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Crystal-field effects in graphene with interface-induced spin-orbit coupling
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We consider theoretically the influence of crystalline fields on the electronic structure of graphene placed on

a layered material with reduced symmetry and large spin-orbit coupling (SOC). We use a perturbative procedure

combined with the Slater-Koster method to derive the low-energy effective Hamiltonian around the K points

and estimate the magnitude of the effective couplings. Two simple models for the envisaged graphene-substrate

hybrid bilayer are considered, in which the relevant atomic orbitals hybridize with either top or hollow sites

of the graphene honeycomb lattice. In both cases, the interlayer coupling to a crystal-field-split substrate is

found to generate highly anisotropic proximity spin-orbit interactions, including in-plane “spin-valley” coupling.

Interestingly, when an anisotropic intrinsic-type SOC becomes sizable, the bilayer system is effectively a quantum

spin Hall insulator characterized by in-plane helical edge states robust against the Bychkov-Rashba effect. Finally,

we discuss the type of substrate required to achieve anisotropic proximity-induced SOC and suggest possible

candidates to further explore crystal-field effects in graphene-based heterostructures.

DOI: 10.1103/PhysRevB.98.045407

I. INTRODUCTION

The impact of the crystal environment on atomic states

is pivotal to understand the electronic structure of solids

containing transition-metal atoms [1]. For instance, in high-Tc

cuprates, crystal-field states are essential in the description of

CuO2 planes, where Cu+2 ions are surrounded by elongated

octahedral structures of O atoms [2,3]. The crystal-electric-

field effect and its interplay with spin-orbit coupling plays an

important role in magnetic anisotropy [4,5], the Jahn-Teller

effect [6–8], distortive order [9], and the cooperative Jahn-

Teller effect [10].

More recently, it has been appreciated that the crystal-

field effect (CFE) underlies rich spin-dependent phenomena

at metallic interfaces. For instance, the broken rotational

symmetry of magnetic atoms in metal bilayers was found to

render spin currents anisotropic [11], while a staggered CFE

associated with nonsymmorphic structures of metal species is

responsible for a giant enhancement of the Rashba effect in

BaNiS2 [12]. Here, we investigate the electronic properties of

graphene placed on nonmagnetic substrates characterized by a

sizable CFE. Graphene-substrate hybrid bilayers are currently

attracting enormous interest due to the combination of Dirac

fermions and prominent interfacial spin-orbital effects in the

atomically thin (two-dimensional) limit [13–15]. Monolayers

of group-VI transition-metal dichalcogenides (TMDs) are a

particularly suitable match to graphene as a high-SOC sub-

strate. The peculiar spin-valley coupling in the TMD electronic

structure [16–18] provides a unique all-optical method for

injection of spin currents across graphene-TMD interfaces

[19,20], as recently demonstrated [21,22]. Furthermore, the

*tarik@if.ufrj.br
†aires.ferreira@york.ac.uk

proximity coupling of graphene to a TMD base breaks the

sublattice symmetry of pristine graphene, leading to competing

spin-valley and Bychkov-Rashba spin-orbit interactions [23–

30]. The enhanced spin-orbit coupling (SOC) paves the way

to bona fide relativistic transport phenomena in systems of

two-dimensional Dirac fermions, including the inverse spin-

galvanic effect [31,32].

On a qualitative level, the band structure of graphene weakly

coupled to a high-SOC substrate can be understood from

symmetry. The intrinsic SOC of graphene is invariant under

the full symmetries of point group D6h, which includes sixfold

rotations and mirror inversion about the plane [33]. The re-

duction of the full point group in heterostructures is associated

with the emergence of other interactions [34,35]. For example,

interfacial breaking of inversion symmetry reduces the point

group D6h → C6v , allowing finite (nonzero) Bychkov-Rashba

SOC [36]. The low-energy Hamiltonian compatible with time-

reversal symmetry is

HC6v
= h̄ v(τzkxσx + kyσy) + λKM σzτzsz

+ λR (sxσy − τzsyσx), (1)

where v is the Fermi velocity of massless Dirac fermions, k =
(kx,ky) is the wave vector around a Dirac point (valley), and

τi,σi , and si are Pauli matrices acting on valley, sublattice,

and spin spaces, respectively. Here, λKM (λR) are the energy

scales of the intrinsic-type SOC (Bychkov-Rashba) interaction

enhanced by the proximity effect.

In addition, the interaction of graphene with an atomically

flat substrate renders the two carbon sublattices inequivalent,

further reducing the point group C6v → C3v . A well-studied

example is graphene on semiconducting TMD monolayers in

the group-VI family. The hybridization between pz electrons

and the TMD orbitals generates a spin-valley term λsvszτz

in the continuum model, reflecting the generally different

2469-9950/2018/98(4)/045407(9) 045407-1 ©2018 American Physical Society
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effective SOCs on A and B sublattices [24,37]. The breaking of

sublattice symmetry also generates a mass term mσz (of orbital

origin), which can exceed tens of meV in rotationally aligned

van der Waals heterostructures [38,39]. Another example of

reduced symmetry occurs in graphene with intercalated Pb

nanoislands [40], where a rectangular superlattice potential

leads to an in-plane spin-valley coupling λ
y
svτzsy in Eq. (1).

