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Abstract 

Purpose: To test the ability of shutter-speed dynamic contrast-enhanced (DCE) MRI to estimate 

water exchange (WX) using simulations and assess its performance in clinical case studies of 

malignant and benign breast tumors. 

Methods: Data were simulated using a one-compartment tracer kinetic (TK) model combined with a 

two-pool WX model (2PX) and with a two-compartment TK model. Typical DCE-MRI acquisition 

parameters were used with both WX-sensitive (8°) and insensitive (25°) flip angles. Clinical data were 

obtained from patients with malignant and benign breast tumors. Data were fitted using a two-

compartment TK model and a one-compartment TK model combined with four WX models: fast 

exchange limit (FXL), no exchange, 2PX and shutter-speed.  

Results: Fits to the one-compartment simulated data were excellent but estimates of WX obtained 

using the 2PX and shutter-speed models were poor. One-compartment TK model fits to the clinical 

malignant tumor data were bad except for the shutter-speed model. However, that overestimated 

TK parameters compared to the best-fit two-compartment TK model which predicted a significant 

blood volume and leaky capillaries (one tracer compartment is insufficient, two are necessary). All 

models produced excellent fits to the clinical benign tumor data with little variation between 

parameter estimates (one tracer compartment is sufficient). 

Conclusion: The 2PX and shutter-speed models were unable to estimate WX from the DCE-MRI data. 

A good fit to malignant tumor data using the shutter-speed model was not explained by WX but the 

choice of an inappropriate TK model leading to distorted parameter estimates.  

 

Keywords: dynamic contrast-enhanced MRI; tracer kinetics; transcytolemmal water exchange; tumor 

perfusion; capillary permeability. 

 

  



Introduction 

Quantitative dynamic contrast-enhanced (DCE) imaging experiments are often performed to make 

estimates of hemodynamic parameters such as the transfer constant (Ktrans), as well as more specific 

parameters such as blood flow (Fb), blood volume (vb), capillary permeability surface-area product 

(PS) and interstitial volume (ve) [1]. When these experiments are performed using radiotracers and 

PET or SPECT, or using an iodinated contrast agent and DCE-CT, we observe the effect of the tracer 

ĚŝƌĞĐƚůǇ ĂŶĚ ƚŚĞƌĞ͛Ɛ Ă ƐƚƌĂŝŐŚƚĨŽƌǁĂƌĚ ƌĞůĂƚŝŽŶƐŚŝƉ linking signal with tracer concentration. With DCE-

M‘I ƚŚĞ ƌĞůĂƚŝŽŶƐŚŝƉ ŝƐ ŵŽƌĞ ĐŽŵƉůŝĐĂƚĞĚ ďĞĐĂƵƐĞ ǁĞ ĚŽŶ͛ƚ ͚see͛ the tracer (typically a gadolinium-

based contrast agent) directly but rather measure its effect on water in the local environment. If that 

water is moving very rapidly through the tissue then water exchange (WX) between tissue 

compartments can be neglected, we measure a single average tissue longitudinal relaxation rate, R1 

(1/T1), subtract the baseline R10 and the difference is directly proportional to tissue tracer 

concentration [2]. If the water moves more slowly between tissue compartments (e.g. between 

interstitium and cell) and theƌĞ͛Ɛ Ă difference between the R1 of those compartments (which might 

occur when contrast agent enters the interstitium but not the cell) then we may no longer see a 

single tissue R1 but might begin to observe two distinct R1 components in the ƚŝƐƐƵĞ ĂŶĚ ĐĂŶ͛ƚ 

perform our simple subtraction. Such a scenario is exploited by shutter-speed DCE-MRI [3]. Here 

cell-interstitial (transcytolemmal) WX is modelled and quantified alongside the tracer kinetics. And 

while the shutter-speed model has found application in several studies (e.g. [4,5]), it has been 

criticized [6], not least because the typical DCE-MRI experiment employs an imaging sequence which 

is, by design, WX-insensitive [7]. 

Measurements of WX have been made using MR for a long time [8]. Like DCE-MRI many of these 

experiments employ contrast agents (typically Mn-based in the past) to reduce the R1 or transverse 

relaxation rate (R2) of water in one compartment. Unlike DCE-MRI, they typically employ high doses 

of contrast agent and make measurements during a steady-state rather than while the contrast 

agent concentration is changing. Experiments of this type continue to be performed and can provide 

important information about WX [9]. For example, experiments on yeast cells [10] employed steady-

state contrast agent at a concentration of 9.3 mM, levels only seen in DCE-MRI experiments in the 

arterial blood at the peak of the first pass of the contrast agent bolus (i.e. for a few seconds). Hence 

ŝƚ ĐĂŶ ďĞ ƐĞĞŶ ƚŚĂƚ ǁŚŝůĞ ƚŚĞƌĞ͛Ɛ Ă ŚŝƐƚŽƌŝĐĂů ƉƌĞĐĞĚĞŶƚ ĨŽƌ ĐŽŶƚƌĂƐƚ-enhanced measures of WX, the 

implementation is very different. 

