
This is a repository copy of Towards automatic generation of UML profile graphical editors 
for papyrus.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/133089/

Version: Accepted Version

Proceedings Paper:
Zolotas, Athanasios, Wei, Ran, Gerasimou, Simos et al. (3 more authors) (2018) Towards 
automatic generation of UML profile graphical editors for papyrus. In: Modelling 
Foundations and Applications - 14th European Conference, ECMFA 2018, Held as Part of 
STAF 2018, Proceedings. 14th European Conference on Modelling Foundations and 
Applications, ECMFA 2018 Held as Part of STAF 2018, 26-28 Jun 2018 Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics) . Springer , FRA , pp. 12-27. 

https://doi.org/10.1007/978-3-319-92997-2_2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Automatic Generation of UML Profile

Graphical Editors for Papyrus

Athanasios Zolotas1, Ran Wei1, Simos Gerasimou1

Horacio Hoyos Rodriguez1, Dimitrios S. Kolovos1 and Richard F. Paige1

Department of Computer Science, University of York, York, United Kingdom
{thanos.zolotas, ran.wei, simos.gerasimou, dimitris.kolovos,

richard.paige}@york.ac.uk, horacio hoyos rodriguez@ieee.org

Abstract. We present an approach for defining the abstract and con-
crete syntax of UML profiles and their equivalent Papyrus graphical ed-
itors using annotated Ecore metamodels, driven by automated model-
to-model and model-to-text transformations. We compare our approach
against manual UML profile specification and implementation using Archi-
mate, a non-trivial enterprise modelling language, and we demonstrate
the substantial productivity and maintainability benefits it delivers.

1 Introduction

The Unified Modeling Language (UML) [10] is the de facto standard for software
and systems modelling. Since version 2.0, UML has offered a domain-specific ex-
tensibility mechanism, Profiles [5], which allows users to add new concepts to
the modelling language in the form of Stereotypes. Each stereotype extends a
core UML concept and includes extra information that is missing from that
base concept. With profiles, UML offers a way for users to build domain-specific
modelling languages (DSML) by re-using and extending UML concepts, thus
lowering the entry barrier to DSML engineering by building on engineer famil-
iarity with UML and UML tools (a detailed comparison of using UML profiles
versus domain-specific modelling technology such as [2, 17] is beyond the scope
of this paper).

Papyrus [16] is a leading open-source UML modelling tool and after a decade
in development, it is developing a critical mass for wider adoption in industry as
means of (1) escaping proprietary UML tooling lock-in, (2) leveraging the MBSE-
related developments in the Eclipse modelling ecosystem enabling automated
management of UML models, and (3) enabling multi-paradigm modelling using
a combination of UML and EMF-based DSLs. Papyrus offers support for the
development of UML profiles; however, this is a manual, tedious and error-prone
process [23], and as such it makes the development of graphical editors that are
based on such profiles difficult and expensive.

In this paper, we automate the process of developing UML profiles and graph-
ical editors for Papyrus. We propose an approach, called AMIGO, supported by
a prototype Eclipse plugin, where annotated Ecore metamodels are used to gen-
erate fully-fledged UML profiles and distributable Papyrus graphical editors.



We evaluate the effectiveness of our approach for the automatic generation of
a non-trivial enterprise modelling language (Archimate). Furthermore, we ap-
ply our approach on several other DSMLs of varying size and complexity [22],
demonstrating its generality and applicability.

2 Background and Motivation

In this section we outline the process for defining a UML profile and supporting
model editing facilities in Papyrus. We highlight labour-intensive and error prone
activities that motivate the need of automatic generation of those artefacts.

2.1 UML Profile

In order to create a new UML Profile, developers need to create a new UML
model and add new elements of type Stereotype, Property, Association, etc. to
create the desired stereotypes, their properties and their relationships. Papyrus
offers, among other choices, that of creating the UML profile via a Profile Dia-

gram. Users can drag-and-drop elements from the palette to construct the profile.
The properties of each element (e.g., multiplicity, navigability, etc.) can be then
set using the properties view. In a profile, each stereotype needs to extend a
UML concept (hereby referred to as base element or meta-element). Thus, users
also need to import these meta-elements and add the appropriate extension links
with the stereotypes. The process of creating the profile can be repetitive and
labour-intensive, and depends on the size of the profile.

