on the normalized

information was also used:

||PΨ||1
||P ||1||Ψ||1

< 0.1 (11)

2) Limit the trace of the co-variance matrix (P) with

P =
klim

tr(P)
P if tr(P) > klim (12)

to prevent it from becoming ill-conditioned and have

better control on the rate of convergence. A threshold

of klim = 10 was selected for our system.

3) Limit the range of parameters a and b to an expected

range to prevent incorrect modeling. For our system, the

thresholds −0.7 < a < 0, 0.05 < b < 0.3 for roll/pitch

axis, and 0.005 < b < 0.05 for yaw axis, were selected

and can be obtained considering variation in the time

constant and gain of the system.

4) Only update the control law (i.e. adapt) if the overall

uncertainty of your first two parameters/coefficients a, b,

which can be considered as the summation of P1,1 +
P2,2, is sufficiently small. This not only ensures that

adaptations are made when you can actually trust your

coefficients, but also when they are moving slowly. For

this system, a maximum trace of kmax = 0.0001 was

selected.

Remark 1 (Saturation): One thing to be careful with when

using this formulation is the saturation of the actuators.

Whenever this happens, the allocated control values do not

represent the same values of the ”virtual moments” in matrix

(6). Therefore, in this case, the system must recalculate the

actual allocated ”virtual moments” values with matrix (5) after

saturation.

IV. LAGUERRE-BASED MODEL PREDICTIVE CONTROL

Laguerre-based MPC uses a set of discrete orthonormal ba-

sis functions embedded into the design. The main motivations

behind using Laguerre are: (i) the possible recovery of the fully

optimal solution; (ii) the acceleration of the computation times

and (iii) a better frequency control on the system’s response.

Furthermore, by imposing a fast zero-decaying structure, it

prevents the optimization from becoming ill-conditioned in

case of plants with unstable/conditionally stable dynamics. The

methodology can be found in [14] and [5].

A. Model

One important difference in this implementation is the

model to be used. Most MPC implementations use the ∆
modeling approach where the system is augmented with an

integrator. However, based on the results from [15], it was

chosen to use a disturbance estimation model which indeed

gave better performance as well as improved control over

disturbance rejection, thus motivating its use for unbiased-

predictions. Furthermore, in order to consider a possible match

to a proportional-derivative (PD) controller, the model was

transformed to an equivalent by using a simple backward-

forward euler integration method. Finally, in order to be able

to formulate the unbiased optimization-index (16), the model

had to be represented with difference inputs (∆uk), rather than

the absolute values (uk). Thus, the state space model used for

this formulation is given by:

xk+1 = Axk +B∆uk

yk = Cxk
(13)

where:

A =









1 Ts(1 + a) Ts b

0 (1 + a) 1 b
Ts

0 0 1 0
0 0 0 1









B =









b
b
Ts

0
1









C =
[

1 0 0 0
]

Ts is the sampling time and the state defined as xk =
[

yk
yk−yk−1

Ts
dk uk−1

]T

, with dk being the disturbance

to be estimated. From now on, we will refer to ẏk = yk−yk−1

Ts
.

To estimate the disturbance a full Kalman Filter can be

employed as in [15], or alternatively, the disturbance can be

simply filtered with a unit-gain first-order discrete filter given

by:

dk = αdk−1+
(1− α)(ẏk − (1 + a)ẏk−1 +

b
Ts
uk−1)

(14)

where 0 < α < 1 is the tuning constant. For our system, a

value of α = 0.98 was selected.

B. Control Law

The derivation of the control law is based on finite horizon

optimal control using a relatively long horizon which is known

to give good stability characteristics [3], [16]. Given that the

purpose of the optimization is to calculate a control law in real-

time whilst preserving computational simplicity, dual-mode

approaches were avoided.

In this section, it will be shown that the formulation leads

to a control law of the form:

uk = uk−1 −Kxxk +Krrk +Kṙ ṙk (15)

where Kx, Kr and Kṙ vary depending on the system dynam-

ics.