Potential problems with the shutter-speed model have been highlighted previously [6]. The version 

employed in almost all studies to date, the so-called fast exchange regime allowed (FXR-a) version, 



makes an unnecessary simplifying assumption about the relationship between signal intensity (SI) 

and contrast agent concentration. It assumes that this can be approximated by a single R1 term (R1L; 

two R1 terms define the parent model, R1L and R1S, as described in Appendix 1Ϳ ďƵƚ ƚŚŝƐ ĚŽĞƐŶ͛ƚ 

make the model any easier to use; both models are described by three parameters. This can lead to 

inaccurate estimates of the model parameters as the apparent WX rate slows down and two distinct 

R1 components emerge [6]. MŽƌĞŽǀĞƌ͕ ŝƚ͛Ɛ ĂƉƉĂƌĞŶƚ ƚŚĂƚ estimates of the WX-related parameter 

made using the shutter-speed model ;ʏi, the intracellular residence time of water) are imprecise 

[6,11]. Nevertheless, the shutter-speed model has generated considerable interest in the DCE-MRI 

community not least because it often fits the data better than the standard one-compartment Tofts 

model [4,12], produces results which may help in the differential diagnosis of breast cancer [5] and 

yields estimates of an additional parameter, ʏi, which, it has been suggested, may reflect important 

metabolic characteristics of the cells in the tissue imaged [13]. 

Given the previously highlighted problems [6], the purpose of this study was twofold. First, to test 

the shutter-speed model using simulations based upon its parent model to assess its ability to 

estimate ʏi from typical DCE-MRI studies. In this case the reference application was breast cancer, 

since this is a field in which the shutter-speed model has generated significant interest [5,14]. 

Considering the results of the simulations, and by analysis of clinical patient data, a second aim was 

to try and understand why the shutter-speed model produces apparently promising clinical results 

when applied to the analysis of breast cancer data. 

 

Methods 

Simulations 

Data were simulated using arterial input functions (AIF) measured from the descending aorta of the 

patients described below. Gaps in the tails of the AIF data resulting from the use of an interleaved 

acquisition were filled by interpolation using a biexponential function leading to continuous AIFs 

extending over approximately 7 minutes and sampled every 2 s. The SI-time curves were converted 

to plasma contrast agent concentration-time curves using bookend estimates of blood T1 obtained 

before contrast agent administration and during the slow wash-out [15], measured hematocrit and 

an assumed contrast agent relaxivity of 4.2 s-1 mM-1 [16]. Using these AIFs, two types of breast tumor 

SI-time curve were simulated. The first was representative of a malignant invasive ductal carcinoma 

with a rapid early enhancement and subsequent plateau or wash-out. The second was 

representative of a benign fibroadenoma with a slower initial enhancement that continued to rise 



throughout the imaging period. Both types of curve were initially generated using a one-

compartment tracer kinetic model [12] combined with a full two-pool (cell and interstitium) WX 

model (2PX) [6]; the parent of the shutter-speed model. The parameters used to simulate the data 

were: baseline T1 = 1282 ms, Ktrans = 0.13, 0.19, 0.03 & 0.06 min-1, ve = 0.26, 0.39, 0.47 & 0.62 

representing a range of malignant tumors and benign fibroadenomas. Three WX regimes were 

simulated with ʏi = 0.0001, 1000 & 0.5 s to approximate the fast exchange limit (FXL), the no-

exchange limit (NXL) and an intermediate exchange (IX) rate, respectively. As a result of the findings 

of the clinical case studies (below), a further set of simulations was performed using a two-

compartment tracer kinetic model [1] to better mimic the uptake seen by the invasive ductal 

carcinomas (parameters used - Fb = 0.28 & 0.50 ml.min-1.ml-1, vb = 0.13 & 0.27, PS = 0.08 & 0.16 

ml.min-1.ml-1, ve = 0.32); WX was simulated at the FXL only. The sequence parameters used for the 

case studies (below) were similarly employed for the simulations (TR = 2.37 ms and flip angle = 25°). 

These data could be described as exchange-minimized (due to the short TR and high flip angle [7]), 

so to increase WX sensitivity all of the above simulations were repeated using a WX optimized flip 

angle of 8° [17] and, to add further variability to the data, each curve was simulated using AIFs taken 

from two different patients. Thus, a total of 128 noiseless and well-sampled data sets were 

generated.  

These data sets were fitted using four different one-compartment tracer kinetic models (table 1). As 

previously [6], the data were fitted using an FXL assumption for WX (the standard approach to fitting 

DCE-MRI data) and an NXL assumption, each producing estimates of Ktrans and ve. They were also 

fitted using the shutter-speed model and the 2PX model each producing estimates of Ktrans, ve and ʏi. 

The data simulated using the two-compartment tracer kinetic model were additionally fitted using 

the two-compartment model and details of each of the models are provided in Appendix 1. 95% 

confidence intervals were estimated on each fit parameter and fit quality was compared between 

models using the corrected Akaike information criterion (cAIC) that takes account of the number of 

fit parameters as well as sum-of-square residuals [18]. 

 

Clinical Case Studies 

Data were acquired from three patients undergoing DCE-MRI before they started a course of 

neoadjuvant chemotherapy for primary breast cancer. The patients, who were part of a larger study 

that received approval from a local research ethics committee, provided written informed consent. 

The imaging protocol, performed at 1.5 T (Siemens Aera; Siemens, Erlangen, Germany), included a 

baseline T1 measurement (multi-shot 3D inversion recovery-prepared turboFLASH acquisitions at TI 



100, 600, 1200 and 2800 ms), an interleaved high spatial resolution/high temporal resolution DCE-

MRI acquisition [19] following the administration of 0.1 mmol.kg-1 Gd-DOTA (Dotarem; Guerbet 

Laboratories, Aulnays Sous Bois, France). The subsequently analyzed high temporal resolution DCE-

MRI data were acquired every 2 s using a 3D FLASH sequence (TR/TE 2.37/0.73 ms, flip angle of 25°, 

CAIPIRINHA parallel imaging factor 2 x 2). After approximately 7 mins a second bookend T1 

measurement was obtained [15]. AIFs and breast tumor SI-time curves were extracted from each of 

the patient studies. Three tumors (one from each patient) were malignant invasive ductal 

carcinomas and two (from two of the three patients) were benign fibroadenomas (all confirmed by 

histopathological analysis of diagnostic biopsies).  