Finally, if time-reversal symmetry is broken, e.g., using a

ferromagnetic substrate, a number of other spin-orbit terms

are generally allowed [41].

Below, we show that the above picture is further enriched

when π electrons in graphene experience a crystal-field envi-

ronment via hybridization to crystal-split states. The interlayer

coupling to a low-symmetry substrate removes the rotational

invariance from the effective Hamiltonian (1), leading to a

proliferation of spin-orbit interactions, including in-plane spin-

valley (λ
y
svτzsy) and anisotropic intrinsic-type (λ

y

KMτzσzsy)

SOCs. To estimate the strength of the proximity spin-orbit

interactions, we consider a minimal tight-binding model for

a hybrid bilayer with hopping parameters obtained from the

Slater-Koster method [42,43]. We present explicit calcula-

tions for two idealized substrates, in which a commensurate

monolayer of heavy atoms sits at the hollow and top sites of

pristine graphene. Finally, a Löwdin perturbation scheme is

employed to obtain the low-energy continuum Hamiltonian.

As a concrete example, we then discuss the possibility of ob-

taining an enhanced in-plane spin-valley coupling in a hybrid

heterostructure of graphene and a group-IV dichalcogenide

monolayer. This paper is organized as follows. In Sec. II, we

introduce the substrate model and discuss how the eigenstates

of free atomic shells are affected by CFE. In Sec. III, we

derive the effective Hamiltonian, when the emergent rotational

symmetry Cv∞ is broken by the crystal-field environment. In

Sec. IV, we address the scenario where, added to CFE, the point

group C6v is reduced by a sublattice-dependent interaction with

atoms of the substrate, which gives rise to new types of SOCs.

In Sec. V, we discuss possible realizations with group-IV TMD

monolayers. Section VI presents our conclusions.

II. SUBSTRATE MODEL

We assume a sufficiently weak interlayer interaction be-

tween graphene and the substrate [37,41,44], so that the

electronic states near the Fermi level derive mostly from

pz (graphene) states. Since we are mainly interested in the

interplay between CFE and SOC, we shall focus on substrates

containing transition-metal atoms. We focus on atomic species

with an outer free shell formed by d states (l = 2). The elec-

tronic states of a free atom are complex wave functions with

well-defined angular momentum projection. When an ion is

placed in a crystalline environment, its electronic states suffer

distortions due to the electric field generated by the surrounding

atoms. Ford (l = 2) atomic states, this effect is usually stronger

than the spin-orbit interaction itself, which can then be treated

as a perturbation [1]. The electronic states of a free atom are

(2l + 1)-fold degenerate (neglecting relativistic corrections),

but when the atom is placed in a low-symmetry environment,

the degeneracy is lifted [see Fig. 1(a)]. Depending on the

crystal symmetry, some of the original complex atomic states

combine to form real atomic states with no defined angular

FIG. 1. Two examples of crystal-field splitting: (a) octahedral and

(b) orthorhombic.

momentum projection. If the symmetry is sufficiently low, as

in an orthorhombic crystal, the degeneracy is fully lifted [see

Fig. 1(b)], and the atomic wave functions are real.

The Hamiltonian is written as H = Hg + Hat + V , where

Hg is the standard nearest-neighbor tight-binding Hamiltonian

for π electrons in graphene and V is the interlayer interaction.

To simplify the analysis, hopping processes within Hat, as

well as disorder effects, are neglected. Such an approximation

suffices for a qualitative description of the effective (long-

wavelength) interactions mediated on graphene [45]. Finally,

we assume a general low-symmetry environment, such that the

atomic Hamiltonian for the external free-shell subspace reads

Hat = H0 + Hso, with

H0 =
∑

i

∑

s=↑,↓

∑

dl

ǫdl
|dl,s,i〉〈i,s,dl |, (2)

Hso =
∑

i

ξ �li · �si ., (3)

where i runs over the substrate atoms and �li (�si) is the associated

dimensionless orbital (spin) angular momentum operator. The

first term [Eq. (2)] describes the crystal-field splitting of

d levels [46]. The second term [Eq. (3)] is the spin-orbit

interaction on the substrate atoms. We note in passing that

CFEs can also lead to anisotropic SOC in Eq. (3) [47]. Such

(usually small) anisotropy is neglected here since its main

effect is simply a modulation of the magnitude of the effective

SOCs on graphene.

We consider two types of commensurate substrates. In

the first type, transition-metal atoms of a given species are

placed at distance d above the center of a hexagonal plaquette

in graphene (hollow position h in Fig. 2). In the second

type, the atoms are located at a distance d above a carbon

atom (top position). The unit cell of graphene is formed

by two sublattices, and as such, there are two possible top

configurations: tA and tB (see Fig. 3). The eigenstates of the

first term [Eq. (2)] in space representation can be written as

〈�r|dl〉 = R(r)χl(θ,φ), (4)

whereR(r) is the radial part of the wave function andχl(θ,φ) =
〈θ,φ|dl〉 (l = z2,xz,yz,xy,x2 − y2) are tesseral harmonics.