One of the limitations of UML Profiles in Papyrus is that links between
stereotypes can be displayed as edges only if they extend a Connector meta-
element. These connector stereotypes do not hold any information about the
stereotypes that they can connect. Users need to define OCL constraints to
validate if source and target nodes are of the desired type and if the navigation
of the edges is in the correct direction. These constraints can be rather long and
need to be manually written and customised for each edge stereotype. This can
also be a labour-intensive and error-prone process.

2.2 Distributable Custom Graphical Editor

At this point, the created profile can be applied on UML diagrams. Users select
a UML element (e.g., Class) and manually apply the stereotype. A stereotype
can only be applied to the UML element that was defined as its base element.
This task might be problematic as users need to remember the base elements
for each domain-specific stereotype. To address this recurring concern, Papyrus
offers at least three possible options for creating a custom palette which allows
users to create base UML elements and apply selected stereotypes on them in
a single step. The first option involves customisation through a user interface
which has to be done manually everytime a new diagram is created and it is
not distributable. The other two options require the manual definition of palette



Fig. 1: All the artefacts users need to write to develop a distributable editor.

configuration files that are automatically loaded every time the profile is applied
on a diagram. Although the first is simpler and requires the definition of a single
XML file, it is not encouraged as it is based on a deprecated framework and does
not allow the full use of Papyrus functionality.

The definition of custom shapes for the instantiated stereotypes is another
common requirement. Scalable Vector Graphics (SVG) shapes can be bound
to stereotypes at the profile creation process. However, to make these shapes
visible, users must set the visibility of the shape of each element to true. Even
if this is an acceptable trade-off, another drawback is that by default the shape
overlaps with the default shape of the base meta-element. Users can hide the
default shapes by writing CSS rules. The rules can be written once but need to
be loaded each time manually on every diagram that is created.

To create a distributable graphical editor that has diagrams tailored for the
profile and to avoid all the aforementioned drawbacks, users need to create sev-
eral models and files. Figure 1 shows all the files needed to be created manually.
In this work, we propose an approach that uses a single-source input to au-
tomate this labour-intensive, repetitive and error-prone process. This work is
motivated by the increasing interest among our industrial partners on exploring
the viability of Papyrus as a long-term open-source replacement for proprietary
UML tools. While Papyrus provides comprehensive profile support, the technical
complexity if high due to the multitude of interconnected artefacts required (see
Figure 1), which can be a significant hurdle for newcomers. We aim to lower the
entry barrier for new adopters and help them achieve a working (but somewhat
restricted) solution with minimal effort.

3 Proposed Approach

We propose AMIGO, an automatic approach in which information like stereo-
types that should be instantiated in the profile, structural (e.g., references) and
graphical information (e.g., shapes) are captured as high-level annotations in an
Ecore metamodel, and is transformed into Papyrus-specific artefacts using auto-
mated M2M and M2T transformations. Figure 2 shows an overview of AMIGO.



Fig. 2: An overview of the proposed approach

All EClasses in the Ecore metamodel are automatically transformed into
stereotypes. Annotated EReferences can also create stereotypes. Developers use
the annotations listed below to specify the required graphical syntax of the
stereotype (i.e., if it should be represented as a node or as an edge on the dia-
gram). A detailed list of all valid annotation properties is given in the Appendix.

(1) @Diagram annotations define diagram-specific information like the name
and the icon of the diagram type. This annotation is always placed at the
top package of the Ecore metamodel.

(2) @Node annotations are used for stereotypes that should be instantiated as
nodes in the diagrams. The UML meta-element that this stereotype extends
is provided through the base property, while the SVG shape and the icon in
the palette are specified through the shape and icon properties, respectively.

(3) @Edge annotations are used for stereotypes that should be instantiated as
edges and it can be applied to both EClasses and EReferences. The base
UML element is provided through the base property. The icon in the palette
is also passed as property along with the desired style of the line.

The annotation of the ECore metamodel is the only manual process required
in our approach. The annotated Ecore metamodels are then consumed by M2M
and M2T transformations shown in Figure 4 and described in detail in Sec-
tion 4. The transformations are written in the Epsilon Transformation Language
(ETL) [13] and the Epsilon Generation Language (EGL) [18] but in principle,
any other M2M and M2T language could be used. The automated workflow
of transformations produces the UML profile with the appropriate OCL con-
straints and all the configuration models/files needed by Papyrus. In addition,
an M2M transformation, that can be used to transform the UML models back to
EMF models that conform to the original Ecore metamodel, is also generated.
Thus, model management programs already developed to run against models
conforming to the EMF metamodel can be re-used.

