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1 Detailed description of transmission model 

A simple dynamic transmission model is used to model HIV transmission independently in nine regions within 
Zambia.  The model is run over the period 1980-2030. The HIV interventions considered are late antiretroviral 
therapy (ART), voluntary male circumcision and early ART. Late ART describes the provision of ART for 
those who present for care, usually due to ill health, and who typically have CD4 counts below 350. Early ART 
describes the provision of ART to individuals who are identified via active outreach testing and who typically 
have CD4 counts above 350. Early and late ART reduce the probability of onward transmission of infection as 
well as resulting in direct health benefits to the individuals receiving treatment: early ART removes the risk of 
progression to late stage infection and late ART improves quality of life and reduces the risk of HIV-related 
death. Circumcision reduces the risk of men acquiring HIV infection. 

The model structure is shown in Figure S1. States S1-S4 denote individuals susceptible to infection: S1 denotes 
circumcised men not at risk of infection, S2 circumcised men at risk of infection, S3 non-circumcised 
individuals at risk of infection and S4 non-circumcised individuals who are not at risk of infection. I1 denotes 
individuals in the earlier infection state who have CD4 counts above 350 and I2 individuals in the second later 
infection state who have CD4 counts below 350. EART and LART denote individuals receiving early and late 
ART respectively. Sex and variation in propensity for risky sexual behaviour are not explicitly incorporated in 
the model. 

Individuals enter the modelled population at age 15. The number of individuals entering the population is 
denoted b. The proportion of individuals entering the population who are not at risk of infection (τ), and the 
proportion who are circumcised (c) determine how individuals are distributed across states S1 to S4 at model 
entry. The model is calibrated to a set of region-specific estimates of HIV prevalence for the year 2013. This is 
achieved by identifying the value of τ that minimises the sum of squared differences between the estimates of 
HIV prevalence and the model prediction of HIV prevalence for each region. This allows differences in sexual 

behaviours across regions to be reflected in the model. λC and λNC describe the force of infection in circumcised 
and uncircumcised individuals, respectively. σ describes the rate of progression from infection state I1 to I2. 
Individuals face different mortality rates depending on their health state. All individuals face a risk of leaving 

the sexually active population of μG, individuals with early stage infection face an additional risk of death (at 

rate μE); as do individuals receiving late ART (μL) and those who are untreated and in the more severe infection 

state (μI). The birth rate is (μG +g) where g represents the population growth rate. 𝜙𝐸 and 𝜙𝐿 denote the 

proportion of those eligible for early and late ART who receive treatment, respectively. In addition the dashed 
arrows indicate one-off transitions possible at discrete points in the model. These are used to reflect immediate 
scale up of interventions as discussed below.  
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Figure S1: Schematic diagram of transmission model. Squares describe health states. Arrows show possible 
transitions and arrow labels indicate transition rates. Individuals can exit the sexually active population from all 

states at rate 𝜇𝐺 (not shown).  

 

The model is described by the following differential equations:  𝑑𝑆1𝑑𝑡 =  𝑏𝜏𝑐 − 𝜇𝐺𝑆1         

 
𝑑𝑆2𝑑𝑡 =  𝑏(1 − 𝜏)𝑐 − (𝜆𝐶 + 𝜇𝐺)𝑆2         

 
𝑑𝑆3𝑑𝑡 =  𝑏(1 − 𝜏)(1 − 𝑐) − (𝜆𝑁𝐶 + 𝜇𝐺)𝑆3     

𝑑𝑆4𝑑𝑡 =  𝑏𝜏(1 − 𝑐) − 𝜇𝐺𝑆4           

 𝑑𝐼1𝑑𝑡 =  (1 − 𝜙𝐸)(𝜆𝐶𝑆2 + 𝜆𝑁𝐶𝑆3) − (𝜎 + 𝜇𝐺 + 𝜇𝐸)𝐼1           

 
𝑑𝐼2𝑑𝑡 = (1 − 𝜙𝐿)𝜎𝐼1 − (𝜇𝐺 + 𝜇𝐼)𝐼2        

 
𝑑𝐸𝐴𝑅𝑇𝑑𝑡 =  𝜙𝐸(𝜆𝐶𝑆2 + 𝜆𝑁𝐶𝑆3) − (𝜇𝐺 + 𝜇𝐸)𝐸𝐴𝑅𝑇        
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𝑑𝐿𝐴𝑅𝑇𝑑𝑡 = 𝜙𝐿𝜎𝐼1 − (𝜇𝐺 + 𝜇𝐿)𝐿𝐴𝑅𝑇 

The force of infection is described by the following equations: 

𝜆𝐶 = (1 − 𝜀𝐶)𝛽 (𝐼1 + 𝐼2 + (1 − 𝜀𝐴)(𝐸𝐴𝑅𝑇 + 𝐿𝐴𝑅𝑇))(𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝐼1 + 𝐼2 + 𝐸𝐴𝑅𝑇 + 𝐿𝐴𝑅𝑇) 

𝜆𝑁𝐶 = 𝛽 (𝐼1 + 𝐼2 + (1 − 𝜀𝐴)(𝐸𝐴𝑅𝑇 + 𝐿𝐴𝑅𝑇))(𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝐼1 + 𝐼2 + 𝐸𝐴𝑅𝑇 + 𝐿𝐴𝑅𝑇) 

where 𝜀𝐶 is the reduction in the risk of acquisition of HIV in individuals who have been circumcised, 𝛽 is the 

rate of transmission and 𝜀𝐴 is the reduction in the rate of transmission from individuals receiving early or late 
ART. 

b is determined by the population 15 years prior to the current time period to avoid the choice of interventions 
impacting on the number of individuals entering the population.  

The model focuses on intervention choices faced in 2015 and the impact of these choices over the period 2015-
2030. To accurately reflect the evolution of the epidemic we also include intervention use prior to 2015. In 2006 
there is an immediate scale up of ART treatment for those living with late stage infections (shown by the dashed 
arrow from I2 to LART) and in 2006-2015 there is a gradual scale up in the proportion of those progressing to 
late stage infection who receive ART. There is also a region-specific baseline level of circumcision (c) 
throughout 1980-2030. No provision of early ART is included prior to 2015. 