Unlike spherical harmonics (eigenfunctions of lz), tesseral har-

monics are real functions and do not have spherical symmetry.

045407-2
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FIG. 2. Hollow position h. The j -index convention is used in

Eqs. (11) and (A1)–(A5) and in the definitions of �δj and the direction

cosines nh
x,n

h
y, and nh

z .

For calculation purposes, we recast the wave functions (we

omit the radial part hereafter) in terms of eigenstates of lz as

|dz2〉 = |2,0〉, (5)

|dxz〉 = 1√
2

(−|2,1〉 + |2,−1〉), (6)

|dyz〉 = ı√
2

(|2,1〉 + |2,−1〉), (7)

|dxy〉 = ı√
2

(−|2,2〉 + |2,−2〉), (8)

|dx2−y2〉 = 1√
2

(|2,2〉 + |2,−2〉). (9)

Below, we show that the main effect of the hybridization of

graphene orbitals with nonspherically symmetric states of the

substrate is to induce anisotropic SOC.

III. EFFECTIVE HAMILTONIAN: HOLLOW POSITION

As a simple model for the substrate, we consider a mono-

layer of heavy atoms sitting at the hollow sites. The d orbitals of

each substrate atom hybridize with the pz states of the nearest

six carbon atoms (other hoppings are much smaller and thus are

neglected). The hybridization Hamiltonian is H h
V = Th + T

†
h ,

with

Th =
∑

�Ri

∑

l

∑

s=↑,↓
|�s,l( �Ri)〉〈dl,s, �Ri + �h|, (10)

where �Ri are lattice vectors, �h is the position of h inside the

plaquette, s = ±1 for up and down states, respectively, and

|�s,l( �Ri)〉 =
5

∑

j=0

tl,s,j |σj ,s, �Ri + �δj 〉. (11)

Here, j = 0, . . . ,5 runs counterclockwise and follows the

convention in Fig. 2 and σj = A (B) for even (odd) j .

The substrate-graphene hopping amplitudes are defined by

tl,s,j = 〈σj ,s, �Ri + �δj |V̂ |dl,s, �Ri + �h〉, where �δj are vectors

connecting neighboring carbon atoms [48] (see Fig. 2).

The hopping amplitudes are evaluated by means of the

Slater-Koster approach [42,43],

〈pz|V |dxy〉 = nxnynz(
√

3Vpdσ − 2Vpdπ ), (12)

〈pz|V |dx2−y2〉 =
√

3

2
nz

(

n2
x − n2

y

)

Vpdσ − nz(n
2
x − n2

y)Vpdπ ,

(13)

〈pz|V |dzx〉 =
√

3n2
znxVpdσ +

(

1 − 2n2
z

)

nxVpdπ , (14)

〈pz|V |dzy〉 =
√

3n2
znyVpdσ +

(

1 − 2n2
z

)

nyVpdπ , (15)

〈pz|V |dz2〉 =
√

3nz

(

n2
x + n2

y

)

Vpdπ

− 1

2
nz

(

n2
x + n2

y − 2n2
z

)

Vpdσ , (16)

where Vpdσ and Vpdπ are two-center integrals, which can

be obtained by quantum chemistry methods or by fitting to

first-principles electronic structure calculations [49,50]. ni are

direction cosines of the vector connecting a j -carbon atom and

the substrate atom at the h position. The hopping amplitudes

are given in the Appendix.

We are interested in the low-energy theory near the Dirac

points �K = − �K ′ = 4π
3a

x̂. The Fourier transform of the hopping

matrix at these points can be easily computed, and we obtain,

for each valley (τ = ±1),

Th =
∑

s=↑,↓
ıτ

3V1√
2

eıτ2π/3(|A,s〉 + |B,s〉)〈dxz,s|

+ 3V1√
2

eıτ2π/3(|A,s〉 − |B,s〉)〈dyz,s|

+ ıτ
3V2√

2
eıτ2π/3(|B,s〉 − |A,s〉)〈dxy,s|

− 3V2√
2

eıτ2π/3(|B,s〉 + |A,s〉)〈dx2−y2 ,s| . (17)

The various constants read V0 =
√

3n(1 − n2)Vpdπ − 1
2
n(1 −

3n2)Vpdσ , V1 = 1√
2

√
1 − n2(

√
3n2Vpdσ + (1 − 2n2)Vpdπ ),

and V2 = 1√
2
n(1 − n2)(

√
3Vpdσ /2 − Vpdπ ), where nh

z = n =
a0/

√

a2
0 + d2, with a0 being the distance between two carbon

atoms.