AMIGO provides the option to execute polishing transformations that allow
fine-tuning of the generated artefacts. In the following section, the proposed
approach is explained via a running example.



1 @namespace(uri=”sdpl”,prefix=”sdpl”)
2 @Diagram(name=”SDPL”, icon=”sdpl.png”)
3 package Process;
4

5 @Node(base=”Class”, shape=”step.svg”,
icon=”step.png”)

6 class Step {
7 attr String stepId;
8 ref Step[1] next;
9 }

10 @Node(base=”Class”, shape=”tool.svg”,
icon=”tool.png”)

11 class Tool {
12 attr String name;
13 }
14 @Node(base=”Class”, shape=”per.svg”, icon

=”per.png”)

15 class Person {
16 attr String name;
17 @Edge(base=”Association”, icon=”line.

png”)
18 ref Tool[∗] familiarWith;
19 }
20 @Edge(base=”Association”, icon=”line.png”

, source=”src”, target=”tar”)
21 class Role {
22 attr String name;
23 ref Step[1] src ;
24 ref Person[1] tar ;
25 }

Listing 1.1: The annotated ECore
metamodel of SDPL.

3.1 Running Example

We use AMIGO to define and generate the UML profile and the Papyrus graph-
ical editor for a Simple Development Processes Language (SDPL). We start by
defining ECore metamodel using Emfatic (see Listing 1.1). A process defined in
SDPL consists of Steps, Tools and Persons. Each person is familiar with certain
tools and has different Roles, while each step refers to the next step using the
next reference. To generate the UML profile and the Papyrus graphical editor,
we add the following concrete syntax-related annotations shown in Listing 1.1.
The produced by AMIGO SDPL Papyrus editor is presented in Figure 3.

– Line 2: The name and the icon that should be used in Papyrus menus are
defined using the name and icon properties of the @Diagram annotation.

– Lines 5, 10 & 14: The @Node annotation is used to define that these types
should be stereotypes that will be represented as nodes on the diagram. The
base parameter defines the UML meta-element the stereotype should extend.
The shape and the palette icon are given using the shape and icon details.

– Line 17 & 20: The familiarWith EReference and the Role EClass are ex-
tending the meta-element Association of UML. These stereotypes should be
shown as links in the diagrams. In contrast with the familiarWith ERefer-

ence, the types the Roles edge should be able to connect are not known and
need to be specified as properties of the annotation (i.e., source=“src” and
target=“tar”). This denotes that the source/target nodes of this connector
are mapped to the values of the src/tar EReferences, respectively.

– NB Line 8: The next EReference is not required to be displayed as an edge
on the diagram thus it is not annotated with @Edge.

3.2 Polishing Transformations

The generated editor is fully functional but it can be further customised to fit
custom user needs. In this example the labels should be in red font. This can
be achieved by manually amending the generated CSS file. However, the CSS
file will be automatically overridden if the user regenerates the editor. To avoid



Fig. 3: The SDPL editor for Papyrus generated using AMIGO.

this, the user can use CSS polishing transformation (#6b in Figure 4) shown
in Listing 1.2. Every time the profile and editor generation is executed, the
polishing transformation will amend the original CSS file with the information
shown in Listing 1.3.

1 var allNodeStereotypes = Source!EClass.all(). select (c|c.getEAnnotation(”Node”).isDefined());
2 for (stereo in allNodeStereotypes) {%]
3 [appliedStereotypes˜=[%=stereo.name%]][% if (hasMore){%] , [%}}
4 %] {
5 fontColor:red;
6 }

Listing 1.2: A CSS polishing transformation.

1 [appliedStereotypes˜=Step],[appliedStereotypes˜=Tool],[appliedStereotypes˜=Person]{
2 fontColor:red;
3 }

Listing 1.3: The output that is amended in the original CSS file.

4 Implementation

This section discusses the implementation of the proposed approach. Figure 4
shows the transformations workflow. As the transformations consist of about
1K lines of code, we will describe them omitting low level technical details1.
Every step in the process, except that of polishing transformations described in
Section 4.8 is fully automated, as the only required manual step in AMIGO, is
that of annotating the ECore metamodel.

4.1 EMF to UML Profile Generation (#1)

This transformation consists of two rules: the first creates one stereotype for each
EClass in the metamodel and the second creates a stereotype for EReferences
annotated as @Edge. The source model of this transformation is the annotated
Ecore metamodel and the target model is a UML profile model.