During the intervention period (2015-2030) a proportion (𝜙𝐿) of those progressing from early to late stage 

infection receive ART. This proportion can range from 0 to 80%, as up to 80% of individuals with late stage 

infection can be identified and are willing to undergo treatment.(1) A proportion (𝜙E) of newly infected 

individuals and individuals infected prior to 2015 receive early ART (the latter shown by the dashed arrow from 
I1 to EART). This proportion can range from 0 to 73% as up to 73% of individuals with early stage infection 
can be identified and are willing to undergo treatment.(2) A target circumcision rate is set and at the beginning 
of the intervention period individuals are moved from state S4 to S1 and from S3 to S2 to meet this target, as 

shown by the dashed arrows. The number of people who make the transition from S3 to S2 (𝜌𝑎𝑟) and S4 to S1 

(𝜌𝑛𝑎𝑟) are:  𝜌𝑎𝑟 = (𝑐 + ϕC) ∙ (𝑆2 + 𝑆3) − 𝑆2 𝜌𝑛𝑎𝑟 = (𝑐 + ϕC) ∙ (𝑆1 + 𝑆4) − 𝑆1 

where ϕC, is the desired increase in the proportion of individuals circumcised. We assume that it is possible for 

up to 40% of all individuals to be circumcised (i.e. approximately 80% of all males corresponding to half of the 

modelled population). The values taken by 𝜙𝐶, therefore depend on the region-specific baseline level of 

circumcision, c. For example, if the baseline level of circumcision is 25%  𝜙𝐶 can take values of between 0% 

and 15%.  

Any combination of these coverage levels for circumcision, early ART and late ART can be selected by 

choosing the corresponding values for 𝜙𝐿, 𝜙𝐸 and 𝜙𝐶. The way in which coverage levels are selected is 

determined by the resource allocation component of the model, which is discussed in the next section.   

Each health state is associated with a different health related quality of life weight to reflect differences in the 
morbidity of individuals in the model. Costs are incurred for each circumcision, each year of ART and each HIV 
test required. Early ART involves active outreach to identify HIV positive individuals in the community, and 
therefore incurs a testing cost. The number of tests is calculated by multiplying the numbers of individuals 
initiating early ART by the number of individuals who must be tested to identify each HIV positive individual.  

Costs depend upon the scale of intervention provision due to both the need to employ additional outreach 
measures, such as travel vouchers, to achieve higher coverage levels, and economies of scale. We follow the 
approach taken by Meyer-Rath et al. in order to quantify these effects.(3) If total coverage exceeds 40% costs 
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increase by a percentage (v) to reflect outreach activities. This percentage increase depends upon the coverage 
level and elasticity of demand (e):  

𝑣 = ln ( 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒1 − 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) − ln ( 0.401 − 0.40)𝑒  

Outreach costs are calculated independently for early and late ART as these interventions relate to distinct 
populations of individuals. Increasing returns to scale are modelled for a proportion (α) of total costs. These 
costs respond to scale of provision according to a scale elasticity of γ, where γ=0.5 implies that a 10% increase 
in the number of individuals receiving an intervention results in a 5% increase in costs. The returns to scale 
associated with ART depend on the total number of individuals receiving late or early ART.  

The parameter values informing the transmission model are shown in Table S1. 

Uncertainty in the following key parameters is reflected in the model: prevalence in the year 2013 in each 

region; the effect of ART and circumcision on transmission (𝜀𝐴, 𝜀𝐶) and the cost of circumcision and ART 
therapy. All other parameters within the model are held fixed. Parameter uncertainty is propagated through the 
model via Monte Carlo simulation, this involved randomly sampling from a distribution assigned to each 
uncertain parameter and running the model for each set of sampled parameters, 600 simulations were used. Each 
simulation represents one ‘realisation’ of uncertainty or ‘state of the world’ that could occur. Each parameter is 
sampled independently across regions to reflect differences in epidemiology and ability to deliver care 
effectively and efficiently. 

The model provides estimates of total costs and total health outcomes, expressed as quality adjusted life years 
(QALYs), for each region.  

  

Table S1: Summary of input parameters applied in the transmission model 

Variables Value Source 

Population characteristics   
 

Population growth rate, 𝑔 3% per annum Representative of sub-Saharan 
African setting (4) 

Time   

Model time horizon 50 year Assumption 

Time step used in solving ordinary differential equations  0.05 (i.e. 20 steps per annum) Assumption 
Intervention implemented Year 35 of model (2015) Assumption 

Initial conditions for transmission model   

Initial population size in each province (aged 15-49 years) 

Central                                 680,160  

Data taken from 
epidemiological model of sub-
Saharan Africa and reflect 
calibration to a range of key 
data sources.(5) 

Copperbelt                              1,023,700  

Eastern                                 827,260  

Luapula                                 514,680  

Lusaka                              1,140,500  

Northern                                 572,540  

Northwestern                                 376,360  

Southern                                 827,480  

Western                                 470,660  
Proportion of population initially HIV infected in 1980 0.5% Assumption 

Proportion of population entering circumcised group at model entry, c, by 
province 

  

Central 2.4% Data taken from 
epidemiological model of sub-
Saharan Africa and reflect 

Copperbelt 7.7% 

Eastern 0.8% 



6 

 

Variables Value Source 

Luapula 4.6% 
calibration to a range of key 
data sources.(5) 

Lusaka 4.8% 

Northern 2.4% 

Northwestern 36.3% 

Southern 1.2% 

Western 18.7% 
Proportion of prevalent late stage infections receiving ART 2006 
Proportion of incident late stage infections receiving ART 
2006,07,08,09,10,11,12-15 

80% 
0%, 13%, 27%, 40%, 53%, 

67%, 80% 

Reflects typical late ART scale 
up to universal coverage.  

   

Epidemiological conditions   

HIV prevalence in 2013 amongst individuals aged 15-49 years in each 
region (mean, 95% confidence interval, beta distribution used to represent 
uncertainty) 

 Data taken from 
epidemiological model of sub-
Saharan Africa and reflect 
calibration to a range of key 
data sources.(5)  
 
UNAIDS present “uncertainty 
bounds” around estimates of 
HIV prevalence that aim to 
reflect the quantity of data, it’s 
relevance to the population of 
interest and the degree to which 
assumptions were required to 
generate estimates. If these 
uncertainty bounds were taken 
to represent 95% confidence 
intervals they would imply 
standard errors values that were 
approximately 3-6% of the 
mean values. As in this model 
prevalence is the only source of 
uncertainty relating to the HIV 
epidemic that we reflect we 
assume that the standard errors 
are approximately 20% of the 
mean values. 