 

Results 

Simulations 

The simulated data broadly reflected the SI-time curve shape seen in the clinical data (Figs. 1 & 2). 

Fits to the one-compartment/2PX simulated data by all one-compartment models were visibly 

excellent but parameter estimates were not always accurate. Example parameter estimates are 

presented in Appendix 2 (tables A1 & A2). Data simulated at the FXL and NXL for both flip angles 

were best fitted by the FXL and NXL models, respectively. While there was little difference in the 

results obtained by fitting with other models to the data simulated with a 25° flip angle, when fitted 

to the 8° flip angle data the results were more variable. The NXL model fits to the 8° flip angle FXL 

simulated data produced inaccurate parameter estimates (it overestimated both Ktrans and ve). 

Correspondingly, the FXL model fits to the 8° flip angle NXL simulated data underestimated both 

Ktrans and ve. Data simulated at an IX rate with a 25° flip angle were fitted well by all models though 

estimates of ʏi were poor with the 2PX and shutter-speed models. Fits to the 8° flip angle IX data 

using the 2PX model gave variable results which depended upon the starting guesses provided (e.g. 

it could produce an ideal solution from excellent starting guess ĨŽƌ ʏi). The shutter-speed model fits 

were less variable, but these produced inaccurate estimates of ʏi. Both the FXL and NXL model fits to 

the 8° flip angle IX data resulted in inaccurate estimates of Ktrans and ve (underestimates and 

overestimates, respectively). When the shutter-speed model was fitted to any of the simulated 

fibroadenoma data ve was systematically overestimated. Despite the WX sensitivity of the 8° flip 

ĂŶŐůĞ ĂĐƋƵŝƐŝƚŝŽŶ ĂŶĚ ƚŚĞ ĂďƐĞŶĐĞ ŽĨ ŶŽŝƐĞ ŝŶ ƚŚĞ ĚĂƚĂ͕ ʏi parameter estimates were poor for almost 

all simulated data sets using either 2PX or shutter-speed models. 

 



The FXL, NXL and 2PX one-compartment model fits to data simulated using the two-compartment 

model were poor, with systematic misfits highlighted by structured residuals, and the shutter-speed 

model fitted better every time. However, in every case, the shutter-speed model overestimated Ktrans 

and ve and the two-compartment model produced the best fits of all (see, for example, Fig. 3). 

 

Clinical Case Studies 

FXL and NXL model fits to the clinical malignant tumor data were poor (an example of each is shown 

in Fig. 4Ă͕ ďͿ ĂŶĚ ƚŚŝƐ ǁĂƐŶ͛ƚ ŝŵƉƌŽǀĞĚ ďǇ ĨŝƚƚŝŶŐ ǁŝƚŚ ƚŚĞ ϮPX ŵŽĚĞů ;FŝŐ͘ 4c). Conversely, the 

shutter-speed model fits were far better (Fig. 4d) and produced much higher estimates of Ktrans and 

ve than those provided by the other three one-compartment models (Ktrans was 53%, 60% & 80% 

higher than the FXL estimates & ve was 130%, 31% &146% higher than the FXL estimates). These 

results reflect the findings reported by others using the shutter-speed model, i.e. the reported 

malignant ƐƉĞĐŝĨŝĐŝƚǇ ŽĨ ȴKtrans, the difference between the shutter-speed estimate and the FXL 

estimate of Ktrans [5,14]. Nevertheless, the best fits of all were obtained using the two-compartment 

model (Fig. 4e). The parameter estimates suggesting that the malignant tumors had leaky capillaries 

(PS = 0.08, 0.06 & 0.16 ml.min-1.(ml tissue)-1, first-pass extraction fractions of 32%, 22% & 35%) and 

large blood volumes (27%, 23% & 14%). From these data Ktrans was calculated to be 0.05, 0.05 & 0.10 

min-1 and ve, 0.48, 0.26 & 0.41. 

FXL and NXL model fits to the clinical fibroadenoma data were very good (the FXL model fit had 

marginally lower cAIC in both cases and was therefore preferred over the other fits, Fig. 5a, b). The 

fits did not improve by fitting with the 2PX or shutter-speed models (Fig. 5c, d) and the shutter-

speed model generated an increased estimate of ve (27% & 112% higher than the FXL estimate). 

Again, ƚŚŝƐ ƌĞƐƵůƚ ƌĞĨůĞĐƚƐ ƚŚĞ ĨŝŶĚŝŶŐƐ ƌĞƉŽƌƚĞĚ ƉƌĞǀŝŽƵƐůǇ ǁŝƚŚ ǀĞƌǇ ƐŵĂůů ȴKtrans in benign lesions 

[5,14]. The two-compartment model produced fits that were very similar to the other models (Fig. 

5e) and parameter estimates suggested that the fibroadenomas had leaky capillaries (PS = 0.43 & 

0.20 ml.min-1.(ml tissue)-1, first-pass extraction fractions of 86% & 83%) and small blood volumes (4% 

& 2%). Using these estimates Ktrans was calculated to be 0.06 & 0.03 min-1 and ve, 0.62 & 0.45. 

However, these two-compartment model parameter estimates were very imprecise (see Fig. 5), the 

fits were over-parameterized and a one-compartment model was sufficient to describe the tracer 

kinetics in both fibroadenomas [20]. 