1 The code and instructions are available at http://www.zolotas.net/AMIGO



Fig. 4: An overview of the transformation workflow.

When all stereotypes are created, a number of post-transformation operations
are executed to (1) create the generalisation relationships between the stereo-
types, (2) add the references/containment relationships between the stereotypes,
(3) create the extension with the UML base meta-element and (4) generate and
add the needed OCL constraints for each edge:

(1) For each of the superclasses of an EClass in the metamodel we create a
Generalisation UML element. The generalisation element is added to the
stereotype created for this specific EClass and refers via the generalization

reference to the stereotype that was created for the superclass.
(2) For each reference (ref or val) in the metamodel a new Property UML el-

ement is created and added to the stereotype that represents the EClass.
A new Association UML element should also be created and added to the
stereotype. The name and the multiplicities are also set.

(3) By default the stereotypes extend the Class base element unless a different
value is passed in the base property of the @Node/@Edge annotation. In
this post-transformation operation the necessary Import Metaclass element
and Extension reference are created and attached to the stereotype.

(4) In the last operation, the OCL constraints are created for each stereotype
that will be represented as an edge on the diagram. Two Constraint and two
OpaqueExpression elements are created for each edge stereotype that check
the two necessary constraints.

4.2 Constraints

To illustrate the OCL constraints, we provide a partial view of the SDPL UML
profile in Figure 52.

2 The attributes of the stereotypes are omitted for simplicity.



Fig. 5: Example UML profile for SDPL.

In Figure 3, the familiarWith association is used to connect Person Alice

with Tool StarUML. However, the familiarWith stereotype can be applied to
any Association, and not strictly to Associations which connect Person and Tool

stereotyped elements. Therefore, constraints are needed to check two aspects:

– End Types: the elements that a familiarWith association connects have
Person and Tool stereotypes applied;

– Navigability: the familiarWith association starts from an element stereo-
typed as Person and points to an element stereotyped as Tool.

End Types In listing 1.4, line 1 accesses the types that familiarWith connects.
Lines 2 and 3 check if the types that familiarWith connects are of type that
either has stereotype Person or Tool.

1 let classes = self .base Association.endType→selectByKind(UML::Class) in
2 classes→exists (c|c.extension Person→notEmpty()) and

3 classes→exists (c|c.extension Tool→notEmpty())

Listing 1.4: The End Types constraint in OCL.

Navigability In Listing 1.5, in lines 2 and 3, we obtain the member ends that
familiarWith connects with. If these ends are obtained successfully (line 4), we
check that the personEnd (connecting element stereotyped as Person) is not
navigable (line 5) and the toolEnd (connecting element stereotyped as Tool) is
navigable (line 6). Therefore, we are checking that a familiarWith association
can only go from Person to Tool.

1 let memberEnds=self.base Association.memberEnd in
2 let toolEnd=memberEnds→select(type.oclIsKindOf(UML::Class) and type.oclAsType(UML::

Class).extension Tool→notEmpty()),
3 personEnd=memberEnds→select(type.oclIsKindOf(UML::Class) and type.oclAsType(UML::

Class).extension Person→notEmpty()) in
4 if personEnd→notEmpty() and toolEnd→notEmpty() then

5 personEnd→first().isNavigable() = false and

6 toolEnd→first () .isNavigable() = true
7 else false endif

Listing 1.5: The Navigability constraint in OCL.

We use the End Types and Navigability constraints as templates with dy-
namic sections, where the specific stereotype names are inserted dynamically.

4.3 Palette Generation (#2)

This transformation is responsible for creating a model (file .paletteconfigura-
tion) that configures the custom palette for the diagram. The model conforms to



the PaletteConfiguration metamodel that ships with Papyrus. The transforma-
tion creates a new PaletteConfiguration element and adds two new DrawerCon-

figuration elements that represent the two different tool compartments in our
palette (i.e., nodes and edges). For each element in the Ecore source annotated
as @Node/@Edge, a new ToolConfiguration element is created and added to the
nodes/edges drawer respectively. An IconDescriptor element is also added to the
ToolConfiguration pointing to the path of the icon for that tool.

4.4 Diagram Configuration (#3, #4 & #5)

Firstly, in order for Papyrus to offer the choice of creating new custom diagrams
for the generated profile via its menus, a Viewpoint Configuration needs to be
created. This configuration hides the default palette and attaches the custom one
created before. It is also responsible for binding the generated CSS stylesheet
file (see transformation #6) to the diagram. Transformation #3 creates a new
model that conforms to the Configuration metamodel that ships with Papyrus
and stores this new Viewpoint Configuration element.