Central 14.7 (8.9, 20.4) 

Copperbelt 11.8 (7.2, 16.4) 

Eastern 10.5 (6.4, 14.6) 

Luapula 10 (6.1, 13.9) 

Lusaka 18.2 (11, 25.3) 

Northern 5.9 (3.6, 8.2) 

Northwestern 5.4 (3.3, 7.5) 

Southern 12.7 (7.7, 17.7) 

Western 13.3 (8.1, 18.6) 

Rate of transmission and progression   

Rate of transmission in sexually active population, 𝛽 0.60 As there is no risk structure in 
the model a high transmission 
rate is used to reflect conditions 
which would result in high HIV 
prevalence: high partner change 
rates, high numbers of sex acts 
and low condom use. 

Rate of progression from early to late stage infection, 𝜎  0.11 Time from early to late infection 
of ~9 years (6) 

Intervention parameters   

Target increase in proportion circumcised, 𝜙𝐶  0-39% depending on region as 
regions have different baseline 
levels of circumcision 

The maximum proportion of 
men circumcised (39%) 
corresponds to a 78% increase 
in circumcision coverage in men 
(as we assume men account for 
half of the modelled 
population). 
 

Proportion eligible receiving late ART, 𝜙𝐿 0-80% 80% generally considered to 
represent universal coverage (1).  

In the presence of intensified outreach for ART, the proportion eligible to 
receive ART prior to late stage infection , 𝜙𝐸 

0-73% 73% used to reflect maximum 
expected based on current 
targets(2) 

Reduction in risk of acquiring HIV infection in those circumcised, εc  
(mean (95% CI), beta distribution used to reflect current uncertainty) 

0.54 (0.38, 0.66)  Meta-analysis of key 
randomised controlled trials.(7) 

Reduction in rate of transmission for early or late ART treatment, εA  
(mean (95% CI), distribution used to reflect current uncertainty) 

0.86 (0.66, 0.94) Reflects meta-analysis of 
comparative studies.(8)   

Mortality rates   
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Variables Value Source 

Rate of exit from sexually active population, 𝜇𝐺 0.029 Assume in sexually active 
population for ~35 years 

Rate of death in individuals with early stage infection, 𝜇𝐸 0.029 Assumption 

Rate of death in individuals receiving late ART treatment, 𝜇𝐿 0.050  ~20 years life expectancy on 
ART(9) 

Rate of death in untreated late stage HIV infected individuals, 𝜇𝐼  0.173 ~5.8 years life expectancy (6) 

Health-related quality of life    

QALY weight for all susceptible individuals (S1, S2, S3, S4) 1 

1-general population-derived 
DALY weights {Anderson, 
2014 #1;Eaton, 2013 #20} 

QALY weight for I1 infected state 0.947 

QALY weight for I2 infected state 0.453 

QALY weight for EART 0.947 

QALY weight for LART 0.947 

Unit costs, US dollars (2015)   

HIV test per individual tested $13 Data from the Optimising the 
Response in Prevention: HIV 
Efficiency in Africa (ORPHEA) 
project indicate an average cost 
for Zambia of $13 for HIV 
testing and counselling for 2013 
(10). This study used a 
representative sample of 
geographies; facility 
ownership/management (e.g. 
government vs. non-
government) and level of 
service provision (e.g. hospitals 
and primary care) and collected 
data from databases, records and 
reports and by time motion 
study.  
 

Circumcision intervention per circumcision (mean (95% confidence 
interval), gamma distribution used to reflect current uncertainty 

$52 ($32,$72) Martin et al.(11) report a cost of 
$47 for 2007, based on detailed 
questionnaires filled in by 
interview with clinical and 
administrative staff at health 
facilities in Zambia and by 
various officers in the ministry 
of Health. Initial data from 
Zambia reported by the 
ORPHEA project indicate a 
similar value of $51 for 2013 
and this estimate is used in the 
model.(12) Estimates of 
uncertainty were not reported 
and are therefore based on an 
assessment by the study team.   

   
Early and late ART intervention per individual per annum (mean (95% 
confidence interval), gamma distribution used to reflect current uncertainty 
 

$273 ($167, $380) gamma Data from the Multi-Country 
Analysis of Treatment Costs 
(MATCH) study are considered 
to be the most representative 
data to date with stratified 
sampling according to facility 
size or type (small clinic vs. 
large hospital), location (rural 
vs. urban), and funding, and 
collation of data from a range of 
facility documentation.(13) The 
study reported mean costs per 
person per year of $251 for 
2010. Although this cost may 
have dropped due to ARV 
prescribing and price changes, 
other changes such as viral load 
monitoring have had a 
counteracting effects and recent 
policy briefings from the 
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Variables Value Source 

National HIV/AIDS/STI/TB 
council support a cost estimate 
of $265/$270 for 2016-2020 (in 
2015 $).(14) Estimates of 
uncertainty were not reported 
and are therefore based on an 
assessment by the study team.    

Outreach and production function parameters   

Elasticity of demand, e (ART and circumcision) 10 Reflects outputs from Meyer-
Rath et al. (3), no data for 
circumcision so assumed equal 
to ART(15) 

Proportion of costs that are scale dependent, α (ART and circumcision) 0.33 Previous studies in ART (3) and 
circumcision(16) 

Scale elasticity, γ (ART) 0.80 Meyer-Rath (3) 

Scale elasticity, γ (circumcision) 0.50 Bollinger et al. (16) 
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The model is calibrated to a set of region-specific estimates of HIV prevalence for the year 2013.  These were 
sourced from an epidemiological model to reduce HIV incidence across sub-Saharan Africa (McGillen et al, 
2016) {McGillen, 2016 #60}.  The HIV prevalence estimates of McGillen et al (2016) reflected calibration to a 
range of key data sources, including – but not limited to – Demographic and Health Survey (DHS) data {Central 
Statistical Office (CSO) [Zambia], 2015 #70}.  The difference in HIV prevalence (%) in the year 2013 among 
individuals aged 15-49 years in each region between the two data sources, McGillen and DHS Survey for 2013-
2014 is shown in Figure S2(a).  The standard error or confidence intervals for the DHS estimates were not 
reported by region, making it difficult to assess whether the estimates overlap or not.  Any differences noted 
between the two sources will be due to the structure of the model and assumptions.  Importantly, the model is 
not intended to accurately reflect HIV prevalence and epidemiology in Zambia, or to inform decision making in 
Zambia. Instead the model has a set of geographic units with a range of epidemiological conditions and 
magnitudes of epidemic that is consistent with several real countries, including Zambia 

The uncertainty around the prevalence estimates included in the model in each region is based on a beta 
distribution as shown in Figure S2(b).  

