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This document contains a complete description of the theoretical model used in this study,

in support of the summary presented in the main text. All Liouville pathways involved in

the analysis are presented, as well as further details of the porphyrin monomer modelled and

additional examples of the calculated 2D spectra.

Porphyrin Monomer

In this work we model the same bisalkynyl porphyrin molecule used by Camargo et al in

reference 1, for which the linear absorption spectrum shows three bands, associated with

three accessible excited singlet states. The lowest in energy of these, S1, corresponds to the

Q band, which has a maximum for the fundamental transition at 15 650 cm−1. The second

band, B, (ca. 21000 - 24 000 cm−1) to S2 is significantly more intense than the Q band and

the third band, N to S3 is very weak, but very broad (ca. 28000 - 34 000 cm−1). Asymmetric

substituents on the porphyrin macrocycle result in a lowering of the molecule’s symmetry

fromD4h toD2h, separating the dipole moment into individual x and y contributions. TheQx

band shows a clear vibronic progression due to coupling to a zinc-porphyrin breathing mode

of 375 cm−1. The shallow band at ca. 17 000 cm−1 contains contributions from Qy as well as

Qx overtones resulting from coupling to a higher energy vibrational mode of 1340 cm−1.2–4

The structure of the bisalkynyl zinc porphyrin and its linear absorption spectrum are pre-

sented in figure S1, reproduced from reference 1. Here we restrict our model to the vibronic

Qx band and consider coupling to only the 375 cm−1 mode. We assume any contribution

from Qy is small because the maximum Qy intensity is less than 30% of the maximum Qx

intensity, causing the vibronic progressions associated with Qy to be similarly weaker, and

Qy to Qx relaxation takes place in 110 fs or less.5 Accounting for energy transfer between

modes is beyond the scope of this work, where the inclusion of additional modes rapidly

increases the size of the system Hilbert space, significantly increasing computation time.
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Figure S1: Molecular structure (left) and linear absorption spectrum (right) of the 5,15-
bisalkynyl zinc porphyrin monomer.

Theoretical Model

Vibronic Hamiltonian

The system Hamiltonian is constructed from the ground, |g〉, and first excited, |e〉, electronic

states,

HS = |g〉hg〈g|+ |e〉he〈e| (S1)

where intramolecular vibrational modes are introduced in the nuclear Hamiltonians as the

sum of simple harmonic oscillators,6

hg =
∑

j

[

p2j
2mj

+ 1
2
mjω

2
j q

2
j

]

(S2)

he = h̄ω0
eg +

∑

j

[

p2j
2mj

+ 1
2
mjω

2
j (qj − dj)

2

]

(S3)

Here mj, pj and qj are respectively the mass, the momentum and the spatial coordinate of

a particular vibrational mode, j, of frequency ωj. The excited electronic state is raised by

the fundamental transition energy, h̄ω0
eg, and is coupled linearly to the system coordinates

via the displacement, dj. The harmonic potentials, V (q), are displayed in figure S2.
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Figure S2: Potential Energy Surface of the displaced harmonic oscillator.

On conversion to a dimensionless coordinate system using,

Pj =
(

√

h̄ωjmj

)−1

pj; Qj =

(
√

ωjmj

h̄

)

qj; ∆j =

(
√

ωjmj

h̄

)

dj

the nuclear Hamiltonians can be written as,

hg = 1
2

∑

j

h̄ωj(P
2
j +Q2

j) =
∑

j

h̄ωj

(

b†jbj +
1
2

)

(S4)

he = h̄ω0
eg +

1
2

∑

j

h̄ωj

(

P 2
j + (Qj −∆j)

2
)

= h̄ω0
eg +

∑

j

h̄ωj

(

b†jbj −
∆j√
2
(bj + b†j) +

1
2
∆2

j +
1
2

)

= h̄(ω0
eg + λ) +

∑

j

h̄ωj

(

b†jbj −
∆j√
2
(bj + b†j) +

1
2

)