 

 



Discussion 

The shutter-speed model has been regularly promoted to the MR community for over 15 years and 

has attracted significant interest from users of DCE-MRI. What has been lacking is validation of the 

model and its applications. It is clear from these simulations (and previous experimental work [6]) 

that while models incorporating WX - the 2PX and shutter-speed models - can provide acceptable 

estimates of Ktrans, estimation of ʏi is not viable. Even when noiseless data are simulated with 

exchange-sensitive sequences (i.e. in this study an 8° flip angle, [17]), the models doŶ͛ƚ ƉƌŽduce 

accurate and reliable estimates of ʏi. The shutter-speed model is ill-posed with significant correlation 

between parameters [6]. If this is the case with ͚ideal͛ data (noiseless, high sampling frequency, 

simulated using the parent model), it raises serious concerns about their ability to provide 

meaningful parameter estimates from noisy, and often under-sampled, clinical data. Given these 

negative findings, how has the shutter-speed model produced apparently successful results in the 

differential diagnosis of breast cancer [5]?  

This question can be addressed by examining the findings from the two-compartment simulated 

data and clinical case studies. The apparently excellent fits to the malignant tumor data produced by 

the shutter-speed model (e.g. Figs. 3d & 4d) compared to the bad FXL fits (Figs. 3a & 4a) are not a 

reflection of unusual WX in the tumor cells (e.g. that might represent abnormal metabolism). If it 

were, then the parent WX model, the 2PX model, would surely reflect this too. The FXL, NXL and 2PX 

models are unable to reproduce the ͚flattened͛ SI-time response of the malignant tumor (Fig. 4) 

because their one-compartment tracer kinetic model restricts the SI-time response to a limited 

range of curvature. The shutter-speed model achieves a better fit through its artificially enhanced 

non-linear SI-contrast agent concentration relationship [6,21].  

Fig. 6a shows calibration curves relating SI to interstitial contrast agent concentration for the 

imaging sequence used to obtain these data, ve = 0.39 (obtained from the NXL model fit to the first 

malignant tumor) and a literature value for ʏi of 400 ms [21]. The shutter-speed model calibration 

curve is more non-linear than the response of the other three models, it breaks out beyond the WX 

limits that should define its range of influence [6]. The red (FXL) and blue (NXL) lines represent the 

ĞǆƚƌĞŵĞƐ ŽĨ WX ĂŶĚ ĂŶǇ ͚ĐŽƌƌĞĐƚ͛ ŵŽĚĞů ŵƵƐƚ ƉƌĞĚŝĐƚ Ă ƌĞƐƉŽŶƐĞ ƐŽŵĞǁŚĞƌĞ ďĞƚǁĞĞŶ ƚŚĞƐĞ two. 

However, when we use the parameter estimates obtained from the shutter-speed model fit to plot a 

calibration curve (ve = 0.86, ʏi = 714 ms; Fig. 6b) we can see that the shutter-speed model non-

linearity has become even more pronounced. The model parameters have taken on new, hyper-

physiologic, values to achieve the required flattening of the SI-time curve and a good fit to the 

malignant tumor data. They no longer reflect a scenario caused by WX (if they did, the 2PX model 



would do the same), they simply distort as a ͚means to an end͛ - to best match to the data. The 

shutter-speed model is distorting to fit to ĚĂƚĂ ƚŚĂƚ ĂƌĞŶ͛ƚ ĂƉƉƌŽƉƌŝĂƚĞůǇ ĚĞƐĐƌŝďĞĚ ďǇ Ă one-

compartment tracer kinetic model. As confirmed by the fit to the two-compartment model (the best 

fit; the lowest cAIC), the delivery and distribution of the contrast agent in the malignant tumor 

requires two compartments to properly reflect its kinetics. The contrast agent is distributing in two 

tissue pools with substantial volumes; the blood plasma occupying 16% of the tissue water pool, and 

interstitium occupying 32%. 

The counterpart to the results seen in the malignant tumors are those seen in the benign 

fibroadenomas (e.g. Fig. 5). Here, one compartment is sufficient to describe the tracer kinetics. Once 

the extraction fraction is high enough, it becomes difficult to differentiate contrast agent in the 

blood from contrast agent in the interstitium [20], a situation similarly seen in the heart at rest 

where a one-compartment model is sufficient to describe myocardial blood flow [22]. Like the 25° 

flip angle simulations, with little WX sensitivity in the acquisition, the 2PX, shutter-speed, FXL and 

NXL models all produce very similar estimates of Ktrans and all fit the data very well (though the 

shutter-speed model still overestimates ve). Here, ȴKtrans is small, but this has nothing to do with WX, 

ŝƚ͛Ɛ Ăůů about tracer kinetics. The FXL model, described by only two parameters, produces a good fit 

and no additional parameters are necessary (whether they describe WX or tracer kinetics) and 

statistical arguments favor the simplest model (in this case FXL).  

Study Limitations 

The simulation study may be regarded as error-free and though limited in scope, it only assesses two 

types of SI-time course, the data are typical of those seen in DCE-MRI of the breast [5]. Conversely, 

the clinical case studies have several limitations. The analysis requires knowledge of the applied flip 

angle and this will be influenced by B1 inhomogeneity. This is at least partly addressed using 

bookend T1 measurements [15]. The AIF is measured a long way from the breast (at the descending 

aorta). This is a pragmatic choice given the difficulty in measuring an AIF in local, smaller arteries and 

benefits from the avoidance of partial volume and inflow artefacts [19]. Nevertheless, it is inevitable 

that some dispersion will occur between the point of measurement and arrival at the breast tumor 

and this will propagate as a (small) error in the parameter estimates [1]. Furthermore, the 

acquisition sequence has a finite TE and T2* of the blood at the peak of the AIF is likely to be very 

short introducing some underestimation of the peak contrast agent concentration. WX is not limited 

to the cell and interstitium, blood-interstitial (transendothelial) WX is very likely to influence the 

measured SI from the malignant tumor and this will need to be addressed in future studies [23]. We 



have included patient-specific measures of the large vessel hematocrit, but modelling results will 

depend somewhat on the microvascular hematocrit, which is unknown.  