To achieve this, a standard unbiased-optimization index of

the form:

J = (r − ŷ)T (r − ŷ) +∆û
TR∆û (16)

is defined, where ŷ =
[

yk+1 yk+2 · · · yk+Np

]T
and

∆û =
[

∆uk ∆uk+1 · · · ∆uk+Np−1

]T
represent the

vectors of predicted outputs and future input-increments tra-

jectories respectively, Np is the prediction horizon, and r =
[

rk+1 rk+2 · · · rk+Np

]T
represents a reference trajec-

tory, typically a constant rk.

The unbiased-predicted output ŷ is represented by:

ŷ = Gxk +H∆û (17)

with

G =











CA

CA2

...

CANp











H =











CB 0 · · · 0
CAB CB · · · 0

...
...

. . . 0
CANp−1B · · · · · · CB











(18)

Now, the dynamics of the Laguerre Polynomials can be

found in [5] and are given by,










L(1)
L(2)

...

L(NL)











k+1

=











aL 0 · · · 0
β aL · · · 0
...

...
. . .

...

· · · · · · · · · aL





















L(1)
L(2)

...

L(NL)











k

(19)

where, aL is the decay-rate, β = (1 − a2L) and NL is the

number of Laguerre coefficients.

By taking L0 =
√
β
[

1 −aL · · · (−1)NL−1aNL−1

L

]T

as initial condition and iterating system (19) forward Np

times, the following input structure can be embedded into the

optimization

∆û = Lη (20)

where L =
[

LT
0 LT

1 · · · LT
Np−1

]T
and η =

[

c1 c2 · · · cNL

]T
are the Laguerre coefficients [5]. For

our system, the number of Laguerre coefficients was fixed

with NL = 2 and the decay-rate was fixed at aL = 0.5, which

contains a desirable frequency response of the input. Figure

(1) shows the embedded input parameterization.

Fig. 1. First two Laguerre Polynomials.

By substituting equations (20) and (17) in (16), it can then

be derived that the optimization is of the standard Quadratic

Problem (QP) form:

J =
1

2
ηTEη + fT η (21)

where E = LTHTHL + LTRL, fT = −LTHT (r − Gxk).
This optimization will give the optimal Laguerre coefficients η

which can then be used to recover the solution in the original

space using (20). Recalling the receding horizon strategy

[5], only the first input is applied and the optimization is

recalculated in the following next step. If the system dynamics

are linear time-invariant, then, the unconstrained solution of

this QP is of the form of (15) with:

Kx = −
[

1 0 · · · 0
]

LE−1LTHTG (22)

and it can be shown that Kr = Kx(1). To further match a PD

controller and give better trajectory tracking, the control law

included a desired angular acceleration, ṙk = rk−rk−1

Ts
. Thus,

the final control law is given by (15) with Kṙ = Kx(2).
Remark 2 (Coding): Significant computation savings

can be achieved by proper coding and memory alloca-

tion of this optimization, e.g. by using recursive informa-

tion [2]. Efficient Matlab code for this is available from

https://github.com/oscarjgv26.

Remark 3 (Saturation): Because it is unconstrained, the

saturation of the actuators will be done using anti-windup

techniques as discussed in [4] as, in such cases, ∆ based

control laws are known to have good anti-windup properties.

V. EXPERIMENTAL RESULTS

This formulation was tested in an F450 quad-rotor frame

with EMAX MT2213 brushless motors, ESCs operating at

400 Hz and 1045 ABS propellers. The flight control system

running this formulation was a Beaglebone Blue running @

1000 MHz and the formulations were compiled using -O3 C

flag. The filter of both on-board gyroscope and accelerometer

was set at 10 Hz, and the resolutions were set at 2000
(deg/s) and 4G respectively. The accelerometer was fused

using the double-stage Kalman Filter presented in [8] but only

performing accelerometer correction with Q = 10−6I and

Racc = 0.1. The sampling time of the control system was

Ts = 20(ms) (50 Hz) and the prediction horizon was fixed at

Np = 50, i.e. Tp = 1 (s). The outer loop proportional gains

for the Roll and Pitch axis were both set on Kp = 4 and left

constant throughout the tests. The input range of each of the

motors was ui = [0, 1000], and the allocated moments (vi)