(S5)

where P is the momentum, Q is the coordinate, ∆ is the excited state displacement and b(†)
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are the vibrational annihilation (creation) operators,

b† =

√

mω

2h̄

(

q − i

mω
p

)

=
1√
2
(Q− iP ) (S6)

b =

√

mω

2h̄

(

q +
i

mω
p

)

=
1√
2
(Q+ iP ) (S7)

such that,

b†b =
1

2
(Q− iP )(Q+ iP )

Q =
b+ b†√

2
and P =

b− b†

i
√
2

The reorganisation energy, h̄λ, is related to the Huang-Rhys parameter, S, by

λ =
∑

j

λj =
∑

j

Sjωj =
∑

j

mjω
2
jd

2
j

2h̄
(S8)

Sj =
1
2
∆2

j =
mjωjd

2
j

2h̄
(S9)

The system Hamiltonian is then diagonalised to incorporate the off-diagonal coupling

terms and determine the accurate vibronic eigenfunctions. All simulations are completed

using the adiabatic vibronic basis.

Bath Hamiltonian

The environment is defined as an infinite ensemble of harmonic oscillators, such that the

total bath Hamiltonian is given by,

HB =
∑

n

∑

α

[

p2nα
2mnα

+ 1
2
mnαω

2
nαx

2
nα

]

=
∑

n

∑

α

h̄ωnα

(

a†nαanα + 1
2

)

(S10)

Here, mnα, pnα and ωnα are respectively the mass, the momentum and the frequency of the

mode, α, of a particular bath, n. The bath mode coordinates are denoted xnα and a
(†)
nα are

the lowering (raising) operators.
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The bath modes couple linearly to the system, such that the total interaction Hamiltonian

(including HB) is,

HI =
∑

n

∑

α

[

p2nα
2mnα

+ 1
2
mnαω

2
nα

(

xnα − gnα
mnαω2

nα

Bn(q)

)2
]

(S11)

where gnα is the dimensionless coupling strength and Bn(q) is a system operator which

controls the action of the bath onto the system coordinates, q.7,8

The distribution of coupling strengths is described by the spectral density of each bath,

Jn(ω).

Jn(ω) =
∑

α

g2nα
2mnαωnα

δ(ω − ωnα) (S12)

Every spectral density is assumed to have the Debye form for an overdamped Brownian

oscillator,

Jn(ω) = 2ηn
ωγn

ω2 + γ2
n

(S13)

In our model, we separate the environment into three baths to individually account

for dephasing processes (n = 1), intramolecular vibrational relaxation (IVR) (n = 2) and

fluorescence (n = 3). The bath coupling operators are defined as,

B1 = (− |g〉 〈g|+ |e〉 〈e|)⊗
∑

ν

|ν〉〈ν| (S14)

B2 = |g〉 (b+ b†) 〈g|+ |e〉 (b+ b†) 〈e| (S15)

B3 = µ̂ = (|g〉〈e|+ |e〉〈g|)⊗
∑

ν

|ν〉〈ν| (S16)

where
∑

ν |ν〉〈ν| is the identity operator over the nuclear degrees of freedom and µ̂ is the

dipole moment operator of the system. These operators are then transformed to the adiabatic

vibronic basis using the same unitary transformation with which the system Hamiltonian

was diagonalised.

As described in the main text, the spectral density parameters for the IVR and dephasing
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phonon baths are set to be the same, whilst the coupling strength of the fluorescence bath is

chosen to be very weak (η3 = 1 cm−1). This allows the definition of a complete model, whilst

acknowledging that the fluorescence timescale of the porphyrin monomer is significantly

slower (ca. 1 ns) than the timescale of the photon echo simulations (≤ 1 ps) in this study.

Hierarchical Equations of Motion (HEOM)

For a bath of harmonic oscillators, the correlation function is related to the spectral density

via,

Cn(t) =
1

π

∫ ∞

0

dωJn(ω)

(

coth

(

βh̄ω

2

)

cosωt− i sinωt

)

(S17)

where β is the inverse temperature, assumed the same for all baths.