 

Conclusions 

The simulations show that both the shutter-speed and 2PX models are unable to estimate WX (ʏi) 

from noise-free simulated DCE-MRI data even when the flip angle is reduced to enhance WX 

sensitivity [17] confirming previous experimental findings [6]. Furthermore, the specificity of shutter-

speed DCE-MRI for the differential diagnosis of primary breast tumors [5] looks most likely to reflect 

an inappropriate choice of tracer kinetic model for analyzing the malignant tumor data; the one-

compartment tracer kinetic model is under-parameterized and should not be used to fit those data. 

The shutter-speed model tries to overcome one problem by creating another - confusing neglected 

vascular signal for WX. DCE-MRI is designed to measure tracer kinetics, the attempt to combine WX 

estimates with tracer kinetic estimates using shutter-speed DCE-MRI results in bad estimates of 

both. The shutter-speed ŵŽĚĞů ŝƐ ŶŽƚ ƉƌŽǀŝĚŝŶŐ ŵĞĂŶŝŶŐĨƵů ĞƐƚŝŵĂƚĞƐ ŽĨ ʏi and in many cases (e.g. 

ǁŚĞŶ ȴKtrans is significant) it is also producing systematic errors in its estimates of Ktrans and ve.  
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Figure captions. 

Fig. 1 ʹ SI-time curves acquired from (a) the descending aorta of three different patients, (b) three 

malignant tumors (blue) and two benign fibroadenoma (red). Across the two plots the same symbols 

refer to data acquired from the same patients. The variable gap between the first set of baseline 

data and those acquired as the contrast agent arrives allows time for the acquisition of baseline high 

spatial resolution data and preparation of the patient for the injection.  

Fig. 2 - Simulated malignant (a & c) and benign data (b) using flip angles of 25° (blue) and 8° (red). 

Each flip angle was used to simulate data using a one-compartment tracer kinetic model with WX at 

the FXL, IX rate and NXL (a, b - top to bottom in each group, respectively). The data in (c) were 

simulated using a two-compartment tracer kinetic model and WX at the FXL. 

Fig. 3 - Model fits (red continuous lines) to one example simulated malignant tumor data set with 

WX at the FXL (blue circles). (a) FXL, (b) NXL, (c) 2PX, (d) shutter-speed and (e) two-compartment 

model (which produced parameter estimates exactly matching the simulation: Fb = 0.50 ± 0.00 

ml.min-1.ml-1, vb = 0.27 ± 0.00, PS = 0.16 ± 0.00 ml.min-1.ml-1, ve = 0.32 ± 0.00). Each fit is 

accompanied by its parameter estimates, cAIC and (below) a plot of the fit residuals (red circles). 

Fig. 4 - Model fits (red continuous lines) to clinical malignant tumor data from one example patient 

(blue circles). (a) FXL, (b) NXL, (c) 2PX, (d) shutter-speed and (e) two-compartment model (which 

produced the following parameter estimates: Fb = 0.28 ± 0.01 ml.min-1.ml-1, vb = 0.27 ± 0.03, PS = 

0.08 ± 0.01 ml.min-1.ml-1, ve = 0.32 ± 0.03). Each fit is accompanied by its parameter estimates, cAIC 

and (below) a plot of the fit residuals (red circles). 

Fig. 5 - Model fits (red continuous lines) to fibroadenoma clinical data from one example patient 

(blue circles). (a) FXL, (b) NXL, (c) 2PX, (d) shutter-speed and (e) two-compartment model (which 

produced the following parameter estimates: Fb = 0.11 ± 0.06 ml.min-1.ml-1, vb = 0.04 ± 0.30, PS = 

0.43 ± 1.34 ml.min-1.ml-1, ve = 0.59 ± 0.18). Each fit is accompanied by its parameter estimates, cAIC 

and (below) a plot of the fit residuals (red circles). 

Fig. 6 ʹ Calibration curves relating measured SI to interstitial concentration of contrast agent ([Gd]) 

using the sequence employed in this study (TR = 2.37 ms, flip angle = 25°, left column and 8°, right 

column) and a baseline T1 of 1282 ms. The calibration curves largely overlap for the FXL, NXL and 

2PX models at 25°. The mismatch between the shutter-speed calibration curves and those of the 2PX 

can be explained by the missing R1s component that is additionally shown in these plots. (a) 

malignant tumor calibration curves calculated with a ve of 0.39 and ʏi of 400 ms, (b) malignant tumor 

with ve of 0.86 and ʏi of 714 ms. 



 

model tracer kinetics R1 components vs [Gd] parameters estimated 

FXL 1-compartment 1 ʹ linear Ktrans, ve  

NXL  2 ʹ 1 linear & 1 constant Ktrans, ve  

2PX  2 ʹ non-linear Ktrans, ve͕ ʏi 

shutter-speed  1 ʹ non-linear Ktrans, ve͕ ʏi 

2-compartment (FXL) 2-compartments 1 ʹ linear Fb, vb, PS, ve 

 

Table 1 ʹ summary of the models used to fit the DCE data. The models have 1 or 2 compartments to 

describe tracer kinetics and either 1 or 2 R1 components that may increase linearly with contrast 

agent concentration ([Gd]) or non-linearly depending upon the WX regime. They produce estimates 

of between 2 and 4 parameters. Further details are provided in Appendix 1. 

 

  



Appendix 1 ʹ Theory (adapted from [6]) 

The 2PX model assumes the tumor contains only two water compartments, intracellular and 

interstitial water and the subscripts i and e to refer to intracellular and interstitial (extravascular 

extracellular) water, respectively. These compartments have fractional pool sizes of (1 - ve) and ve 

and inherent longitudinal relaxation rates of R1i and R1e, respectively. Cellular-interstitial water 

exchange connects these compartments and the rate is described in terms of the mean residence 

time of water inside (ʏi) and outside (ʏe) the cells; by conservation of mass, ʏe = veͼʏi/(1 - ve). 