 

 

Figure S2(a): HIV prevalence estimates (%) by region among individuals aged 15-49 years  
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Figure S2(b): Uncertainty in HIV prevalence estimates by region  

 

Figure 3 shows the trends in the epidemic predicted by the model over the study period. These outputs represent 
an investment strategy in which the baseline scenario is continued (i.e. 80% of new late stage infections receive 
ART and there is no active circumcision intervention or provision of early ART). The rapid improvements in 
outcomes observed in the year 2006 (or spike in outcomes) reflect the initial scale-up to 80% of ART among 
prevalent cases of HIV with CD4 counts below 350 in this year. We included the assumption that provision of 
late ART is scaled up until all those with late stage disease receive it (reflecting typical late ART scale up to 
universal coverage levels of 80%).  In the year 2006, there is an immediate scale up of ART treatment for those 
with late stage infections.  This means that the proportion of prevalent late stage infections receiving ART in the 
year 2006 suddenly becomes 80%. Of course, the model could provide for a gradual scale-up, but this makes no 
difference to the outcomes of interest here. From 2006-2015, there is a gradual scale up in the proportion of 
incident late stage infections who receive ART from 0% - 80%.  From 2015 onwards, the model focuses on the 
policy intervention choices (early ART, circumcision, late ART) and the impact of these choices over the period 
2015-2030.  Therefore, the main findings of the model are driven by what happens after 2015 since this is when 
the interventions are introduced. 
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Figure S3: Model projections for modelled population (adults aged 15-49) 

 

2 Detailed description of resource allocation model 

We represent resource allocation as a two-stage decision making process.(17) The first stage involves planning 
coverage levels for each intervention in each region, and the corresponding resources that will be allocated. 
Decision makers are assumed to base their plans on the expected costs and health benefits of all possible ways in 
which the resources could be allocated. We assume that decision makers will select the resource allocation that 
maximises health across regions subject to the national HIV budget.  

The expected costs and health benefits used in this process reflect the average costs and health benefits across 
all possible eventualities that could occur (or across all ‘realisations’ of uncertainty). In reality, only one of these 
eventualities occurs and the decision maker must react to this. If they don’t and instead stick to their original 
plans then they may end up exceeding allocated budgets or being left with unspent funds. We therefore model a 
second stage in which decision makers respond to the realised eventuality. These two stages are described in 
detail in the following sections.  

We run resource allocation model for a range of budgets. Resch et al (18) have estimated total AIDS 
expenditure for 12 low- and middle- income countries (Botswana, Côte d’Ivoire, Ethiopia, Kenya, Mozambique, 
Namibia, Nigeria, Rwanda, South Africa, Tanzania, Uganda, and Zambia). These countries account for 52% of 
AIDS cases worldwide. Using the most recent data available for each country (which ranged from 2009/10 to 
2012/13) in combination with population data from the World Bank (4) implies a total annual HIV budget of $3-
$175 per capita. Ten of the twelve countries had a total annual HIV budget of $3-$32 per capita. The remaining 
countries - Botswana and Namibia - had much higher annual budgets of $175 and $136 per capita respectively. 
We therefore explored annual budgets of $3-32 per capita, scaling these up to reflect the total population in our 
example at the start of the intervention period and the 15 year time horizon. This resulted in a budget range of 
$0-$3,000 million. We present results in this paper for budgets of $0-$2,200 million  as at budgets of $2,200 
million all modelled investment opportunities had been exhausted.  

2.1 Planning the HIV investment strategy 

We constructed an optimisation model to identify the allocation of resources across geographical areas and 

interventions that maximises population health. This model selects coverage levels for each intervention (𝜙𝐿, 𝜙𝐸 

and 𝜙𝐶) in order to maximise total health benefits (QALYs) subject to expected total costs being within the HIV 

budget. As the impact of the interventions is interdependent we model each possible combination of coverage 
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levels for early ART, late ART and circumcision. A region could implement any combination of coverage 
levels, we refer to each combination as an ‘intervention set’. 

The optimisation model takes the form of a linear integer mathematical programme, the goal is to maximise the 
objective function:  

max𝑋 ∑ ∑ 𝐻𝑖𝑗 𝑥𝑖𝑗𝐼
𝑖=1

𝐽
𝑗=1  

Subject to three constraints:  𝑥𝑖𝑗 ∈ (0,1)    [constraint 1] ∑ 𝑥𝑖𝑗𝐼𝑖=1 = 1 for j = 1, … , J  [constraint 2] ∑ ∑ 𝐶𝑖𝑗 𝑥𝑖𝑗𝐼𝑖=1𝐽𝑗=1  ≤  𝐵   [constraint 3] 

where 𝐽 denotes the number of regions (𝑗 = 1, … , 𝐽) and 𝐼 denotes the number of possible intervention sets (𝑖 = 1, … , 𝐼).  The set of decision variables is defined by 𝑋 = (𝑥𝑖𝑗 , 𝑖 = 1, … , 𝐼;  𝑗 = 1, … , 𝐽), where 𝑥𝑖𝑗 
represents the binary choice of whether or not intervention set 𝑖 is selected for region 𝑗. The expected health 

outcomes, and costs associated with each intervention set in each region are denoted by 𝐻𝑖𝑗 and 𝐶𝑖𝑗, respectively.   

The objective function specifies that the goal is to maximise total health across regions. The optimisation 

process selects values for the decision variables (𝑥𝑖𝑗) that will maximise total health subject to three constraints: 

(1) each decision variable must take the value 0 or 1 i.e. an intervention set can be selected or not; (2) within 
each region only one intervention set can be selected; and (3) the total cost of the selected intervention sets 
across regions must not exceed the national budget (B).  

In addition, the decision maker faces a constraint that universal access to late ART must be offered to all those 
who can feasibly be reached for treatment (80% of all late stage infections (1)), and where universal access is 
unaffordable, availability of late ART should be the same across regions. The coverage levels for late ART, 

circumcision, and early ART associated with each intervention set are 𝜙𝐸[𝑥𝑖𝑗], 𝜙𝐿[𝑥𝑖𝑗] and 𝜙𝐶[𝑥𝑖𝑗] respectively. 

The first component of the additional constraint is:  

1𝐽 ∑ ∑ 𝑥𝑖𝑗 ⋅ 𝐼(𝜙𝐿[𝑥𝑖𝑗] = 0.80) −𝐼
𝑖=1

𝐽
𝑗=1 ∑  𝑥𝑖𝑗 ⋅ 𝐼(𝜙𝐸[𝑥𝑖𝑗] + 𝜙𝐶[𝑥𝑖𝑗] > 0)𝐼

𝑖=1 ≥ 0  𝑓𝑜𝑟 𝑗 = 1, … , 𝐽 

where 𝐼 denotes an indicator function that takes a value of 1 if the condition is true and zero otherwise. This 
constraint requires that the all regions must have implemented late ART at 80% (first term) if a region has 
implemented early ART or circumcision (second term).  