The solution of this integral can be expressed as the sum of exponential terms,9

Cn(t) = ηnγn

[

(

cot

(

h̄βγn
2

)

− i

)

exp (−γnt) +
∞
∑

k=1

8πk

(2πk)2 − (h̄βγn)2
exp

(

−2πkt

h̄β

)

]

(S18)

which can then be re-expressed in terms of the bosonic Matsubara frequencies, νnk; k =

0, 1, 2, ...,M , and corresponding exponential prefactors, cnk,
6,10

Cn(t) = ηnγn

[

(

cot

(

h̄βγn
2

)

− i

)

exp (−νn0t) +
M
∑

k=1

4νnk
h̄β(ν2

nk − γ2
n)

exp (−νnkt)

]

=
M
∑

k=0

cnke
−νnk|t| (S19)

νn0 = γn (S20)

νnk =
2πk

h̄β
(S21)

cn0 = ηnγn

(

cot

(

h̄βγn
2

)

− i

)

(S22)

cnk =
4ηnγn
h̄β

(

νnk
ν2
nk − γ2

n

)

(S23)
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The evolution of the density matrix is separated into a hierarchy of auxiliary density

operators (ADOs), ρj, given by

ρ̇j(t) = −
(

i

h̄
L+

N
∑

n=1

M
∑

k=0

jnkνnk

)

ρj(t)− i

N
∑

n=1

M
∑

k=0

B×
n ρj+

nk

(t)

−i
N
∑

n=1

M
∑

k=0

jnk

(

cnkBnρj−
nk

(t)− c∗nkρj−
nk

(t)Bn

)

−
N
∑

n=1

(

2ηn
h̄βγn

− ηn cot

(

h̄βγn
2

)

−
M
∑

k=1

cnk
νnk

)

B×
n B

×
n ρj(t) (S24)

where L is the Liouvillian operator and B×
n ρ = [Bn, ρ] denotes the commutator of the bath

coupling operator, Bn, and the density matrix.11

The ADOs are defined in terms of theN(M+1)-dimensional vectors j = (j10, . . . , jnk, . . . , jNM)

and j± = (j10, . . . , jnk±1, . . . , jNM), which contain elements for each Matsubara frequency of

each bath. The coefficients of the vectors, jnk, define the depth of the hierarchy for a partic-

ular ADO, with the true reduced density matrix equivalent to the ADO with all coefficients

equal to zero.

The hierarchy must therefore be terminated with respect to the number of Matsubara

frequencies involved and the depth associated with each frequency. We adopt the termination

criterion of Dijkstra and Prokhorenko, who select a convergence parameter, Γ, beyond which

the evolution is assumed to be within the Markovian limit.11 The convergence parameter

determines the number of Matsubara frequencies via,

2(M + 1)π

β
> Γ (S25)

and the hierarchy depth according to,

N
∑

n=1

M
∑

k=0

jnkνnk > Γ (S26)

Here we choose Γ = 10γ1, so that the convergence parameter is significantly faster than
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the timescale of the bath fluctuations.

Linear Absorption Spectrum

The linear absorption spectrum is calculated as the Fourier transform of the first order

molecular response function, R(1)(t1).
9,12

σA(ω) ∝
∫ ∞

−∞

dteiωtR(1)(t1) ∝
∫ ∞

−∞

dteiωtTrg

(

µ̂Ĝ(t1, t0)[µ̂, ρ(−∞)]
)

(S27)

Here the trace is taken over the ground state degrees of freedom only and the dynamical

map Ĝ(t1, t0) indicates use of the HEOM to propagate the result of the commutator from

time t0 to time t1.

2D Photon Echo Spectroscopy

The pulse sequence for four-wave mixing 2D photon echo spectroscopy is depicted in figure

S3. Whilst τ , T and t define the separation of the pulse centres and the signal, as described

in the main text, the interaction events can occur at any time under the Gaussian envelopes.