Longitudinal relaxation of the system is modified by the addition of contrast agent to the interstitial 

space. This system can be described using a two-pool exchange formalism and the solution has a 

biexponential form with the T1 relaxation of the system described by two rate constants, R1S and R1L 

and their respective fractional apparent populations, aS and aL where aS + aL = 1: 
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where [Gd] is the concentration of contrast agent in the interstitial space. These equations contain 3 

unknowns [Gd], ʏi and ve since we assumed that R1e = R1i = R10, the longitudinal relaxation rate of 



the tumor measured prior to administration of contrast agent. Three different WX approximations 

were considered. In the FXL the system (described using Eqns. A1 to A3) is reduced to a single 

longitudinal relaxation rate, R1: 

 

R1 = veͼ(r1[Gd] + R1e) + (1- ve)ͼR1i        [A4] 

 

In the NXL, Eqns. A1 to A3 are reduced to: 

 

R1L = R1i           [A5] 

R1S = R1e + r1ͼ[Gd] 

aS = ve  

aL = 1 ʹ ve 

 

In both approximations (FXL and NXL) there are 2 unknowns, [Gd] and ve. In the third approximation, 

the shutter-speed model, the longitudinal relaxation of the system is described by single exponential 

rate constant, R1L ( Eqn. A1): 
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Although in an algebraic sense the SS model differs from the full 2-pool model, it contains the same 

3 unknowns, [Gd], ʏi and ve. 

 

Tracer kinetic analysis is used to estimate [Gd] as a function of time. For the one-compartment 

models, [Gd] is modelled as a convolution of the measured AIF with a single exponential function: 
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where * represents a convolution and Cp(t) is the AIF measured in the plasma (i.e. the AIF divided by 

(1-Hct)). For the two-compartment model, the AIF is convolved with a biexponential function: 
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where the tracer kinetic parameters can be calculated from the fit parameters (Fp͕ A͕ ɲ ĂŶĚ ɴͿ ƵƐŝŶŐ 

the expressions: vp = Fpͬ;A;ɲ ʹ ɴͿ н ɴͿ͖  PS = vp;ɲ н ɴ ʹ vpͼɲͼɴͬFp) ʹ Fp;  ve с PSͼFp/(vpͼɲͼɴͿ͘  

Here Fp and vp are blood plasma flow and volume (= Fbͼ(1-Hct) and vbͼ(1-Hct)), respectively. 

 

Thus, by combining Eqn A7 with Eqns A1, A2 & A3 the solution to the 2PX model has 3 unknowns, 

Ktrans, ve ĂŶĚ ʏi. The shutter-speed model is solved using a combination of Eqns A7 and A6 with the 3 

unknowns, Ktrans, ve ĂŶĚ ʏi. Eqns A7 and A5 and Eqns A7 and A4 combine to solve the NXL and FXL 



models, respectively. Each of these solutions contains 2 unknowns, Ktrans and ve. Eqns A8 and A4 

combine to solve the FXL model when used with the two-compartment tracer kinetic model and 

measured Hct providing estimates of Fb, PS, vb and ve. 

 

To compare the output of the models with the data acquired in our experiments we needed to 

substitute the simulated relaxation rates of the models into equations describing the signal obtained 

using our imaging sequence. In the case of the FXL and shutter-speed models the resultant single 

component R1 is substituted directly into: 
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where S0 is the signal that would be obtained using an infinite repetition time, TR, and a 90 flip 

angle and  is the actual flip angle used. The S0 term incorporates the effects of T2* decay (that is 

assumed to vary negligibly at short echo times), scaling factors and other sequence settings that may 

confound signal intensity comparisons. The NXL and 2PX models have biexponential solutions and 

the R1S and R1L components are substituted into: 
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Appendix 2 ʹ Parameter estimates obtained from fits to some example simulated data 

Table A1 ʹ Example results of fits to simulated malignant tumor data. Parameter values used to 

simulate the data are shown and below them parameter estimate ± 95% confidence intervals from 

each model fit are shown. The best fit (according to the cAIC) is highlighted in bold. 

  
Ktrans  /x 10-3 min -1 ve 

 
Ĳi /s 

 
cAIC          

FXL (25°) simulated 130.0 
 

0.390 
 

0.0001 
  

         

FXL fit 
 

130.0 ± 0.000 0.390 ± 0.000 N/A 
 

-8.50 
NXL fit 

 
136.6 ± 0.226 0.417 ± 0.001 N/A 

 
-4.83 

2PX fit 
 

135.0 ± 0.627 0.411 ± 0.003 0.171 ± 0.084 -4.98 
shutter-speed 

 
134.2 ± 0.507 0.407 ± 0.002 0.035 ± 0.004 -5.08          

NXL (25°) simulated 130.0 
 

0.390 
 

1000 
  

         

FXL fit 
 

123.3 ± 0.197 0.363 ± 0.000 N/A 
 

-4.83 
NXL fit 

 
130.0 ± 0.000 0.390 ± 0.000 N/A 

 
-10.54 

2PX fit 
 

128.6 ± 0.168 0.384 ± 0.001 0.218 ± 0.031 -5.76 
shutter-speed 

 
133.6 ± 0.473 0.406 ± 0.002 0.089 ± 0.004 -5.14          

IX (25°) simulated 130.0 
 

0.390 
 

0.5 
  

         