The second artefact that needs to be created is the types configuration model
(i.e., .typesconfiguration file) that conforms to the Element Types Configuration

metamodel provided by Papyrus. This is achieved through transformation #4.
This model is responsible for binding the types of the drawn elements to stereo-
types. For each stereotype a new Specialization Type Configuration element is
created and a unique id is created in the format “ProfileName.StereotypeName”
(e.g., “SDPL.Step”). The value of the Hint attribute is set to the qualified
name of the meta-element that this type specialises (e.g., “UML::Class”). A
new Stereotype Application Matcher Configuration element is also created that
holds the qualified name of the stereotype that should be applied to the drawn
element. Binding is performed by creating a new Apply Stereotype Advice Con-

figuration element that points to the equivalent stereotype application matcher
configuration element created before. Having this file, when an element of a
specific type is drawn the appropriate stereotype is applied automatically.

The last model (i.e., the .elementtypesconfiguration file) is one that conforms
to the Element Types Configuration metamodel. This is done by transformation
#5. As all the stereotypes created extend a UML meta-element, this model is
responsible for specializing the meta-element shapes to the custom ones created
by the profile. Thus, for each stereotype, a new Specialization Type Configuration

element is created. This element points to the two elements that it specializes:
the specialization type configuration created in transformation #4 via its id
(e.g., “Process.Step”) and the shape of the UML meta-element that this element
specializes via its URI (e.g., “org.eclipse.papyrus.umldi.Class Shape”).

4.5 Stylesheet Generation (#6)

In Papyrus, the look and feel of diagram elements can be customised using CSS.
Each node on a diagram has a set of compartments where the attributes, the
shape, etc. appear. Initially, we create a CSS rule to hide all their compartments
and another rule to enable the compartment that holds the shape. The latter



rule also hides the default shape inherited from the meta-element the stereotype
extends. Then, for each stereotype that appears as a node, a CSS rule is generated
to place the SVG figure in the shape compartment. The URI of the SVG file is
passed in the svgFile property available in CSS. Finally, we generate the CSS
rules for each edge, e.g., if a lineStyle parameter is set, then the style property for
that Edge stereotype is set to the value of the lineStyle parameter (e.g., “solid”).

4.6 UML to EMF Transformation Generation (#7)

This M2T transformation generates the ETL file that can be used to transform
the UML models created in Papyrus and conform to the UML Profile, back to
EMF models that conform to the source Ecore metamodel. One rule is generated
for each of the stereotypes that transforms the elements having this stereotype
applied to them back to the appropriate type of the Ecore metamodel. Each
stereotype has the same attributes and references as the original EClass thus,
this EGL script also generates the statements in each rule that populate the
attributes and the references. An example of an auto-generated rule is shown in
Listing 1.6. This rule transforms elements stereotyped as “Person” in the UML
model to elements of type “Person” in an EMF model which conforms to the
Ecore metamodel presented in Listing 1.1.

1 rule PersonUML2PersonEMF
2 transform s: UMLProcess!Person
3 to t : EMFProcess!Person {
4 t .name = s.name;
5 t .age = s.age;
6 t .familiarWith ::= s.familiarWith;
7 }

Listing 1.6: Example of an auto-generated ETL rule.

4.7 Icons, Shapes and Supporting Files (#8)

The approach creates a Papyrus plugin, thus the “MANIFEST.MF”, the “plu-
gin.xml” and the “build.properties” files are created. The first includes the re-
quired bundles while defines the necessary extensions for Papyrus to register the
UML profile and create the diagrams. The third points the project to the loca-
tions of the “MANIFEST.MF” and “plugin.xml” files. Finally, two files necessary
for Papyrus to construct the UML profile model, (namely “model.profile.di” and
“model.profile.notation”) are generated.

4.8 Polishing Transformations (#1b - #6b)

For each of the transformations #1 - #6, users are able to define polishing trans-
formations that complement those included in our implementation. After each
built-in transformation is executed, the workflow looks to find a transformation
with the same file name which is executed against the Ecore metamodel and
updates the already created output model of the original transformation.