Hence the separation of the interaction events is given by t1, t2 and t3, which are the time

references used in the double-sided Feynman diagrams presented below.13

time
τ1 τ2 τ3

t = 0
τ T t

P
(3)(t)

t1 t2 t3

Figure S3: Pulse sequence for 2D Photon Echo Spectroscopy.
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For a particular ordering of pulses, the rephasing wavevector is defined as,

ks = −k1 + k2 + k3 (S28)

with the non-rephasing wavevector as,

ks = k1 − k2 + k3 (S29)

By swapping the order in which the first two pulses arrive at the sample, the non-

rephasing signal can be produced in the rephasing direction, equivalent to the use of negative

coherence times (τ < 0).

Several non-linear fields are emitted from the sample in a photon echo measurement,

but, importantly, the rephasing and non-rephasing signals involve a single interaction of the

sample with each electric field.

Equation of Motion-Phase Matching Approach (EOM-PMA)

The system-field interaction Hamiltonian is given by the semi-classical dipole approximation

such that,

ĤSF (t) = −µ̂ · E(r, t)

= −
3
∑

m=1

µ̂ · (χmEm(t− τm) exp(−iωmt+ ikmr)) + c.c.

= −
3
∑

m=1

exp(ikmr) · Vm(t) + c.c. (S30)

The total electric field, E(r, t), is separated into three pulses with frequency ωm = 2πνm

and wavevector km. The electric field strength is given by χm and the field envelope, Em(t−

τm), centred at τm, is assumed to be Gaussian,

S10



Em(t− τm) = exp

(−(t− τm)
2

2σ2

)

= exp

(−4 ln 2(t− τm)
2

τ 2p

)

(S31)

The full width at half maxima (FWHM) of the laser pulses in the time and frequency

domains are,14,15

time FWHM = τp = 2
√
2 ln 2σ (S32)

frequency FWHM =
4 ln 2

πcτp
(S33)

Here, the spatial and temporal oscillations of the electric field have been separated to

define the coupling operators, Vm(t), m = 1, 2, 3.

Vm(t) = (µ̂χmEm(t− τm) exp(−iωmt)) (S34)

The system-field interaction Hamiltonian is incorporated into the Liouvillian operator as

a time-dependent correction term,

Lρ(t) = [HS −HSF (t), ρ(t)] = [HS − µ̂ · E(r, t), ρ(t)] (S35)

The Liouvillian is then solved as part of the HEOM and propagated using equation S24.

In the knowledge that the rephasing and non-rephasing signals are produced in the phase

matched direction, ks, after a single interaction with each of the three laser pulses, the

Liouvillian can be re-expressed in terms of the coupling operators Vm(t) according to,

L1ρ1(t) = [HS −HSF (t), ρ1(t)] = [HS − V1(t)− V †
2 (t)− V †

3 (t), ρ1(t)] (S36)

The solution of this Liouvilian produces the non-Hermitian auxiliary ρ1(t), which ac-

counts for a number of Liouville pathways, including the rephasing and non-rephasing con-

tributions, as well as a multitude of other non-linear signals.

As described by Gelin et al, on considering the dependence of the non-Hermitian auxiliary
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with respect to each laser field, ρ1(λ1, λ2, λ3; t) becomes a generating function for Liouville

pathways which can be expanded as the Taylor series,16,17

ρ1(λ1, λ2, λ3; t) =
∞
∑

i,j,k=0

λi
1λ

j
2λ

k
3ρ

i,j,k
1 (t) (S37)

The rephasing and non-rephasing Liouville pathways are associated with the ρ1111 (t) con-

tribution. This can be isolated by combining a series of permutations, where each of the

field interactions are sequentially removed, according to equation S38.16

λ1λ2λ3ρ
111
1 (t) = ρ1(λ1, λ2, λ3; t) + ρ1(λ1, 0, 0; t)− ρ1(λ1, 0, λ3; t)− ρ1(λ1, λ2, 0; t)