FXL fit 
 

124.0 ± 0.178 0.366 ± 0.000 N/A 
 

-4.89 
NXL fit 

 
130.7 ± 0.022 0.393 ± 0.000 N/A 

 
-6.18 

2PX fit 
 

129.4 ± 0.084 0.388 ± 0.000 0.234 ± 0.018 -6.16 
shutter-speed 

 
134.1 ± 0.526 0.408 ± 0.002 0.087 ± 0.004 -5.07          

FXL (8°) simulated 130.0 
 

0.390 
 

0.0001 
  

         

FXL fit 
 

130.0 ± 0.000 0.390 ± 0.000 N/A 
 

-8.26 
NXL fit 

 
164.2 ± 1.877 0.571 ± 0.003 N/A 

 
-3.69 

2PX fit 
 

130.2 ± 0.030 0.391 ± 0.000 0.001 ± 0.000 -6.47 
shutter-speed 

 
133.8 ± 0.459 0.406 ± 0.002 0.033 ± 0.004 -4.88          

NXL (8°) simulated 130.0 
 

0.390 
 

1000 
  

         

FXL fit 
 

89.8 ± 0.934 0.238 ± 0.002 N/A 
 

-3.64 
NXL fit 

 
130.0 ± 0.001 0.390 ± 0.000 N/A 

 
-8.43 

2PX fit 
 

129.0 ± 0.121 0.386 ± 0.001 14.402 ± 1.743 -5.95 
shutter-speed 

 
124.6 ± 0.159 0.374 ± 0.001 0.392 ± 0.001 -5.62          

IX (8°) simulated 130.0 
 

0.390 
 

0.5 
  

         

FXL fit 
 

106.5 ± 0.637 0.297 ± 0.001 N/A 
 

-3.89 
NXL fit 

 
145.2 ± 0.746 0.466 ± 0.001 N/A 

 
-4.26 

2PX fit 
 

130.8 ± 0.133 0.395 ± 0.001 0.548 ± 0.007 -5.76 
shutter-speed 

 
127.8 ± 0.071 0.383 ± 0.000 0.210 ± 0.001 -6.01 

 

  



Table A2 ʹ Example results of fits to simulated fibroadenoma data. Parameter values used to 

simulate the data are shown and below them parameter estimate ± 95% confidence intervals from 

each model fit are shown. The best fit (according to the cAIC) is highlighted in bold. 

  
Ktrans  /x 10-3 min -1 ve 

 
Ĳi /s 

 
cAIC          

FXL (25°) simulated 60.0  0.620  0.0001  
 

         

FXL fit 
 

60.0 ± 0.001 0.620 ± 0.000 N/A 
 

-7.55 
NXL fit 

 
60.5 ± 0.015 0.639 ± 0.000 N/A 

 
-6.17 

2PX fit 
 

60.5 ± 0.055 0.639 ± 0.002 13.628 ± 554.2 -6.17 
shutter-speed 

 
60.7 ± 0.068 0.952 ± 0.002 0.621 ± 0.005 -5.82          

NXL (25°) simulated 60.0  0.620  1000 
 

         

FXL fit 
 

59.4 ± 0.015 0.600 ± 0.000 N/A 
 

-6.13 
NXL fit 

 
60.0 ± 0.000 0.620 ± 0.000 N/A 

 
-11.85 

2PX fit 
 

60.0 ± 0.000 0.620 ± 0.000 35.214 ± 23.483 -8.86 
shutter-speed 

 
60.3 ± 0.060 0.946 ± 0.001 0.628 ± 0.004 -5.92          

IX (25°) simulated 60.0  0.620  0.5 
 

         

FXL fit 
 

59.5 ± 0.014 0.601 ± 0.000 N/A 
 

-6.18 
NXL fit 

 
60.0 ± 0.001 0.621 ± 0.000 N/A 

 
-7.69 

2PX fit 
 

60.0 ± 0.003 0.621 ± 0.000 35.174 ± 172.391 -7.73 
shutter-speed 

 
60.4 ± 0.060 0.947 ± 0.001 0.627 ± 0.004 -5.92          

FXL (8°) simulated 60.0  0.620  0.0001 
 

         

FXL fit 
 

60.0 ± 0.000 0.620 ± 0.000 N/A 
 

-9.24 
NXL fit 

 
62.7 ± 0.106 0.745 ± 0.002 N/A 

 
-4.87 

2PX fit 
 

62.0 ± 0.246 0.706 ± 0.012 0.426 ± 0.176 -5.05 
shutter-speed 

 
60.7 ± 0.066 0.950 ± 0.002 0.616 ± 0.005 -5.50          

NXL (8°) simulated 60.0  0.620  1000 
 

         

FXL fit 
 

55.6 ± 0.115 0.482 ± 0.002 N/A 
 

-4.62 
NXL fit 

 
60.0 ± 0.000 0.620 ± 0.000 N/A 

 
-9.63 

2PX fit 
 

59.8 ± 0.027 0.611 ± 0.001 3.598 ± 0.434 -6.37 
shutter-speed 

 
60.2 ± 0.069 0.745 ± 0.031 0.445 ± 0.045 -5.31          

IX (8°) simulated 60.0  0.620  0.5 
 

         

FXL fit 
 

57.3 ± 0.074 0.528 ± 0.002 N/A 
 

-4.88 
NXL fit 

 
61.0 ± 0.040 0.664 ± 0.001 N/A 

 
-5.46 

2PX fit 
 

60.8 ± 0.096 0.653 ± 0.004 2.489 ± 0.946 -5.62 
shutter-speed 

 
60.8 ± 0.286 0.826 ± 0.031 0.487 ± 0.049 -5.09 

 

 

 



 

Fig. 1 ʹ SI-time curves acquired from (a) the descending aorta of three different patients, (b) three malignant tumors 

(blue) and two benign fibroadenoma (red). Across the two plots the same symbols refer to data acquired from the 

same patients. The variable gap between the first set of baseline data and those acquired as the contrast agent 

arrives allows time for the acquisition of baseline high spatial resolution data and preparation of the patient for the 

injection.  

a

b



 

 

 

Fig. 2 - Simulated malignant (a & c) and benign data (b) using flip angles of 25° (blue) and 8° (red). Each flip angle was used to simulate data using a one-compartment tracer 

kinetic model with WX at the FXL, IX rate and NXL (a, b - top to bottom in each group, respectively). The data in (c) were simulated using a two-compartment tracer kinetic 

model and WX at the FXL. 

