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A widely used approximation to the exchange-correlation functional in density functional theory is the local

density approximation (LDA), typically derived from the properties of the homogeneous electron gas (HEG).

We previously introduced a set of alternative LDAs constructed from one-dimensional systems of one, two, and

three electrons that resemble the HEG within a finite region. We now construct a HEG-based LDA appropriate for

spinless electrons in one dimension and find that it is remarkably similar to the finite LDAs. As expected, all LDAs

are inadequate in low-density systems where correlation is strong. However, exploring the small but significant

differences between the functionals, we find that the finite LDAs give better densities and energies in high-density

exchange-dominated systems, arising partly from a better description of the self-interaction correction.

DOI: 10.1103/PhysRevB.97.235143

I. INTRODUCTION

Density functional theory [1] (DFT) is the most popular

method to calculate the ground-state properties of many-

electron systems [2–7]. In the widely employed Kohn-Sham

[8] (KS) formalism of DFT, the real system of interacting

electrons is mapped onto a fictitious system of noninteracting

electrons moving in an effective local potential, with both

systems having the same electron density. While in principle

an exact theory, in practice the accuracy of DFT calculations

is constrained by our ability to approximate the exchange-

correlation (xc) part of the KS functional, whose exact form

is unknown. Identifying properties of the exact xc functional

that are missing in commonly used approximations is vital for

further developments.

A widely used approximation is the local density approx-

imation [8] (LDA) which assumes that the true xc functional

is solely dependent on the electron density at each point in the

system. LDAs are traditionally derived from knowledge of the

xc energy of the homogeneous electron gas [9] (HEG), a model

system where the exchange energy1 is known analytically and

the correlation energy2 is usually calculated using quantum

Monte Carlo simulations. LDAs have been hugely successful

in many cases [2,3], however, their validity breaks down in

a number of important situations [10–18], particularly when

there is strong correlation. They are known to miss out some

critical features that are present in the exact xc potential, such

as the cancellation of the spurious electron self-interaction

[19–21], or the Coulomb-type −1/r decay of the xc potential

far from a finite system [22,23], instead following an incorrect

1Throughout this paper, we take the exchange energy to be the

exchange energy of a self-consistent Hartree-Fock calculation.
2Throughout this paper, we take the correlation energy to be the

difference between the exact energy of the many-electron system and

the energy of a self-consistent Hartree-Fock calculation.

exponential decay [19,23]. They also fail to capture the

derivative discontinuity [24–26], the discontinuous nature of

the derivative of the xc energy with respect to electron number

N , at integer N .

In a previous paper [27], we introduced a set of LDAs which,

in contrast to the traditional HEG LDA, were constructed from

systems of one, two, and three electrons which resembled the

HEG within a finite region. Illustrating our approach in one

dimension (1D), we found that the three LDAs were remark-

ably similar to one another. In this paper, we construct a 1D

HEG LDA through suitable diffusion Monte Carlo [28] (DMC)

techniques, along with a revised set of LDAs constructed from

finite systems. We compare the finite and HEG LDAs with one

another to demonstrate that local approximations constructed

from finite systems are a viable alternative, and explore the

nature of any differences between them.

In order to test the LDAs, we employ our iDEA code [29]

which solves the many-electron Schrödinger equation exactly

for model finite systems to determine the exact, fully corre-

lated, many-electron wave function. Using this to obtain the

exact electron density, we then utilize our reverse engineering

algorithm to find the exact KS system. In our calculations we

use spinless electrons to more closely approach the nature of

exchange and correlation in many-electron systems,3 which

interact via the appropriately softened Coulomb repulsion

[30]4 (|x − x ′| + 1)−1.

3Spinless electrons obey the Pauli principle but are restricted to a

single spin type. Systems of two or three spinless electrons exhibit

features that would need a larger number of spin-half electrons to

become apparent. For example, two spinless electrons experience the

exchange effect, which is not the case for two spin-half electrons in

an S = 0 state. Furthermore, spinless KS electrons occupy a greater

number of KS orbitals.
4We use Hartree atomic units: me = h̄ = e = 4πε0 = 1.

2469-9950/2018/97(23)/235143(8) 235143-1 ©2018 American Physical Society
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FIG. 1. The exact many-body electron density (solid lines) for

a selection of the two-electron slab systems. The density is locally

homogeneous across a plateau region and decays exponentially at

the edges. Inset: the external potential for a typical two-electron slab

system (middle density in main figure).