5 Evaluation

AMIGO is evaluated by firstly, applying it to generate a Papyrus editor for the
non-trivial Archimate UML profile [11,12]. The Adocus Archimate for Papyrus3

is an open-source tool that includes a profile for Archimate and the appropriate
editors for Papyrus. We can compare the proportion of the tool that AMIGO
is able to generate automatically, the number of polishing transformations that
the user needs to write to complete the missing parts and finally, identify the
aspects of the editor that our approach is not able to generate. As a result we
can measure the efficiency of AMIGO in generating profiles/editors against an
existing relatively large profile/editor.

Secondly, we assess the completeness of our approach by applying it on five
other metamodels collected as part of the work presented in [22]. This way, the
approach is tested to check if it can successfully generate profiles and editors for
a wide variety of scenarios.

5.1 Efficiency

The Archimate for Papyrus tool offers five kind of diagrams (i.e., Application,
Business, Implementation and Migration, Motivation and Technology diagrams).
Each of the diagrams uses different stereotypes from the Archimate profile. Thus,
in this scenario we need to create the 5 Ecore metamodels and annotate those
EClasses/EReferences that need to appear as nodes or edges on the diagrams to
generate the profiles and the editor.

AMIGO successfully generated the Papyrus editor for Archimate, however,
some special features that the Archimate for Papyrus tool offers need further
work. For example, the tool offers a third drawer in the palette for some dia-
grams that is called “Common” and includes two tools (i.e., “Grouping” and
“Comment”). In order to be able to implement such missing features, we need
to write the extra polishing transformations. For brevity, we will not go into
details on the content of the polishing transformations for this specific example.

Table 1, summarises the lines of code we had to write to generate the ed-
itors using AMIGO versus the lines of code (LOC) the authors of the Archi-
mate for Papyrus had to write. Since all the artefacts except the CSS file are
models, we provide in parenthesis the number of model elements users have to
instantiate. For the polishing transformations of our approach we only provide
the LOC metric as the models are instantiated automatically by executing the
transformation scripts and not manually. Our approach requires about 91% less
handwritten LOC to produce the basic diagrams and about 86% less code to
produce the polished editor that matches the original Archimate for Papyrus
editor. In terms of model elements, we need to manually instantiate about 63%
less model elements (668 vs. 1828) for the basic editor. Our approach offers an
editor that matches the original Archimate for Papyrus tool but also atop that
the ETL transformation and the OCL constraints.
3 https://github.com/Adocus/ArchiMate-for-Papyrus



Table 1: Lines of manually written code (and model elements is parenthesis) of
each file for creating a Papyrus UML profile and editor for ArchiMate.

AMIGO
Archimate for

Papyrus

File Handwritten
Handwritten
(Polishing)

Total
Total

Handwritten

ECore 436 (668) 0 436 (668) 0

Profile 0 0 0 1867 (1089)

Palette
Configuration

0 24 24 1305 (323)

Element Types
Configuration

0 11 11 237 (61)

Types
Configuration

0 10 10 788 (327)

Diagram
Configuration

0 0 0 58 (28)

CSS 0 195 195 537

Total 436 (668) 240 676 (668) 4792 (1828)

Table 2: The metamodels used to evaluate the completeness of AMIGO.

Name
#Types

(#Nodes/#Edges)
Name

#Types
(#Nodes/#Edges)

Professor 5 (4/5) Ant Scripts 11 (6/4)

Zoo 8 (6/4) Cobol 13 (12/14)

Usecase 9 (4/4) Wordpress 20 (19/18)

Conference 9 (7/6) BibTeX 21 (16/2)

Bugzilla 9 (7/6) Archimate 57 (44/11)

5.2 Completeness

In addition, we tested the proposed approach with nine more Ecore metamodels
from different domains. The names and their size (in terms of types) are given
in Table 2. Next to the size, in parenthesis, the number of types that should be
transformed so they can be instantiated as nodes/edges is also provided. The
approach was able to produce the profiles and the editors for all the metamodels,
demonstrating that it can be used to generate the desired artifacts for a wide
spectrum of domains.

5.3 Threats to Validity

There were a few minor features of the original Archimate for Papyrus tool
that our approach could not support. Most of them are related to custom menu
entries and wizards. For those to be created developer needs to extend the “plu-
gin.xml” file. In addition, the line decoration shapes of stereotypes that extend
the aggregation base element (i.e., diamond) can only be applied dynamically by



running Java code that will update the property each time the stereotype is ap-
plied. Our default and polishing transformations are not able to generate those
features automatically; these should be implemented manually. For that reason,
we excluded these lines of code needed by Archimate for Papyrus to implement
these features from the data provided in Table 1 to have a fair comparison.