−ρ1(0, λ2, λ3; t)− ρ1(0, 0, 0; t) + ρ1(0, 0, λ3; t) + ρ1(0, λ2, 0; t)

+O(λi
1λ

j
2λ

k
3), i+ j + k > 3 (S38)

These permutations define eight auxiliary operators which each correspond to a unique

Liouvillian. The auxiliary operators are defined as,

ρ1 = ρ1(λ1, λ2, λ3; t)

ρ2 = ρ1(λ1, λ2, 0; t)

ρ3 = ρ1(λ1, 0, λ3; t)

ρ4 = ρ1(λ1, 0, 0; t)

ρ5 = ρ1(0, λ2, λ3; t)

ρ6 = ρ1(0, λ2, 0; t)

ρ7 = ρ1(0, 0, λ3; t)

ρ8 = ρ1(0, 0, 0; t)

producing seven relevant Liouvillians, as ρ8 defaults to the Liouville von-Neumann form.16,18
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L1ρ1(t) = − i

h̄

[

HS − V1(t)− V †
2 (t)− V †

3 (t), ρ1(t)
]

(S39)

L2ρ2(t) = − i

h̄

[

HS − V1(t)− V †
2 (t), ρ2(t)

]

(S40)

L3ρ3(t) = − i

h̄

[

HS − V1(t)− V †
3 (t), ρ3(t)

]

(S41)

L4ρ4(t) = − i

h̄
[HS − V1(t), ρ4(t)] (S42)

L5ρ5(t) = − i

h̄

[

HS − V †
2 (t)− V †

3 (t), ρ5(t)
]

(S43)

L6ρ6(t) = − i

h̄

[

HS − V †
2 (t), ρ6(t)

]

(S44)

L7ρ7(t) = − i

h̄

[

HS − V †
3 (t), ρ7(t)

]

(S45)

The macroscopic polarization in the phase-matched direction is then calculated using,

P
(3)
ks

(τ, T, t) = exp(iksr)Tr (µ̂ (ρ1(t)− ρ2(t)− ρ3(t) + ρ4(t)− ρ5(t) + ρ6(t) + ρ7(t))) + c.c.

(S46)

where the isolation of the rephasing/non-rephasing phase-matched contribution from equa-

tion S38 has been reproduced by the combination of the evolved auxiliary states. The number

of Liouvillians required can be reduced by enforcing the rotating wave approximation, but

here we adopt the full form to keep the model general.17,18

The third order polarization is calculated as the expectation value of the dipole moment

operator and the combined states, where the spatial oscillations have been factorised out

into the exponential prefactor, following the initial definition of the system-field interaction

Hamiltonian, equation S30.
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The spatial component is calculated according to the pulse sequence in figure S3, using

k1 · r = ω(τ1) (S47)

k2 · r = ω(τ1 + τ) (S48)

k3 · r = ω(τ1 + τ + T ) (S49)

where τ1 is the time from the beginning of the simulation to the centre of the first laser pulse.

The exponential prefactor for the rephasing signal is therefore given by,

exp(iksr) = exp(i(−k1 + k2 + k3)r) = exp(iω(τ1 + 2τ + T )) (S50)

with the non-rephasing prefactor by,

exp(iksr) = exp(i(k1 − k2 + k3)r) = exp(iω(τ1 + T )) (S51)

2D photon echo spectra are then calculated as the double Fourier transform of the third

order polarization with respect to τ and t.15,19 The rephasing spectra require an inverse

transformation with respect to the coherence time (∝ exp[−iωττ ]), whilst the non-rephasing

require a forwards transformation (∝ exp[+iωττ ]).