II. SET OF LDAS

A. LDAs from finite systems

In Ref. [27] we chose a set of finite locally homogeneous

systems in order to mimic the HEG, which we referred to

as “slabs” (Fig. 1). We generated sets of one-electron (1e),

two-electron (2e), and three-electron (3e) slab systems over a

typical density range (up to 0.6 a.u.) and in each case calculated

the exact xc energy Exc. From this we parametrized the xc

energy density εxc = Exc/N in terms of the electron density

of the plateau region of the slabs, repeating for the 1e, 2e, and

3e set.

To approximate the xc energy of an inhomogeneous system,

the LDA focuses on the local electron density at each point in

the system:

ELDA
xc [n] =

∫

n(x)εxc(n) dx, (1)

where in a conventional LDA εxc(n) is the xc energy density of

a HEG of density n. This approximation becomes exact in the

limit of the HEG, and so it is a reasonable requirement for the

finite LDAs to become exact in the limit of the slab systems.

Due to the initial parametrization of εxc(n) focusing on the

plateau regions of the slabs (i.e., ignoring the inhomogeneous

regions at the edges), we used a refinement process [27] in

order to fulfill this requirement.

The refined form for the xc energy density in the three finite

LDAs has now been increased from the four-parameter fit in

Ref. [27] to a seven-parameter fit5 in this paper:

εxc(n) = (A + Bn + Cn2 + Dn3 + En4 + Fn5)nG, (2)

5We have significantly increased the precision of the calculations

for the slab systems in order to do this. The numerical difference

between the new seven-parameter fits and original four-parameter fits

is less than 1% in εxc across the density range used in constructing

the LDAs (except in the very low-density region n < 0.06 a.u.). This

has allowed us to resolve the differences between the four LDAs in

fine detail.

TABLE I. Optimal fit parameters for εxc(n) in the finite LDAs.

The last two rows contain the mean absolute error (MAE) and root-

mean-square error (RMSE) of the fits. εxc(n) is graphed in Sec. II D

below.

Parameter 1e value 2e value 3e value

A −1.2202 −1.0831 −1.1002

B 3.6838 2.7609 2.9750

C −11.254 −7.1577 −8.1618

D 23.169 12.713 15.169

E −26.299 −12.755 −15.776

F 12.282 5.3817 6.8494

G 7.4876 × 10−1 7.0955 × 10−1 7.0907 × 10−1

MAE 1.3 × 10−4 1.2 × 10−4 9.9 × 10−5

RMSE 1.9 × 10−3 5.1 × 10−4 3.8 × 10−4

where the optimal parameters for each LDA are given in

Table I. The xc potential Vxc is defined as the functional

derivative of the xc energy which in the LDA reduces to a

simple form (see Supplemental Material [31])

V LDA
xc (n) = εxc(n(x)) + n(x)

dεxc

dn

∣

∣

∣

∣

n(x)

. (3)

B. HEG exchange functional

In Ref. [27] we solved the Hartree-Fock equations to find

the exact exchange energy density εx for a fully spin-polarized

[ζ = 1 where ζ ≡ (N↑ − N↓)/N ] 1D HEG of density n

consisting of an infinite number of electrons interacting via the

softened Coulomb repulsion u(x − x ′) = (|x − x ′| + 1)−1:

εx(n) = −
1

8π2n

∫ πn

−πn

dk

∫ πn

−πn

dk′ u(k′ − k), (4)

where the Fourier transform of u(x − x ′) is integrated over the

plane defined by the Fermi wave vector kF = πn.

Solving Eq. (4) for the range of densities we used in the

finite LDAs, we parametrized εx(n). Once again, we have

increased our fit from four parameters to seven parameters, as

in Eq. (2) above (see Supplemental Material [31]). The optimal

parameters are given in Table II. The εx(n) curve is shown in

the inset of Fig. 2.

TABLE II. Optimal fit parameters for εx(n) in the HEG LDA. The

last two rows contain the mean absolute error (MAE) and root-mean-

square error (RMSE) of the fit.

Parameter Value

A −1.1511

B 3.3440

C −9.7079

D 19.088

E −20.896

F 9.4861

G 7.3586 × 10−1

MAE 6.5 × 10−5

RMSE 7.2 × 10−4

235143-2
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FIG. 2. The εc (with associated error bars) for a set of HEGs over

the density range used in the finite LDAs. The fit applied (solid blue)

becomes exact in the known high- and low-density limits. Inset: the

εx curve in the HEG LDA.

C. HEG correlation functional

We use the lattice regularized diffusion Monte Carlo

(LRDMC) algorithm [28] to compute the ground-state energy

of the fully spin-polarized HEG over a wide range of densities,

much higher than the 0.6 a.u. limit used in the finite LDAs.