Next, we use degenerate perturbation theory to obtain a

graphene-only effective Hamiltonian,

H h
eff = −Th(H0 + Hso)−1T

†
h

≈ −ThH
−1
0 T

†
h + ThH

−1
0 HsoH

−1
0 T

†
h , (18)

where we treated the spin-orbit term of the substrate Hamilto-

nian Hso as a next-order perturbation compared to H0. The first

term H CF
h = −ThH

−1
0 T

†
h can be expressed in terms of Pauli

matrices:

H CF
h = −λ0 − λxσx, (19)

with

λ0(x) = 9(V1)2

2ǫxz

± 9(V1)2

2ǫyz

+ 9(V2)2

2ǫxy

± 9(V2)2

2ǫx2−y2

. (20)
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FIG. 3. Unit cell formed by atom A at position �Ri and atom

B at position �Ri + �a1. Atom tA(B) hybridizes with graphene site �Ri

( �Ri + �a1) [on sublattice A (B)] and the three first neighboring sites

on sublattice B (A). Red (blue) numbers on B (A) sites define the

j -index convention used in states |�1A(B)
s,l ( �Ri)〉 and hopping terms of

Eqs. (A12)–(A16) [Eqs. (A17)–(A21)].

The first term in Eq. (19) is a trivial energy shift. The interaction

λx is an orbital term, which can be absorbed by a redefinition of

kx in Eq. (1). The interplay between SOC and CFE is captured

by the second term, H
CF/SO
h = ThH

−1
0 HsoH

−1
0 T

†
h , which has

the form

H
CF/SO
h = −λ1

Rσysx − λ2
Rτzσxsy

+ λKMτzσzsz + λy
svτzsy, (21)

with couplings determined by

λ1
R = 18ξV1V2

(

1

ǫxyǫxz

+ 1

ǫyzǫx2−y2

)

, (22)

λ2
R = 18ξV1V2

(

1

ǫxyǫyz

+ 1

ǫxzǫx2−y2

)

, (23)

λKM = 9ξ

(

(V1)2

ǫyzǫxz

− 2(V2)2

ǫxyǫx2−y2

)

, (24)

λy
sv = 9ξV1V2

(

1

ǫxyǫyz

− 1

ǫxzǫx2−y2

)

. (25)

The first two terms in Eq. (21) form an anisotropic Bychkov-

Rashba coupling. The third term is the familiar intrinsiclike

SOC. The last term is an in-plane spin-valley coupling, leading

to an anisotropic spectrum. Note that this term vanishes in

the absence of crystal-field splitting. Equations (19) and (21)

are invariant under time-reversal symmetry (T : iτxsyK) and

the symmetry operations of the C2v point group: twofold

rotations around the z axis (C2 : iτxσxsz) and reflections over

vertical planes xz (σv : σxsy) and yz (σ ′
v : τxsx) [40]. The

point-group symmetry reduction to C2v is a consequence of

the hybridization of graphene’s π states with nonspherically

symmetric states in the substrate (5)–(9). The same effective

couplings of Eqs. (19) and (21) were obtained in Ref. [40]

for graphene on a Pb substrate in the absence of CFE due

to the reduced point-group symmetry C2v of the underlying

superlattice.

IV. EFFECTIVE HAMILTONIAN: TOP POSITION

We assume that the top positions (tA and tB) are occupied by

different atomic species (or, equivalently, equal species placed

at different distances from graphene). This accounts for the

important class of a graphene interface with reduced point-

group symmetryC3v (in the absence of CFE). Such a sublattice-

dependent interaction was absent in the hollow-position case.

The hybridization between pz orbitals of graphene and d atoms

on the top position can be written as HV = Tt + T
†

t , where the

hopping matrix Tt is given by

Tt =
∑

�Ri

∑

l

∑

s=↑,↓

[∣

∣�
(0,A)
s,l ( �Ri)

〉

+
∣

∣�
(1,A)
s,l ( �Ri)

〉]

〈dl,s,A, �Ri |

+
[∣

∣�
(0,B)
s,l ( �Ri)

〉

+
∣

∣�
(1,B)
s,l ( �Ri)

〉]

〈dl,s,B, �Ri + �a1| (26)

and the � states are defined in a way a similar to the hollow-

position case, namely,

∣

∣�
(0,A)
s,l ( �Ri)

〉

= t
(0,A)
l,s

∣

∣A,s, �Ri〉, (27)

∣

∣�
(1,A)
s,l ( �Ri)

〉

=
2

∑

j=0

t
(1,A)
l,s,j |B,s, �Ri + �aj+1〉, (28)

where t
(0,A)
l,s = 〈A,s, �Ri |V |dl,s,A, �Ri〉 and t

(1,A)
l,s,j = 〈B,s, �Ri +

�aj+1|V |dl,s,A, �Ri〉. Similar definitions are employed for states

|�(0/1,A/B)

s,l ( �Ri)〉 in Eq. (26).

The hopping parameters are written in the Appendix.

Around K points in the hexagonal Brillouin zone, the hopping

matrix can be written as Tt = ∑

τ=±1 TAt + TBt, where

T
A(B)

t =
∑

s=↑,↓
V

0A(B)
0 |A(B),s〉〈dz2 ,s,A(B)|

± 3V
1A(B)

1√
2

|B(A),s〉〈dyz,s,A(B)|

+ ıτ
3V

1A(B)
1√

2
|B(A),s〉〈dxz,s,A(B)|

− 3V
1A(B)