SPE(ωτ , T, ωt) =

∫ ∞

−∞

dt

∫ ∞

−∞

dτ exp[∓iωττ ] exp[+iωtt]iP
(3)
ks

(τ, T, t) (S52)

Initial Conditions

We assume factorised initial conditions, where the system and bath are completely un-

correlated prior to the simulation, and the system density matrix is initially defined as a

Boltzmann distribution over the vibrational levels of the ground electronic state.
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Liouville pathway analysis

For the specific case of the displaced harmonic oscillator with two electronic states, each

coupled to two vibrational levels, there are 32 double-sided Feynman diagrams that survive

the rotating wave approximation. Here we limit the analysis to pathways which have a

starting population in the lowest vibrational level of the ground electronic state, |g0〉, and

the pathways are assigned following the 2D electronic spectroscopy convention of R1−4.

Non-oscillatory population pathways are removed from the data via fit of a single expo-

nential function to the oscillations along the population time. Performing a Fourier transform

of the residuals then produces amplitude spectra which distinguish positively and negatively

oscillating coherence pathways. Here we identify positive coherences, ∝ e+iω0T , in blue and

negative coherences, ∝ e−iω0T , in red such that,

|g0〉 〈g1| ∝ e+iω0T ; |g1〉 〈g0| ∝ e−iω0T

The population and coherence pathways for ground state bleach and stimulated emission

processes are labelled using colour-coded symbols, as defined in table S1.

Table S1: Symbol Key for Liouville pathways.

Ground State Bleach Stimulated Emission

Population

Positive Coherence (+ω0)

Negative Coherence (−ω0)

All 32 Liouville pathways are presented in figures S4 - S7 as double-sided Feynman

diagrams (see SI of reference 1). These diagrams are drawn in the usual manner, with the

transition frequencies associated with each interaction written out explicitly alongside.
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Figure S4: Rephasing Population Pathways.
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Figure S5: Non-Rephasing Population Pathways.
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Figure S6: Rephasing Coherence Pathways.
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Figure S7: Non-Rephasing Coherence Pathways.

For the centred laser spectrum simulation, all 32 pathways contribute, with the peak

locations predicted as shown in figure S8 for the rephasing and non-rephasing spectra. Here

the population pathways have been included, identifying peak locations to which they would

contribute, were they not removed from the amplitude spectra by the exponential fitting

procedure, as described above.
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Figure S8: Peak location key diagram for the centred laser spectrum simulation, including
population pathways, for Rephasing (left) and Non-Rephasing (right) amplitude spectra.
The Liouville pathways are assigned as per table S1, producing peaks in the spectra identified
by the encompassing black circles.
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On blue-shifting the laser spectrum, all pathways involving the ω0
eg − ω0 transition fre-

quency (highlighted cyan in figures S4 - S7) are eliminated from the spectra. This results

in the loss of the lower emission frequency peaks from the amplitude spectra, as shown in

figure S9.
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Figure S9: Peak location key diagram for the blue-shifted laser spectrum simulation, includ-
ing population pathways, for Rephasing (left) and Non-Rephasing (right) amplitude spectra.
The Liouville pathways are identified as per table S1, producing peaks in the spectra iden-
tified by the encompassing black circles.

Additional 2D Spectra Examples

Summaries of calculated rephasing and non-rephasing 2D spectra (real, normalised) for both

the centred and blue-shifted laser spectrum simulations are provided below.
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Figure S10: Rephasing (real) spectra for the centred laser spectrum simulation.
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Figure S11: Non-Rephasing (real) spectra for the centred laser spectrum simulation.
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Figure S12: Rephasing (real) spectra for the blue-shifted laser spectrum simulation.
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Figure S13: Non-Rephasing (real) spectra for the blue-shifted laser spectrum simulation.
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Computational Details

The evolution of the auxiliary density operators is solved using the fourth order Runge-Kutta

method and FORTRAN 90, with a time step of 0.05 fs. Construction of the system and all

other manipulations were performed using Python, making use of the standard NumPy and

matplotlib packages, as well as the quantum object class of the QuTiP (Quantum Toolbox

in Python) package.20,21
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