6 Related Work

Over the past years, several UML profiles have been standardised by the OMG
(e.g., MARTE [9], SySML [4]) and are now included in most common UML
tools (e.g., Papyrus [16]). A list of recently published UML profiles is available
in [17]. Irrespective of the way these UML profiles were developed, either follow-
ing ad-hoc processes or based on guidelines for designing well-structured UML
profiles [5,19], they required substantial designer effort. Our approach, subject to
the concerns raised in Section 5, automates the process of generating such pro-
files and reduces significantly the designer-driven effort for specifying, designing
and validating UML Papyrus profiles and editors.

Relevant to our work is research introducing methodologies for the automatic
generation of UML profiles from an Ecore-based metamodel. The work in [15]
proposes a partially automated approach for generating UML profiles using a set
of specific design patterns. However, this approach requires the manual definition
of an initial UML profile skeleton, which is typically a tedious and error-prone
task [23]. The methodology introduced in [7,8] facilitates the derivation of a UML
profile using a DSML as input. The methodology requires the manual definition
of an intermediate metamodel that captures the abstract syntax. Despite the po-
tential of these approaches, they usually involve non-trivial human-driven tasks,
e.g., a UML profile skeleton [15] or an intermediate metamodel [7,8]. In contrast,
our approach builds on top of standard Ecore metamodels (which are usually
available in MBSE). Furthermore, our approach supports the customisation of
UML profiles and the corresponding Papyrus editor.

Our work also subsumes research that focuses on bridging the gap between
MOF-based metamodels (e.g., Ecore) and UML profiles. In [1], the authors pro-
pose a methodology that consumes a UML profile and its corresponding Ecore
metamodel, and uses M2M transformation and model weaving to transform UML
models to Ecore models, and vice versa. The methodology proposed in [23] sim-
plifies the specification of mappings between a profile and its corresponding
Ecore metamodel using a dedicated bridging language. Along the same path,
the approach in [6] employs an integration metamodel to facilitate the inter-
change of modelling information between Ecore-based models and UML mod-
els. Compared to this research, AMIGO automatically generates UML profiles
(like [23] and [6]), but requires only a single annotated Ecore metamodel and
does not need any mediator languages [23] or integration metamodels [6]. Also,
the transformation of models from UML profiles to Ecore is only a small part of
our generic approach (Section 4.6) that generates not only a fully-fledged UML
profile but also a distributable custom graphical editor.



In terms of graphical modelling, our approach is related to EuGENia [14],
which transforms annotated Ecore metamodels to GMF (Graphical Modelling
Framework) models (i.e. GMF graph definition model, tooling model, mapping
model and generation model) to automatically generate graphical model editors.
Sirius [20], a tool based also on GMF, enables users to define a diagram definition
model and use this model to generate at a graphical editor. Unlike EuGENia,
Sirius does not require additions the original Ecore metamodel.

7 Conclusions and Future Work

In this paper we presented AMIGO, an MDE-based approach that uses anno-
tated Ecore metamodels to automatically generate UML profiles and supporting
distributable Papyrus editors. We evaluated AMIGO using Adocus Archimate
for Papyrus and five other metamodels from [21] showing that AMIGO reduces
significantly the effort required to develop these artifacts. Our future plans for
AMIGO involve providing better support for compartments since although in
the current version users can create compartments using the available compart-
ment relationships in UML (e.g., Package-Class, etc.), the visual result is not
appealing. More specifically, the compartment where containing elements are
placed is distinct and lies above the compartment that hosts the shape. As a
result, the contained elements are drawn above the custom shape and not inside
it. Also, we will extend AMIGO with support for the automatic generation of
OCL constraints for opposite references and more connectors. We also plan to
support the execution of validation scripts against the Ecore file to check that
the annotation provided in the Ecore file are correct, and if not, to produce
meaningful error messages. Finally, we plan to execute usability tests with real
users to evaluate AMIGO against the native Papyrus approach.

Acknowledgments. This work was partially supported by Innovate UK and the
UK aerospace industry through the SECT-AIR project, by the EU through the
DEIS project (#732242) and by the Defence Science and Technology Laboratory
through the project ”Technical Obsolescence Management Strategies for Safety-
Related Software for Airborne Systems”.