were saturated at approximately 60% of the overall hovering

throttle Z which depends on the mass, thus time-varying but

for our system, approximately vi = [−300, 300].
One of the most important, and also difficult things to

achieve was the stability of the combined online system

identification algorithm and control law update. This is be-

cause if the standard RLS algorithm is applied, the system

can diverge during periods of poor excitation which leads

to the need for the rules presented in section III-B. Another

important part was that, regardless of the identified model, or

in general, the performance of the online system identification

algorithm, there are still three constants that determine the

performance of the system, namely the input-weight R, the

disturbance estimation filter α and the Laguerre decay-rate

aL. For the purpose of this paper, these constants were fixed

at the values R = 0.1, α = 0.98, aL = 0.5, where ”stability”

and ”smoothness” were observed across the tests. However,

in general, these parameters do need to be assigned carefully,

in particular taking into account the possible embedded fre-

quency response of both Laguerre decay-rate and disturbance

estimation constant α which could have a substantial effect on

the system.

A. Flight Tests

To test the formulation, the system was excited in the roll

axis, starting from a poorly tuned control law, and moving

iteratively towards the optimal value. Figure (2) shows ap-

proximately 7 seconds of the flight test data. At the begin-

ning (t < 1), the system is showing the performance of

the poorly tuned control law. At t ≈ 1, an automatically

generated sinusoidal signal of φ = 50 sin(4π) in the roll

angle is implemented for approximately 3 seconds to provide

initial excitation and the online system identification starts

(see figure (3)). The control law starts updating at t ≈ 4
(see figure (4)) and maintains the same values after the pilot

terminates the sinusoidal excitation to test the performance.

As it can be seen, the ”chattering” of the inputs was reduced

to ±10, thus giving very precise corrections and reducing

actuator wear. Once again, the flight data is available at

https://github.com/OscarJGV26/LaguerreMPC.

Fig. 2. Excitation Data - Roll Axis

Furthermore, to test the full learning capabilities, the RLS

algorithm started from an empty parameter vector Θ =
[

0 0 0
]T

during this test. The variation of the principal

estimated coefficients (a, b) can be seen in figure (3). As it

can be seen, they move near to the final value within less than

3 seconds whilst also staying within the constraints, and move

smoothly afterwards as the algorithm iterates .

During the same test, figure (4) shows the movement of

the control law parameters which can be seen to be moving

equally smoothly and do not change during the first 3 seconds

of the RLS algorithm where the uncertainty is still high. Sim-

ilar results were obtained for the other 2 axis (pitch/yaw) and

the formulation was able to tune all the axis simultaneously

with the sinusoidal signal within 10 sec.

Fig. 3. Online System Identification - Estimated Coefficients

Fig. 4. Control Law Gains

B. Computation Times

One of the requirements of this formulation is that it is able

to be run in real-time whilst performing other tasks such as

data-fusion, telemetry, data-logging and so forth. Table I shows

the computation times in miliseconds (tc) of the formulation,

where updates of the control law in 235 microseconds, and

execution of the online system identification in 4.8 microsec-

onds (per axis) can be seen, leaving more than enough time for

other tasks. Furthermore, it includes the computation times of

30 and 50 iterations for solving the Discrete Algebraic Ricatti

Equation (DARE) for comparison.

TABLE I
ONLINE COMPUTATION TIMES

Task tc(ms)
Control Law Execution on 3 axis 0.0033

Online System Identification on 3 axis (RLS) 0.0144

Laguerre MPC (NL = 2) 0.235

LQR (30 iterations of DARE) 0.165

LQR (50 iterations of DARE) 0.273

Although 30 iterations of DARE for computing the LQR

control law are faster, the tuning process of LQR didn’t

give good performance given the lack of frequency content

embedded into the optimization. Thus, the motivation behind

using Laguerre Polynomials was validated.

VI. CONCLUSION

This paper presented the implementation of a Laguerre-

based Model Predictive Control formulation coupled with Re-

cursive Least Squares with forgetting factor as an Online Sys-

tem Identification method for achieving adaptive self-tuning

control of a quad-rotor UAV in real-time. This formulation

was experimentally tested in a quad-rotor and could equally

be applied to other UAVs with similar dynamics using the

control allocation concept.