The second component requires that coverage of late ART is equal across regions: 

1𝐽 ∑ ∑ 𝜙𝐿[𝑥𝑖𝑗] −𝐼
𝑖=1

𝐽
𝑗=1 ∑ 𝜙𝐿[𝑥𝑖𝑗]𝐼

𝑖=1 = 0 𝑓𝑜𝑟 𝑗 = 1, … , 𝐽 

This is achieved by requiring the average late ART coverage (first term) to equal the regional late ART 
coverage (second term) for every region.  

2.2 Responding to the realised state of the world  

We model a series of different policy responses to each realisation of uncertainty. As we do not know which 
realisation will occur, the outcomes associated with each policy are calculated for each realisation and then 
averaged across all realisations.  
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2.2.1 Regional policy under current information 

Under the regional policy under current information each region is required to remain within their planned 
regional budget. To achieve this spending on each intervention in each region is maintained at the planned level. 
This does not guarantee that regions will achieve the coverage they planned. This is illustrated in Figure S4 
which shows the response to uncertainty for a single intervention in a single region. Based on expected costs and 
effects the decision maker plans to implement 60% coverage at a cost of $1 million. Panel (a) of Figure S4 
shows that if actual costs are higher than expected (e.g. due to a larger number of individuals presenting for 
treatment, or higher than expected treatment costs) the decision maker must cut coverage to 30% to remain 
within budget. When actual costs are lower than expected, coverage is expanded (Figure S4 panel (b)). If the 
available budget exceeds the amount required to fund the maximum possible coverage (here 80%), then the 
difference between the available funds and the cost of achieving maximum coverage is wasted.  
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(a) Response to actual costs exceeding expected costs 

 

(b) Response to actual costs falling below expected costs 

Figure S4: Regional budget policy (one region, one intervention): Circles indicate planned coverage, squares 
indicate realised coverage. Panel (a) shows that when costs exceed those expected coverage must be reduced. 
Panel (b) shows that when costs are lower than expected coverage can be expanded. If the original planned 
spending exceeds the cost of maximum coverage (here 80%) funds will be wasted.  

 

2.2.2 Perfect information 

It is possible to improve the information available to inform resource allocation decisions. For example, large 
surveys could be conducted to improve our understanding of regional epidemiological conditions. We assess the 
maximum possible value of improving the information available to decision makers by looking at the health we 
could generate if we had ‘perfect’ information. If we had perfect information we would know exactly which 
eventuality would occur and could perform the initial optimisation described in Section 2.1 using observed costs 
and benefits (rather than expected costs and benefits).  To establish the value of perfect information we therefore 
run the optimisation analysis under each realisation of uncertainty and average the results across all realisations 
of uncertainty.  

 

2.2.3 National policy under current information  

Under the national policy plans are only revised to the extent that national HIV costs under- or over-run the 
national HIV budget. Under this policy funds are fungible across interventions and regions to support planned 
coverage levels. Any surplus at the national level is used to increase funding beyond that required to meet the 
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original plans by the same proportion for each intervention in each region. Any deficit at the national level 
results in the funds required to achieve planned coverage being cut by the same proportion. 

The implications of the national policy are shown in Figure S5 where we have two interventions and one is 
highly cost-effective (A) whereas the other is less cost-effective (B). Under the regional policy the decision 
maker plans to implement 60% coverage for both interventions but actually delivers coverage of 45% for A and 
70% for B (Figure S5 Panel (a)). Under a national policy (Figure S5 Panel (b)) plans are identical to those made 
under the regional policy. Although the cost of interventions A and B are not as expected, the total costs are 
within the originally planned total cost. Funds can therefore be re-allocated between regions to achieve the 
original planned coverage levels of 60% for intervention A and B.  

 

2.2.4 Contingency fund policy under current information  

When a contingency fund is used, plans are made based on the total HIV budget less the amount dedicated to the 
contingency fund. Plans are therefore more modest than under other policies. The contingency fund exists to 
avoid programmes being cut back due to funding issues. If there are sufficient funds to pay for the planned 
programme then this policy works in exactly the same way as the regional policy though with a lower budget. 
When there are insufficient funds to pay for the planned programme the contingency fund can be used. If the 
contingency fund is insufficient to pay for all programme over-runs, a reduced claim is met (and claims are 
reduced by the same proportion across all programmes). 

If implemented for one intervention in one region the contingency fund will always result in lower coverage and 
health than the regional policy. This is because when a contingency fund operates spending on the intervention 
will always be equal to, or lower than, spending under the regional policy.1 However, when there are multiple 
interventions or regions the contingency fund can result in improved health compared to the regional policy. 
Under the contingency fund 20% of the total $3m budget ($0.6m) is set aside as contingency (Figure S5 Panel 
(c)). This results in a lower investment in intervention B (as this is less cost-effective than intervention A) which 
has a planned coverage of 40%, and an actual coverage of 45%. The cost over-run for intervention A is met by 
the contingency fund, allowing planned coverage to be preserved at 60%. In this instance the contingency fund 
may improve population health compared to the regional policy as it supports coverage of the more cost-
effective intervention. This will not be the case in all realisations of uncertainty. The contingency fund may 
produce less health than the fixed regional budget policy under a range of conditions. If there are under-runs in a 
number of programmes this will mean that the contingency fund is partially or completely unspent. If the 
contingency fund preserves planned programmes in states of the world in which they are particularly cost-
ineffective (e.g. due to high costs) then this would also reduce health. Finally, if the contingency fund results in 
plans that involve maximum coverage for more interventions this will increase the likelihood of wasted funds.  

  

                                                           
1 This, can be shown by looking at the expenditure on the intervention in each scenario:  
Regional policy = min(total budget, spend required to deliver maximum coverage), 
Contingency fund, under-run = min(total budget – contingency fund, spend required to deliver maximum coverage), 
Contingency fund, over-run = min(total budget, spend required to deliver planned coverage). 
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(a) Regional policy 

 

(b) National policy 

     

 

(c) Contingency fund policy 

Figure S5: Comparison of regional policy, national policy and contingency fund policy (one region, two 

interventions): Circles indicate planned coverage, squares indicate realised coverage. 