2√
2

|B(A),s〉〈dx2−y2 ,s,A(B)|

∓ ıτ
3V

1A(B)
2√

2
|B(A),s〉〈dxy,s,A(B)|, (29)

with the various constants given in the Appendix. Degenerate

perturbation theory yields

H CF
t = −T A

t H−1
0 T A

t

† − T B
t H−1

0 T B
t

†

= −λ̃0 − 
σz, (30)

with coupling constants

λ̃0 =
(

V 0A
0

)2

2ǫA
z2

+ 9
(

V 1A
1

)2

4ǫA
xz

+ 9
(

V 1A
1

)2

4ǫA
yz

+ 9
(

V 1A
2

)2

4ǫA
x2−y2

+ 9
(

V 1A
2

)2

4ǫA
xy

+ (A → B), (31)
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 =
(

V 0A
0

)2

2ǫA
z2

− 9
(

V 1A
1

)2

4ǫA
xz

− 9
(

V 1A
1

)2

4ǫA
yz

− 9
(

V 1A
2

)2

4ǫA
x2−y2

− 9
(

V 1A
2

)2

4ǫA
xy

− (A → B), (32)

representing an energy shift and a staggered sublattice poten-

tial, respectively. The combined effect of crystal field and SOC

can be written as

H
CF/SO
t = T A

t H−1
0 HsoH

−1
0 T A

t

† + T B
t H−1

0 HsoH
−1
0 T B

t

†

= −λ̃1
Rσysx − λ̃2

Rτzσxsy + λ̃KMτzσzsz

+ λ̃z
svτzsz + λ̃

y

KMτzσzsy + λ̃y
svτzsy, (33)

where the coupling constants are given by

λ̃1
R = 3

√
6ξ

[

V 0A
0 V 1A

1

ǫA
yzǫ

A
z2

+ (A → B)

]

, (34)

λ̃2
R = 3

√
6ξ

[

V 0A
0 V 1A

1

ǫA
xzǫ

A
z2

+ (A → B)

]

, (35)

λ̃KM = −9ξ

[

(

V 1A
1

)2

2ǫA
yzǫ

A
xz

−
(

V 1A
2

)2

ǫA
x2−y2ǫA

xy

+ (A → B)

]

, (36)

λ̃z
sv = 9ξ

[

(

V 1A
1

)2

2ǫA
yzǫ

A
xz

−
(

V 1A
2

)2

ǫA
x2−y2ǫA

xy

− (A → B)

]

, (37)

λ̃
y

KM = −9

4
ξ

[

V 1A
1 V 1A

2

ǫA
xyǫ

A
yz

− V 1A
1 V 1A

2

ǫA
x2−y2ǫA

xz

− (A → B)

]

, (38)

λ̃y
sv = 9

4
ξ

[

V 1A
1 V 1A

2

ǫA
xyǫ

A
yz

− V 1A
1 V 1A

2

ǫA
x2−y2ǫA

xz

+ (A → B)

]

. (39)

In addition to the SOCs already obtained in the hollow case,

the combination of a sublattice-dependent interaction and CFE

gives rise to new terms. We obtain the expected spin-valley

coupling λ̃z
svτzsz, which together with the Bychkov-Rashba

SOC is the dominant spin-orbit interaction in group-VI TMD-

graphene bilayers [24,37]. Interestingly, the broken orbital

degeneracy in the substrate also generates an in-plane intrinsic

spin-orbit coupling λ̃
y

KMτzσzsy . This term can open a quantum

spin Hall insulating gap that is robust against Bychkov-Rashba

SOC. A more detailed analysis of the effect of this interaction

will be given in the next section.

It is instructive to consider two different limiting cases.

First, we consider the situation where all the energies of d

orbitals of the substrate are degenerate, i.e., the absence of

a CFE. By analyzing the coupling constants in equations

(34)–(39) the only couplings that remain are the familiar

isotropic Bychkov-Rashba coupling, intrinsiclike SOC, and

the spin-valley term. These same couplings were obtained for

TMD-graphene heterostructures [24,37] and enable interest-

ing spin-dependent phenomena, such as the anisotropic spin

lifetime [27], spin Hall effect [31], and inverse spin-galvanic

effect [32]. The second limit case is when top positions tA and

tB are equivalent, so that one has V 0A
0 = V 0B

0 , V 1A
1 = V 1B

1 ,

and V 1A
2 = V 1B

2 . For this situation the SOCs that appear are

the same as in Eq. (21) for the hollow-position case due to the

restoration of sublattice symmetry.

Finally, we classify the SOCs in Eq. (33) according to

the irreducible representations of graphene’s full point group

C
′′
6v (i.e., the direct product of C6v and two primitive trans-

lation operations) and also the parity over mirror inversion

symmetry (z → −z). Following the notation of Ref. [51] (see

also Ref. [52]), the in-plane intrinsic-type term (λ̃
y

KMσzτzsy)

transforms according to the E1 irreducible representation

(Irrep), and the in-plane spin-valley term (λ̃
y
svτzsy) transforms

according to the E2 Irrep of C
′′
6v , and both are antisymmetric

with respect to z → −z transformation. The familiar intrinsic-

type SOC (λ̃KMτzσzsz) transforms according to the A1 Irrep of

C
′′
6v , and the spin-valley SOC (λ̃svτzsz) transforms according to

the B2 Irrep. Both are symmetric under the z → −z transfor-

mation. The anisotropic Rashba SOC can be decomposed into

a term τzσxsy − σysx , which transforms according to the A1

Irrep, and a term τzσxsy + σysx , which transforms according

to the E2 Irrep. Both are asymmetric under mirror inversion.