 

 

a b c  



  

a  d  

b  e  

c  

 

FXL 
 

Ktrans = 0.19 ± 0.004 min-1 

ve =  0.44 ± 0.005 

cAIC = -3.26 

shutter-speed 
 

Ktrans = 0.37 ± 0.009 min-1 

ve =  0.73 ± 0.01 

ʏi =  0.46 ± 0.01 s 

cAIC = -3.98 

NXL 
 

Ktrans = 0.20 ± 0.005 min-1 

ve =  0.46 ± 0.005 

cAIC = -3.29 

2-compartment 
 

Ktrans = 0.10 ± 0.003 min-1 

ve =  0.48 ± 0.000 

cAIC = -9.60 

2PX 
 

Ktrans = 0.20 ± 0.017 min-1 

ve =  0.46 ± 0.035 

ʏi =  0.53 ± 12 s 

cAIC = -3.29 

Fig. 3 - Model fits (red continuous lines) to one 

example simulated malignant tumor data set with 

WX at the FXL (blue circles). (a) FXL, (b) NXL, (c) 2PX, 

(d) shutter-speed and (e) two-compartment model 

(which produced parameter estimates exactly 

matching the simulation: Fb = 0.50 ± 0.00 ml.min-1.ml-

1, vb = 0.27 ± 0.00, PS = 0.16 ± 0.00 ml.min-1.ml-1, ve = 

0.32 ± 0.00). Each fit is accompanied by its parameter 

estimates, cAIC and (below) a plot of the fit residuals 

(red circles). 



  

a  d  

b  e  

c  

 

FXL 
 

Ktrans = 0.13 ± 0.005 min-1 

ve =  0.37 ± 0.01 

cAIC = -0.97 

shutter-speed 
 

Ktrans = 0.20 ± 0.02 min-1 

ve =  0.86 ± 0.11 

ʏi =  0.71 ± 0.08 s 

cAIC = -1.12 

NXL 
 

Ktrans = 0.13 ± 0.005 min-1 

ve =  0.39 ± 0.01 

cAIC = -0.98 

2-compartment 
 

Ktrans = 0.05 ± 0.01 min-1 

ve =  0.48 ± 0.04 

cAIC = -1.13 

2PX 
 

Ktrans = 0.14 ± 0.02 min-1 

ve =  0.39 ± 0.07 

ʏi =  15.8 ± 16000 s 

cAIC = -0.98 

Fig. 4 - Model fits (red continuous lines) to clinical 

malignant tumor data from one example patient 

(blue circles). (a) FXL, (b) NXL, (c) 2PX, (d) shutter-

speed and (e) two-compartment model (which 

produced the following parameter estimates: Fb = 

0.28 ± 0.01 ml.min-1.ml-1, vb = 0.27 ± 0.03, PS = 0.08 ± 

0.01 ml.min-1.ml-1, ve = 0.32 ± 0.03). Each fit is 

accompanied by its parameter estimates, cAIC and 

(below) a plot of the fit residuals (red circles). 
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shutter-speed 
 

Ktrans = 0.06 ± 0.002 min-1 

ve =  0.78 ± 0.53 

ʏi =  0.19 ± 0.65 s 

cAIC = -1.07 

2PX 
 

Ktrans = 0.06 ± 0.003 min-1 

ve =  0.64 ± 0.19 

ʏi =  0.19 ± 9 s 

cAIC = -1.07 

FXL 
 

Ktrans = 0.06 ± 0.001 min-1 

ve =  0.62 ± 0.03 

cAIC = -1.08 

NXL 
 

Ktrans = 0.06 ± 0.001 min-1 

ve =  0.65 ± 0.03 

cAIC = -1.07 

2-compartment 
 

Ktrans = 0.06 ± 0.21 min-1 

ve =  0.62 ± 0.26 

cAIC = -1.07 

Fig. 5 - Model fits (red continuous lines) to 

fibroadenoma clinical data from one example patient 

(blue circles). (a) FXL, (b) NXL, (c) 2PX, (d) shutter-

speed and (e) two-compartment model (which 

produced the following parameter estimates: Fb = 

0.11 ± 0.06 ml.min-1.ml-1, vb = 0.04 ± 0.30, PS = 0.43 ± 

1.34 ml.min-1.ml-1, ve = 0.59 ± 0.18). Each fit is 

accompanied by its parameter estimates, cAIC and 

(below) a plot of the fit residuals (red circles). 



 

 

Fig. 6 ʹ Calibration curves relating measured SI to interstitial concentration of contrast agent ([Gd]) using the 

sequence employed in this study (TR = 2.37 ms, flip angle = 25°, left column and 8°, right column) and a baseline T1 

of 1282 ms. The calibration curves largely overlap for the FXL, NXL and 2PX models at 25°. The mismatch between 

the shutter-speed calibration curves and those of the 2PX can be explained by the missing R1s component that is 

additionally shown in these plots. (a) malignant tumor calibration curves calculated with a ve of 0.39 and ʏi of 400 ms, 

(b) malignant tumor with ve of 0.86 and ʏi of 714 ms. 
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