 

 

 

60

1m

Actual cost A

45

2m

70

Spending

($)

Coverage (%) 

Expected cost A

Actual cost A

Expected cost B

Actual cost B

Coverage 

Spending

60

1m

30

2m

70

1.8m

1.2m Expected cost A

Actual cost A

Expected cost B

Actual cost B

Coverage (%) 

1m

1.4m

40 45

1.2m Expected cost A

Actual cost A

Expected cost B

Actual cost B

60

Spending

($)



17 

 

3 Implementation of simulation modelling  

Estimating the health generated under perfect information is relatively straightforward. To estimate the health 
expected under perfect information the optimisation process is run for each realisation of uncertainty and the 
corresponding health is recorded. The expected health is then estimated as simply the average across all 
realisations of uncertainty. The implementation is more complex for the current information scenarios. In each 
of these scenarios the response to uncertainty is either to preserve or adjust spending. There is therefore a pattern 
of spending on each intervention in each region that we expect for each realisation of uncertainty. However, 
spending on each intervention is not an input in the transmission model. A matching process is therefore used to 
identify the intervention set that most closely produces the spending pattern we expect (in each region). This 
allows the health associated with the spending pattern to be estimated. Again, this is estimated for each 
realisation of uncertainty, and then averaged across all realisations of uncertainty.  

The transmission model is run for all intervention sets defined by evaluating interventions at 1% increments 

(ART interventions) and 2% increments (circumcision intervention) in coverage levels (𝜙𝐿 = 0%, 1%, … ,80%; 𝜙𝐶 = 0%, 2%, … ,40%; and 𝜙𝐸 = 0%, 1%, … ,73%). In total 124,173 intervention sets (81*21*73) are therefore 

evaluated in each region and for each realisation of uncertainty. The exact spending pattern of interest will 
generally not have been observed in this set of transmission model runs. The intervention set that most closely 
matches the required spending pattern is therefore identified using a two stage process. Firstly, the set of 
‘affordable’ interventions are identified. Affordable interventions are those which offer spending on each 
intervention component (late ART, circumcision and early ART) that is less than or equal to that of interest. 
Secondly, amongst these affordable intervention sets the absolute difference between spending on each 
intervention and the spending expected is calculated. These absolute differences are then summed across the 
three interventions and the intervention set with the smallest sum of absolute differences is selected as the best 
match. In some regions of Zambia the proportion of individuals entering the modelled population who are 
already circumcised is relatively high (see Table S1). Under all policies the maximum intervention level for 
circumcision is set so that the total population coverage for circumcision cannot exceed 40% for all individuals 
(i.e. 80% for men), this results in variation across regions in the extent to which circumcision coverage can be 
increased by the HIV programme. 

 

4 Additional results: size of the contingency fund  

The contingency fund could theoretically be set at any size between 0 and 100% of the total budget. We 
explored contingency funds of 5 to 50% of the budget in 5% increments. The health generated by different 
contingency funds is shown in Figure S6 for four national budgets. The optimal size of the contingency fund 
will depend on the context and the national HIV budget. As the size of the contingency fund expands the 
benefits it offers in terms of insurance increase, however it becomes less likely that all contingency funds will be 
needed and funds are therefore more likely to be wasted. Furthermore, as the contingency fund expands the 
opportunity cost of the fund also increases as more and more valuable investment plans are displaced. In our 
analysis, where contingency funds did improve health (i.e. at higher national HIV budgets), funds of around 5% 
of the total HIV budget generated the most health and are therefore presented in the main text.  
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Figure S6: Health generated by contingency funds of 5-50% of total national HIV budget, at a range of 

national HIV budgets   

5 Software and code  

All modelling was conducted in the statistical programming software R, version 3.2.2 (19) , the package 
data.table (20) was used to manage and manipulate large datasets. Optimisation of the linear integer program 
was performed using Gurobi software version 6.0.4 called from R (21). The code below shows provides key 
excerpts from the resource allocation code to facilitate use by other researchers. 

  
########################################################################### 
#Part 1: Create function to identify health-maximising HIV investment 
strategy 
 
LP<-function(h,b,descriptors){ 

   
#The arguments of the function are h= vector of health benefits for each 
combination of coverage levels for each region; b=vector of costs for each 
combination of coverage levels for each region; descriptors= matrix of the 
corresponding coverage levels for each intervention (labelled IntA, IntB, 
IntC) and intervention level costs (meancostA, meancostB, meancostC).  
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  #generate a model object 
  model<-list() 

  #assign this as a maximisation problem 
  model$modelsense<-"max" 

  #assign the choice variable as binary i.e. each combination of coverage 
levels can either be implemented or not within a region.  

  model$vtype<-'B'  

  #set objective function as health 
  model$obj<-c(t(h)) 

  #set matrix of constraints 
  #specify the dimensions of the matrix  

model$A<-
matrix(rep(NA,no.interventions*(no.regions+1)*no.regions),nrow=1+no.r
egions) 

#set the left hand side of the constraints (i.e. the coefficients on the 
binary choice variables)  

  #constraint 1: budget cannot be exceeded 
  model$A[1,]<-c(t(b)) 
  #constraint 2: each region can only implement one set of coverage levels  

model$A[2:(no.regions+1),]<- 
matrix(c(rep(c(rep(1,no.interventions),rep(0,no.interventions*no.regi
ons)),no.regions-1),                                     
rep(1,no.interventions)),byrow=TRUE,ncol=as.numeric(no.interventions*
no.regions)) 

  #specify sign of the constraints                    
model$sense <- c('<=', rep(c('='),no.regions)) 

    #specify right hand side of the constraints (where budget represents 
the total national HIV budget available across regions)  

model$rhs <- c(budget, rep(c(1),no.regions)) 

   
   #add entitlement constraint 
   #set the left hand side of the constraints 

model$A<-rbind(model$A,model$A[2:(no.regions+1),]*matrix(rep((-
no.regions)*((descriptors$IntA+descriptors$IntC)>0),no.regions),nrow=
no.regions,byrow=TRUE)+                     
matrix(rep(descriptors$IntB==0.8,no.regions),nrow=no.regions,byrow=TR
UE),model$A[2:(no.regions+1),]*matrix(rep(descriptors$IntB,no.regions
),nrow=no.regions,byrow=TRUE)-                       
matrix(rep(descriptors$IntB,no.regions)/no.regions,nrow=no.regions,by
row=TRUE)) 

 
   #specify sign and right hand side of the constraints 

model$sense<-c(model$sense,rep(">=",no.regions),rep("=",no.regions))   
model$rhs<-c(model$rhs,rep(0,no.regions),rep(0,no.regions))            