V. DISCUSSION

This paper aims to explore the modifications to the elec-

tronic states of graphene placed on a substrate characterized

by a crystal-field environment. In a realistic scenario, we expect

the proximity-induced SOC to be sensitive to the type of

crystal-field splitting and the valence of the substrate atoms.

A quantitative analysis is beyond the scope of this work.

Nevertheless, the crystal field is expected to be significant

in compounds containing transition-metals atoms, in which

the incomplete outer shell is formed by d electrons. The

electronic structure of certain TMDs is known to be strongly

affected by CFE on the atomic states of transition-metal (TM)

atoms [53,54]. TMD layers consist of a hcp sheet of TM

atoms sandwiched between sheets of chalcogen atoms, and

their metal coordination can be either trigonal prismatic or

octahedral. In the trigonal prismatic coordination, the two

chalcogen sheets are stacked directly above each other (known

as the H phase). The stacking order in the octahedral phase (T

phase) is ABC, and the chalcogen atoms of one of the sheets

can be located at the center of the honeycomb lattice. In this

case, the coordination of the TM atoms is octahedral.

Group-IV TMDs have an octahedral structure, whereas

group-VI TMDs, of the well-studied W and Mo compounds,

tend to display a trigonal prismatic geometry and both octa-

hedral and trigonal prismatic phases are observed in group-V

TMDs. The trigonal prismatic geometry enforces a splitting of

d orbitals in a single state, dz2 , and two doublets, dx2−y2/dxy

and dxz/dyz. On the other hand, in the octahedral geometry,

a doublet, dz2/dx2−y2 , and a triplet, dxy/dxz/dyz, are formed.

Going back to Eqs. (21) and (33), one can see that the main

signatures of the CFE is the broken rotational symmetry in

the continuum due to the hybridization of graphene with states

without spherical symmetry. The latter results in an in-plane

spin-valley coupling λ
y
svτzsy and an anisotropic Bychkov-

Rashba SOC. For both top- and hollow-position cases, it is

necessary that ǫxyǫyz 
= ǫx2−y2ǫxz for the appearance of the

in-plane spin-valley coupling, which is the case for TM atoms

with an octahedral distortion [see Fig. 1(a)]. This type of

crystal field is found in the group-IV family (XY2, where
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X = Zr, Hf, and Y = S, Se, Te) and opens up the possibil-

ity to observe this coupling in bilayers of these materials

and graphene. Less attention has been paid to this family

[55,56] compared to group-V and -VI TMDs. The application

of Zr-based chalcogenides in solar-energy devices has been

suggested [56], and the possibility of tuning its properties by

pressure, electric field, and phase engineering was recently

explored in density functional theory calculations [57]. Our

findings suggest that TMDs of family IV are potential candi-

dates to induce nontrivial spin textures in graphene via prox-

imity coupling. On the other hand, the anisotropic Bychkov-

Rashba coupling requires ǫxz 
= ǫyz, which is only possible in a

very low symmetry environment. The low-symmetry T′ phase

in WTe2 monolayers, which presents a quantum spin Hall

phase [58,59], could induce an anisotropic Rashba coupling

in graphene. This type of anisotropy can lead to an increase in

the spin Hall angle in graphene decorated with SOC impurities

[60].

For large interlayer distances, the overlap matrix between

states centered on different atomic positions can be neglected,

and we can use Eqs. (22)–(25) and (34)–(39) to perform a

rough estimative of the different SOCs. Using Slater-Koster

parameters for TM-carbon bonds as reported in Ref. [61]

and the crystal-field splitting and spin-orbit energy ξ reported

in Ref. [56], we estimate the graphene effective SOCs for

distances ≈ 5 times graphene’s lattice spacing. The dominant

SOCs are found to be intrinsic-type and Rashba couplings,

with an estimated magnitude in the range 20–40 meV for both

hollow and top substrate atoms, which is consistent with the

robust weak antilocalization features in magnetocondutance

measurements [25]. The in-plane spin-valley SOC λ
y
sv is

one order of magnitude weaker, being ≈2.5 meV for the

hollow-position case and ≈1.2 meV for the top-position case

(when atoms A and B have the same nature), which suggests

a small but observable effect. For short graphene-substrate

separations, numerical estimations need to take into account

the overlap matrix between states at different atomic positions,

which is beyond the scope of the present work. Note that the

interlayer distance can be tuned by external pressure [57],

which can be employed to tailor the SOC. Figure 4 shows the

low-energy spectrum along the kx direction when graphene

has an effective SOC formed by Rashba, intrinsic-type, and

in-plane spin-valley interactions. We see an interesting feature

on this spectrum: the energy dispersion around inequivalent

valleys is shifted (along the kx direction) with respect to the

bare graphene Dirac spectrum. This shift has opposite signs at

inequivalent valleys as required by time-reversal symmetry.