The developed control system combined the standard outer

loop proportional cascade loop control with a control allo-

cation strategy, an online system identification method and a

Laguerre-based Model Predictive Control.

The performance of the developed formulation was tested

using an automated sinusoidal signal for exciting the sys-

tem’s dynamics and the results demonstrate the capability

of the formulation to achieve self-tuning of the system in

real-time within less than 3 seconds per axis with overall

smooth performance of the parameters. A demonstration of

this implementation will be given at the conference.

Future work related to this formulation will be the extension

to the multi-variable system identification case and consider-

ation of other types of UAVs.

REFERENCES

[1] A. Zannelli, G. Horn, G. Frison, and M. Diehl, “Nonlinear Model
Predictive Control of a Human-sized Quadrotor,” European Control

Conference, vol. 16, no. 1, pp. 41–50, 2018.
[2] R. Quirynen, S. Gros, and M. Diehl, “Efficient NMPC for nonlinear

models with linear subsystems,” Proceedings of the IEEE Conference

on Decision and Control, pp. 5101–5106, 2013.
[3] J. A. Rossiter, A first course in predictive control: 2nd edition. CRC

Press, 2018.
[4] J. A. J. Ligthart, P. Poksawat, and L. Wang, “Experimentally Validated

Model Predictive Controller for a Hexacopter,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 4137–4142, 2017.

[5] L. Wang, Model Predictive Control System Design and Implementation

Using Matlab. Springer, 2009.
[6] M. H. Tanveer, D. Hazry, S. F. Ahmed, M. K. Joyo, F. A. Warsi, H. Ka-

maruddin, M. Zuradzman, K. Wan, and A. B. Shahriman, “NMPC-PID
Based Control Structure Design for Avoiding Uncertainties in Attitude
and Altitude Tracking Control of Quadrotor,” IEEE 10th International

Colloquium on Signal Processing & its Applications, pp. 7–9, 2014.
[7] S. Iplikci, “RungeKutta model-based adaptive predictive control mech-

anism for non-linear processes,” Transactions of the Institute of Mea-

surement and Control, vol. 35, no. 2, pp. 166–180, 2013.
[8] S. Sabatelli, M. Galgani, L. Fanucci, and A. Rocchi, “A double-stage

kalman filter for orientation tracking with an integrated processor in 9-D
IMU,” IEEE Transactions on Instrumentation and Measurement, vol. 62,
no. 3, pp. 590–598, 2013.

[9] S. Bouhired, M. Bouchoucha, and M. Tadjine, “Quaternion-based global
attitude tracking controller for a quadrotor UAV,” 2013 3rd International

Conference on Systems and Control, ICSC 2013, pp. 933–938, 2013.
[10] E. Fresk and G. Nikolakopoulos, “Full Quaternion Based Attitude

Control for a Quadrotor,” European Control Conference, pp. 3864–3869,
2013.

[11] T. A. Johansen and T. I. Fossen, “Automatica Control allocation A
survey,” Automatica, vol. 49, no. November, pp. 1087–1103, 2013.

[12] S. F. Campbell, N. T. Nguyen, J. Kaneshige, and K. Krishnakumar,
“Parameter Estimation for a Hybrid Adaptive Flight Controller,” AIAA

Infotech@ Aerospace Conference, Seattle, WA, no. April, pp. 1–27, 2009.
[13] S. R. Anderson and V. Kadirkamanathan, “Modelling and identification

of non-linear deterministic systems in the delta-domain,” Automatica,
vol. 43, no. 11, pp. 1859–1868, 2007.

[14] B. Khan and J. Rossiter, “Alternative Parameterisation within predictive
Control: a systematic selection,” IJC, vol. 86, no. 8, pp. 1397–1409,
2013.

[15] J. Huusom, N. Poulsen, S. Jorgensen, and J. Jorgensen, “Tuning of
methods for offset free MPC based on ARX model representations,”
American Control Conference (ACC), 2010, pp. 2355–2360, 2010.

[16] E. F. Camacho, Model predictive control. Advanced textbooks in control
and signal processing, London ; New York: Springer, 2nd ed. ed., 2003.