 
  #constraint: decision options that would result in circumcision coverage 
of more than 40% cannot be selected 
 
  region_circ<-
c(0.02,0.08,0.01,0.05,0.05,0.02,0.36,0.01,0.19)[order(c(0.147, 0.118, 
0.105,0.100, 0.182, 0.059, 0.054, 0.127, 0.133))] 
  not_allowed<-((circ_level+rep(region_circ,each=no.interventions))>0.4) 
  model$A<-
rbind(model$A,model$A[2:(no.regions+1),]*matrix(rep(not_allowed,no.regions)
,nrow=no.regions,byrow=TRUE)) 
  model$sense<-c(model$sense,rep("=",no.regions))                
  model$rhs<-c(model$rhs,rep(0,no.regions)) 

   
   #run optimisation model  

results<-gurobi(model,params)  
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  #extract results (x represents the binary choice regarding the 
combination of coverage levels to use in each region) 
  x<-results$x 
 
  #store results 
  #note bregion is expected total expenditure at the regional level, B is 
the equivalent at the national level 
  choice<-
data.table(Region=1:9,descriptors[x==1,],bregion=b[x==1],qalys=h[x==1],B=su
m(b[x==1])) 
  
setnames(choice,names(choice),c(names(choice)[1],c("planA","planB","planC",
"meancostA","meancostB","meancostC”),names(choice)[8:10])) 
  return(choice) 
} 
 

##################################################################################### 

#Part 2: Run this for each budget using expected costs and QALYs in order to determine the planned investment 
strategy 

#read in file containing expected (across all simulations) costs and 
outcomes associated with each possible coverage combination in each region 
as output from analysis of transmission model. 
expected<-fread("expected.csv",header=F,sep=",") 
setnames(expected,old=c("Region","RegionPrev","IntA","IntB","IntC","meancos
tA","meancostB","meancostC","meancost","meanQALYs")) 
circ_level<-expected[,.(IntC)] 
 
#set national HIV budgets 
budgets<-(seq(0,2.5E+09,2.27E+07)) 
#extend budgets to include those that form the basis of investment planning 
under the contingency policy 
  surplus<-seq(0,50,5)/100 
  budgets<-(1-surplus)*budgets 
  no.budgets<-length(budgets) 
   
#create matrix to record choices made in HIV investment plan   
myopic_allbudgets<-
data.frame(matrix(rep(NA,no.regions*no.budgets*11),ncol=11)) 
colnames(myopic_allbudgets)<-
c("Region","planA","planB","planC","meancostA","meancostB","meancostC","bre
gion","meanQALYs","B","National_Budget") 
 
for (j in 1:no.budgets) {   
  budget<-budgets[j] 
  #run optimisation (LP function from Part 1) to identify optimal choice 
  myopic_choice<-
LP(h=expected$meanQALYs,b=expected$meancost,descriptors=expected[,.(IntA,In
tB,IntC,meancostA,meancostB,meancostC)]) 
  setkey(myopic_choice,Region) 
  myopic_choice<-cbind(myopic_choice,National_Budget=budget) 

  
    if(j==1) {myopic_allbudgets[1:9,]<-myopic_choice} else {myopic_ 
allbudgets<-cbind(myopic_allbudgets,myopic_choice)} 
    rm(myopic_choice) 
} 

 

##################################################################################### 
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#Part 3: Run model for each realisation of uncertainty and identify health generated under different policy 
scenarios 

 

#For each realisation of uncertainty (where sims represents an index number 
for each realisation) 
for(i in 1:length(sims)) { 
iter<-sims[i]   

   
#load in transmission data for that simulation, where transmission data 
contains the iteration index,  
#the values of uncertain parameters (prev13, epsilonart, epsiloncirc, 
artcost and circcost) for each region, as well as all possible combinations 
of coverage levels and the associated costs and qalys 
#where costs and qalys represent incremental costs and qalys compared to no 
coverage of any intervention 
data_i<-
fread(paste("Transmission_sim",iter,".csv",sep=""),header=F,sep=",") 
setnames(data_i,old=c("Iter","IntA","IntB","IntC","Region","prev13","epsilo
nart","epsiloncirc","artcost","circcost","costA","costB","costC","totalcost
","qalys")) 
setkey(data_i,Region,IntA,IntB,IntC) 
 
#identify budgets, regions and policies 
budgets<-myopic_allbudgets[,unique(National_Budget)] 
no.budgets<-length(budgets) 
policies<-c("Soft budget","National coverage","Regional spend","Perfect 
information") 
no.policies<-length(policies) 
 
#budgets of interest for non-contingency analyses, note these must be a 
subset of those examined in the myopic analysis 
no_surplus_budgets<-(seq(0,2.5E+09,2.27E+07)) 
no.no_surplus_budgets<-length(no_surplus_budgets) 
 
#Set budgets for contingency policy 
##percentage surplus investigated 
surplus<-seq(5,50,5)/100 
no.surplus<-length(surplus) 
surplus_policies<-data.frame(budget=rep(no_surplus_budgets[-
1],each=no.surplus)) 
surplus_policies$surplus<-surplus_policies$budget*surplus 
surplus_policies$decision_budget<-surplus_policies$budget-
surplus_policies$surplus 
 
#file to store iteration-specific information 
results_i<-
data.frame(matrix(rep(NA,no.regions*no.policies*no.no_surplus_budgets*12),n
col=12)) 
results_i[,1]<-rep(no_surplus_budgets,each=no.regions*no.policies) 
results_i[,2]<-rep(policies,each=no.regions) 
 
##for surplus policy 
# *2 below as regional coverage and national coverage versions of surplus 
policies 
results_surplus_i<-
data.frame(matrix(rep(NA,no.regions*no.surplus*(no.no_surplus_budgets-
1)*12),ncol=12)) 
results_surplus_i[,1]<-rep(surplus_policies$budget,each=no.regions) 
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results_surplus_i[,2]<-paste(rep(surplus*100,each=no.regions),"% 
surplus",sep="") 

 
#Function to determine health generated under different policies 
##Note SpendPlan denotes cost of original plans, bregion=planned regional 
budget, B is planned national budget, and Cost_PlanReg = cost of original 
plans for A+B+C 
scenarios1to4<-function(selected_policy) { 
  #Depending upon scenario selected calculate target spend  
    if(selected_policy=="National coverage") { 
      data[, ':=' (SpendTargetA = Cost_PlanA*B/Cost_PlanNat, 
      SpendTargetB = Cost_PlanB*B/Cost_PlanNat, 
      SpendTargetC = Cost_PlanC*B/Cost_PlanNat),by=.(Region)] 
    } else if(selected_policy=="surplus") { 
      data[, ':=' 
(SpendTargetA=(as.numeric(meancostA)>=Cost_PlanA)*as.numeric(meancostA)+ 
      