Finally, we discuss the in-plane spin-orbit interaction

λ
y

KMτzσzsy in Eq. (33). In our estimate for group-IV TMD-

graphene bilayers this type of coupling is relatively weak, being

of the same order as the in-plane spin-valley term (≈1 meV).

However, it has interesting topological properties. As men-

tioned above, this SOC can induce a nontrivial topological

insulating gap associated with a Z2 topological invariant [62].

However, the robustness of the Z2 topological phase differs

from that generated by the familiar intrinsic SOC in graphene

λKM [33]. When only C6v-invariant SOCs are present, that is,

λKM and λR, the quantum spin Hall gap closes if |λR| > |λKM|
[33], destroying the topological phase [see Fig. 5(a)]. On the

other hand, if the Z2 topological phase is a consequence ofλ
y

KM,

FIG. 4. (a) Fermi surface contours around K (K ′) points. (b) Low-

energy spectrum along the kx direction (ky = 0). Parameters: λy
sv =

6 meV, λ1
R = λ2

R = 35 meV, and λKM = 20 meV.

FIG. 5. Energy spectrum of graphene placed on a high-SOC

substrate with a crystal-field environment. (a) λR = 10 meV, λKM =
5 meV and (b) λR = 10 meV, λ

y

KM = 5 meV. The gap has a nontrivial

Z2 topological character corresponding to a quantum spin Hall phase.
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the gap remains finite for any value of λR as long as |λy
sv| <

|λy

KM|. A typical band structure is shown in Fig. 5(b), where

the topological gap is finite even for large Bychkov-Rashba

coupling. λR is one of the main obstacles to the observation

of the quantum spin Hall effect in graphene because of its

interplay with λKM. Our analysis suggests that realistic hybrid

graphene-TMD bilayers can host a novel type of quantum spin

Hall insulator with fully in plane helical edge states.

VI. CONCLUSION

We studied theoretically proximity spin-orbital effects in

graphene placed on low-symmetry substrates with broken or-

bital degeneracy. We derived a low-energy (long-wavelength)

theory for an idealized monolayer substrate, which allowed us

to demonstrate a simple mechanism to remove the rotational

invariance of electronic states in proximity-coupled graphene,

i.e., their hybridization to crystal-field split states. The low-

symmetry environment was shown to render spin-orbit inter-

actions of π electrons highly anisotropic. The most distinctive

signature of the crystal-field effect is the appearance of in-plane

Zeeman spin-valley interaction λ
y
sv and anisotropic intrinsic-

type spin-orbit coupling λ
y

KM, which can drive a transition

to a quantum spin Hall insulating phase displaying in-plane

helical edge states. As a possible candidate to observe the

predicted effects, we suggested group-IV TMD monolayers,

where transition-metal atoms have an octahedral distortion

and contain the necessary ingredients to induce anisotropic

in-plane SOCs on graphene.
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APPENDIX: HOPPING PARAMETERS AND � STATES

The explicit expressions for the hopping parameters in

Eq. (11) for the hollow-position case are

tz2,s,j = V0, (A1)

txz,s,j = i
V1√

2
(eiπj/3 − e−iπj/3), (A2)

tyz,s,j = V1√
2

(eiπj/3 + e−iπj/3), (A3)

txy,s,j = i
V2√

2
(ei2πj/3 − e−i2πj/3), (A4)

tx2−y2,s,j = − V2√
2

(ei2πj/3 + e−i2πj/3), (A5)

with constants V0, V1, and V2 given in Sec. III. The � states in

Eq. (11) can be written in terms of hexagonal states,

∣

∣�s
m( �Ri)

〉

=
5

∑

j=0

eimπj/3|σj ,s, �Ri + �δj 〉, (A6)

with well-defined angular momentum lz = h̄m, and are de-

scribed in Refs. [34,63]. Using Eqs. (A1)–(A5), we have

|�z2,s( �Ri)〉 = V0

∣

∣�s
0( �Ri)

〉

, (A7)

|�xz,s( �Ri)〉 = ı
V1√

2

[∣

∣�s
1( �Ri)

〉

−
∣

∣�s
−1( �Ri)

〉]

, (A8)

|�yz,s( �Ri)〉 = V1√
2

[∣

∣�s
1( �Ri)

〉

+
∣

∣�s
−1( �Ri)

〉]

, (A9)

|�xy,s( �Ri)〉 = ı
V2√

2

[∣

∣�s
2( �Ri)

〉

−
∣

∣�s
−2( �Ri)

〉]

, (A10)

|�x2−y2,s( �Ri)〉 = − V2√
2

[∣

∣�s
2( �Ri)

〉

+
∣

∣�s
−2( �Ri)

〉]

. (A11)

We now switch gears to the top-position case. Due to conserva-

tion of angular momentum, t
(0,A)
l,s and t

(0,B)
l,s are nonzero only for

l = z2, t
(0,A)
l,s = V 0A

0 = V 0A
pdσ , and t

(0,B)
l,s = V 0B

0 = V 0B
pdσ . The

explicit expressions of t
(1,A)
l,s,j are

t
(1A)

z2,s,j
= V 1A

0 , (A12)

t
(1A)
xz,s,j = V 1A

1

ı√
2

(e2πıj/3 − e−2πıj/3), (A13)

t
(1A)
yz,s,j = V 1A

1

1√
2

(e2πıj/3 + e−2πıj/3), (A14)

t
(1A)
xy,s,j = −V 1A

2

ı√
2

(−e4πıj/3 + e−4πıj/3), (A15)

t
(1A)

x2−y2,s,j
= −V 1A

2

1√
2

(e4πıj/3 + e−4πıj/3). (A16)