References

1. Abouzahra, A., Bézivin, J., Del Fabro, M.D., Jouault, F.: A practical approach to
bridging domain specific languages with UML profiles. In: Proceedings of the Best
Practices for Model Driven Software Development at OOPSLA. vol. 5 (2005)

2. Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.: JUMP—From Java
Annotations to UML Profiles, pp. 552–568 (2014)

3. Erickson, J., Siau, K.: Theoretical and practical complexity of modeling methods.
Communications of the ACM 50(8), 46–51 (2007)

4. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the systems
modeling language (2014)

5. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An introduction to UML profiles.
UML and Model Engineering 2 (2004)

6. Giachetti, G., Marin, B., Pastor, O.: Using uml profiles to interchange dsml and uml
models. In: Third International Conference on Research Challenges in Information
Science. pp. 385–394 (2009)

7. Giachetti, G., Maŕın, B., Pastor, O.: Using UML as a Domain-Specific Modeling
Language: A Proposal for Automatic Generation of UML Profiles, pp. 110–124
(2009)

8. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile Gen-
eration for MDA Industrial Development, pp. 113–122 (2008)

9. Object Management Group: Modeling And Analysis Of Real-Time Embedded Sys-
tems. ONLINE (2011), http://www.omg.org/spec/MARTE/1.1/

10. Object Management Group: Unified Modeling Language. http://www.omg.org/
spec/UML/ (June 2015)

11. Haren, V.: Archimate 2.0 specification (2012)
12. Iacob, M.E., Jonkers, H., Lankhorst, M.M., Proper, H.A.: ArchiMate 1.0 Specifi-

cation. Zaltbommel: Van Haren Publishing (2009)
13. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. Theory

and Practice of Model Transformations pp. 46–60 (2008)
14. Kolovos, D.S., Garćıa-Domı́nguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards

disciplined and automated development of gmf-based graphical model editors. Soft-
ware & Systems Modeling pp. 1–27 (2015)

15. Lagarde, F., Espinoza, H., Terrier, F., André, C., Gérard, S.: Leveraging Patterns
on Domain Models to Improve UML Profile Definition, pp. 116–130 (2008)

16. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,
Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus uml: an open source toolset
for mda. In: Fifth European Conference on Model-Driven Architecture Foundations
and Applications (ECMDA-FA’09). pp. 1–4 (2009)

17. Pardillo, J.: A Systematic Review on the Definition of UML Profiles, pp. 407–422
(2010)

18. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: The Epsilon Generation Lan-
guage. In: Model Driven Architecture–Foundations and Applications. pp. 1–16.
Springer (2008)

19. Selic, B.: A systematic approach to domain-specific language design using uml. In:
10th IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC’07). pp. 2–9 (2007)

20. Viyović, V., Maksimović, M., Perisić, B.: Sirius: A rapid development of dsm graph-
ical editor. In: IEEE 18th International Conference on Intelligent Engineering Sys-
tems INES 2014. pp. 233–238. IEEE (2014)



21. Williams, J.R.: A Novel Representation for Search-Based Model-Driven Engineer-
ing. Ph.D. thesis, University of York (2013)

22. Williams, J.R., Zolotas, A., Matragkas, N.D., Rose, L.M., Kolovos, D.S., Paige,
R.F., Polack, F.A.: What do metamodels really look like? EESSMOD@ MoDELS
1078, 55–60 (2013)

23. Wimmer, M.: A semi-automatic approach for bridging dsmls with uml. Interna-
tional Journal of Web Information Systems 5(3), 372–404 (2009)

A Annotations and Parameters

The following are all the currently supported parameters for the annotations.

A.1 @Diagram

– name: The name of the created diagrams as it appears on the diagram cre-
ation menus of Papyrus. [required]

– icon: The icon that will appear next to the name on the diagram creation
menus of Papyrus. [optional]

A.2 @Node

– base: The name of the UMLmeta-element that this stereotype should extend.
[required]

– shape: The shape that should be used to represent the node on the diagram.
[required]

– icon: The icon that will appear next to the name of the stereotype in the
custom palette. [optional]

A.3 @Edge

– base: The name of the UMLmeta-element that this stereotype should extend.
[required]

– icon: The icon that will appear next to the name of the stereotype in the
custom palette. [optional]

– lineStyle: The style of the line (possible values: solid, dashed, dotted, hidden,
double). [optional]

– source (for EClasses only): The name of the EReference of the EClass that
denotes the type of the source node for the edge. [required]

– target (for EClasses only): The name of the EReference of the EClass that
denotes the type of the target node for the edge. [required]