(as.numeric(meancostA)<Cost_PlanA)*(as.numeric(meancostA)+(Cost_PlanA-
as.numeric(meancostA))*min(1,surplus_current/total_claims)), 

      
SpendTargetB=(as.numeric(meancostB)>=Cost_PlanB)*as.numeric(meancostB)+ 
      
(as.numeric(meancostB)<Cost_PlanB)*(as.numeric(meancostB)+(Cost_PlanB-
as.numeric(meancostB))*min(1,surplus_current/total_claims)), 

      
SpendTargetC=(as.numeric(meancostC)>=Cost_PlanC)*as.numeric(meancostC)+ 
      
(as.numeric(meancostC)<Cost_PlanC)*(as.numeric(meancostC)+(Cost_PlanC-
as.numeric(meancostC))*min(1,surplus_current/total_claims))),by=.(Region)] 
    } else { 
      data[, ':=' (SpendTargetA = as.numeric(meancostA), 
      SpendTargetB = as.numeric(meancostB), 
      SpendTargetC = as.numeric(meancostC)),by=.(Region)] 
    } 

   
  #set NaN values generated by dividing by zero by zero (when plans are 
zero, Cost_PlanReg and Cost_PlanNat are zero) 
  data[is.nan(SpendTargetA), SpendTargetA := 0] 
  data[is.nan(SpendTargetB), SpendTargetB := 0] 
  data[is.nan(SpendTargetC), SpendTargetC := 0] 
   
  #Calculate discrepancy 
  data[,':='(DiscrepA = costA-SpendTargetA,DiscrepB = costB-
SpendTargetB,DiscrepC = costC-SpendTargetC),by=.(Region)] 

  #compute sum of absolute discrepancies 
  data[, SE := abs(DiscrepA)+abs(DiscrepB)+abs(DiscrepC)] 
  #find minimum absolute discrepancy for each region and each realisation 
of uncertainty  
  #note that this has to be within the spendtargets 
  data[,minSE := min(SE[costA<=SpendTargetA & costB<=SpendTargetB & 
costC<=SpendTargetC]),by=.(Region)] 
  #store information associated with closest spend 
  scenario_outcomes<-
data[SE==minSE,.(Region,IntA,IntB,IntC,costA,costB,costC,totalcost,qalys,sp
ent_surplus=(selected_policy=="surplus")*(B+min(surplus_current,total_claim
s)))] 
  return(scenario_outcomes) 
} 
 
for (j in 1:no.budgets) { 
  budget<-budgets[j] 
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  #Merge iteration data with myopic_choice for that budget 
  data<-merge(data_i,myopic_choice[National_Budget==budget,],by="Region") 

  #Calculate cost associated with original plan under realisation of 
uncertainty in each region 
  data[, ':=' (Cost_PlanA = costA[IntA==planA & IntB==planB & IntC==planC], 
               Cost_PlanB = costB[IntA==planA & IntB==planB & IntC==planC], 
               Cost_PlanC = costC[IntA==planA & IntB==planB & 
IntC==planC]),by=.(Region)] 
  #Total regional and national spend associated with planned coverage 
  data[,Cost_PlanReg :=Cost_PlanA+Cost_PlanB+Cost_PlanC, ] 
  data[,Cost_PlanNat := sum(Cost_PlanReg),by=.(IntA,IntB,IntC)] 
 
  #Extra calculations for contingency policy  
  #calculate total claims on surplus 
  data[,total_claims := max(Cost_PlanA-meancostA,0)+max(Cost_PlanB-
meancostB,0)+max(Cost_PlanC-meancostC,0),by=.(Region)] 
  data[,total_claims := sum(total_claims),by=.(IntA,IntB,IntC)] 

   
# remove decision options which would result in circumcision coverage of 
more than 40% 
      data_all<-data 
      circ_level<-as.matrix(data[,.(IntC)]) 
      region_circ<-
c(0.02,0.08,0.01,0.05,0.05,0.02,0.36,0.01,0.19)[order(c(0.147, 0.118, 
0.105,0.100, 0.182, 0.059, 0.054, 0.127, 0.133))] 
      allowed<-(1- 
((circ_level+rep(region_circ,each=no.interventions))>0.4)) 
      data<-data[allowed[,1]==1] 
 
  #Assign policy outcomes for each policy with the exception of the 
contingency policies  
  if(budget%in%no_surplus_budgets) { 
    for (k in 1:no.policies) { 
        policy_outcome<-
data.frame(matrix(rep(NA,no.regions*10),nrow=no.regions)) 
        if(policies[k]=="Soft budget") { 
          policy_outcome[,c(1:9)]<-data[IntA==planA & IntB==planB & 
IntC==planC, 
                               
.(Region,IntA,IntB,IntC,costA,costB,costC,totalcost,qalys)] } else 
if(policies[k]=="National coverage") { 
policy_outcome<-scenarios1to4("National coverage")} else 
if(policies[k]=="Regional spend")  { 
policy_outcome<-scenarios1to4("Regional spend")} else {   

 
#for perfect information the optimisation is re-run for the current 
iteration 
policy_outcome[,c(1:9)]<-LP(data_all[,qalys],data_all[,totalcost],data_all[ 
                                         
,.(IntA,IntB,IntC,costA,costB,costC,treatedA,treatedB,treatedC)],constraint
_current,ent=entitlement_current)[,c(1:9),with=F] 
                                     } 
        results_i[results_i$X1==budget & 
results_i$X2==policies[k],c(3:12)]<-policy_outcome 
      } 
  } 
   
  #Assign policy outcomes for the contingency policy 
  #establish the number of surplus policies associated with a the current 
decision budget 
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  no.surplus_current<-
dim(surplus_policies[surplus_policies$decision_budget==budget,])[1]         
  if (no.surplus_current!=0) { 
    for (l in 1:no.surplus_current) { 
      surplus_current<-
surplus_policies$surplus[surplus_policies$decision_budget==budget][l] 
      surplus_name<-paste(surplus_current/(surplus_current+budget)*100,"% 
surplus",sep="") 
      results_surplus_i[results_surplus_i$X1==(budget+surplus_current) & 
results_surplus_i$X2==surplus_name,c(3:12)]<-scenarios1to4("surplus") 
    }      
  } 
} 
 
#combine results for all policies and then for all iterations 
results_withsurplus<-cbind(rbind(results_i,results_surplus_i),iter) 
if(i==1) {results_withsurplus_all<-results_withsurplus} else 
{results_withsurplus_all<-
rbind(results_withsurplus_all,results_withsurplus)}  
} 

 

##################################################################################### 
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