The explicit expressions of t
(1,B)
l,s,j are

t
(1B)

z2,s,j
= V 1B

0 , (A17)

t
(1B)
xz,s,j = V 1B

1

ı√
2

(−e−2πıj/3 + e2πıj/3), (A18)

t
(1B)
yz,s,j = −V 1B

1

1√
2

(e−2πıj/3 + e2πıj/3), (A19)

t
(1B)
xy,s,j = −V 1B

2

ı√
2

(−e−4πıj/3 + e4πıj/3), (A20)

t
(1B)

x2−y2,s,j
= −V 1B

2

1√
2

(e−4πıj/3 + e4πıj/3). (A21)

The constants in Eqs. (A12)–(A16) are V 1A
0 =√

3n1A(1 − n2
1A)V

(1A)
pdπ − 1

2
n1A(1 − 3n2

1A)V
(1A)
pdσ , V 1A

1 =
1√
2
[
√

3n2
1AV

(1A)
pdσ + (1 − 2n2

1A)V
(1A)
pdπ ]

√

1 − n2
1A, and V 1A

2 =
1√
2
n1A(1 − n2

1A)(
√

3
2

V
(1A)
pdσ − V

(1A)
pdπ ), and except for changing

A to B, the constants are the same in (A17)–(A21).
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The � states in Eq. (26) can be write in terms of triangular

states [34],

∣

∣Ŵs(1A)
m ( �Ri)

〉

=
2

∑

j=0

eim2πj/3|B,s, �Ri + �aj+1〉, (A22)

∣

∣Ŵs(1B)
m ( �Ri)

〉

=
2

∑

j=0

eim2πj/3|A,s, �Ri + �a1 + �δj+1〉. (A23)

Here, �δj are given by �δ1 = −�a1, �δ2 = −�a3, and �δ3 = −�a2.

States (A22) and (A23), similar to states (A6), have well-

defined angular momentum and satisfy |Ŵ2〉 = |Ŵ−1〉 and

|Ŵ−2〉 = |Ŵ1〉. In other words, graphene does not support

triangular states with |m| = 2 [34]. Finally, we find

∣

∣�
(1A)

s,z2 ( �Ri)
〉

= V 1A
0

∣

∣Ŵ
s(1A)
0 ( �Ri)

〉

, (A24)

∣

∣�(1A)
s,xz ( �Ri)

〉

= V 1A
1

ı√
2

[∣

∣Ŵ
s(1A)
1 ( �Ri)

〉

−
∣

∣Ŵ
s(1A)
−1 ( �Ri)

〉]

, (A25)

∣

∣�(1A)
s,yz ( �Ri)

〉

= V 1A
1

1√
2

[∣

∣Ŵ
s(1A)
1 ( �Ri)

〉

+
∣

∣Ŵ
s(1A)
−1 ( �Ri)

〉]

, (A26)

∣

∣�(1A)
s,xy ( �Ri)

〉

= −V 1A
2

ı√
2

[

−
∣

∣Ŵ
s(1A)
−1 ( �Ri)

〉

+
∣

∣Ŵ
s(1A)
1 ( �Ri)

〉]

,

(A27)

∣

∣�
(1A)

s,x2−y2 ( �Ri)
〉

= −V 1A
2

1√
2

[∣

∣Ŵ
s(1A)
−1 ( �Ri)

〉

+
∣

∣Ŵ
s(1A)
1 ( �Ri)

〉]

(A28)

and

∣

∣�
(1B)

s,z2 ( �Ri)
〉

= V 1B
0

∣

∣Ŵ
s(1B)
0 ( �Ri)

〉

, (A29)

∣

∣�(1B)
s,xz ( �Ri)

〉

= V 1B
1

ı√
2

[

−
∣

∣Ŵ
s(1B)
−1 ( �Ri)

〉

+
∣

∣Ŵ
s(1B)
1 ( �Ri)

〉]

,

(A30)

∣

∣�(1B)
s,yz ( �Ri)

〉

= −V 1B
1

1√
2

[∣

∣Ŵ
s(1B)
−1 ( �Ri)

〉

+
∣

∣Ŵ
s(1B)
1 ( �Ri)

〉]

,

(A31)

∣

∣�(1B)
s,xy ( �Ri)

〉

= −V 1B
2

ı√
2

[

−
∣

∣Ŵ
s(1B)
1 ( �Ri)

〉

+
∣

∣Ŵ
s(1B)
−1 ( �Ri)

〉]

,

(A32)

∣

∣�
(1B)

s,x2−y2 ( �Ri)
〉

= −V 1B
2

1√
2

[∣

∣Ŵ
s(1B)
1 ( �Ri)

〉

+
∣

∣Ŵ
s(1B)
−1 ( �Ri)

〉]

.
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