This is in order to ensure the resultant parametrization of the

correlation energy density εc reduces to the known high- and

low-density limits. We determine εc by subtracting the kinetic

energy and εx contributions from the total energy.

To parametrize the correlation energy density we use a fit

of the form (see Supplemental Material [31])

εc(rs) = −
ARPArs + Er2

s

1 + Brs + Cr2
s + Dr3

s

ln(1 + αrs + βr2
s )

α
, (5)

where rs is the Wigner-Seitz radius and is related to the density

(in 1D) by 2rs = 1/n. The optimal parameters (with estimated

errors) are given in Table III. The fit applied to the data is shown

in Fig. 2.

The high-density limit (infinitely weak correlation) of the

parametrization is

εc(rs → 0) = −ARPAr2
s , (6)

and its low-density limit (infinitely strong correlation) is

εc(rs → ∞) = −
2E

αD

ln(rs)

rs

. (7)

Therefore, the parametric form in Eq. (5) correctly reproduces

the expected behavior of the correlation energy density in

the high-density limit [32,33] [εc ∝ r2
s ] and low-density limit

[εc ∝ ln(rs)/rs].

D. Comparison of 1e, 2e, 3e, and HEG LDAs

Summing together the HEG exchange and correlation

parametric fits, we can now compare the HEG LDA that we

have developed against the three finite LDAs. The striking

similarity between the four εxc curves can be seen in Fig. 3(a).

While very similar in the low-density range, there are some

differences between them. These are highlighted in Fig. 3(b)

which, using the 1e LDA as a reference, plots its difference with

TABLE III. Optimal fit parameters with estimated errors in

parentheses for εc(rs) in the HEG LDA. The last two rows contain the

mean absolute error (MAE) and root-mean-square error (RMSE) of

the fit. Note: ARPA has been determined from the high-density limit for

εc (in which the random phase approximation (RPA) is exact [32,33]),

which is exactly fulfilled by our fit, and hence has no associated error.

Parameter Value

ARPA 9.415195 × 10−4

B 2.601(5) × 10−1

C 6.404(7) × 10−2

D 2.48(3) × 10−4

E 2.61(3) × 10−6

α 1.254(2)

β 28.8(1)

MAE 2.4 × 10−5

RMSE 1.3 × 10−4

the remaining LDAs. There is a competing balance between

exchange and correlation. At low densities, these differences

can be mainly attributed to εc, which is entirely absent in the

1e LDA, and increases in magnitude as we progress to 2e to 3e

to HEG (Fig. 4). As we move to higher densities in which the

magnitude of εc decreases, and the magnitude of εx increases,

the order of the four εxc curves reverses. They increasingly

separate as we move to higher densities with the 1e LDA,

which consists entirely of self-interaction correction, giving the
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FIG. 3. (a) The εxc curves in the 1e (dashed red line), 2e (solid

green line), 3e (dotted blue line), and HEG (dotted-dashed black

line) LDAs. Inset: closeup of the four curves at higher densities. The

similarity between them is striking, with a clear progression from 1e

to 2e to 3e to HEG. (b) The 1e LDA is used as a reference here. Plotted

is its difference (δεxc = εxc − ε1e
xc) with the 2e (solid green line), 3e

(dotted blue line), and HEG (dotted-dashed black line) LDAs.
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FIG. 4. We calculate the exact εc for the 2e (solid green line) and

3e (dotted blue line) slab systems through Hartree-Fock calculations.

We plot these against the εc curve in the HEG LDA (dotted-dashed

black line). The εc in the HEG LDA is much larger (∼2–3 that of the 3e

LDA and ∼3–4 that of the 2e LDA). While not a perfect comparison

due to the refinement process used in the construction of the finite

LDAs, it gives a useful indication of the size of εc in their εxc curves.

largest magnitude for εxc. By plotting the difference between

the 1e LDA (where correlation is absent) and the exchange

part of the HEG LDA (i.e., removing the correlation term), it

can be seen that the 1e LDA yields a larger exchange energy

density than the HEG LDA at all densities (Fig. 5).

The refinement process used in the construction of the finite

LDAs focused on giving the correct Exc in the limit of the

slab systems, but did not ensure that the correct Vxc, and by

extension electron density, were reproduced (a property of

HEG LDAs). We find that the finite LDAs are completely

inadequate at reproducing the densities of the slab systems.

We compare the exact Vxc against n and find that there is a

high nonlocal dependence on n, implying that no local density

functional can accurately reproduce Vxc and hence n for the

slab systems. In light of this, the success of the finite LDAs

reported below is all the more surprising.
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n (a.u.)

0.000
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0.008
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δ
ε

x
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FIG. 5. The εx curve in the 1e LDA (εx = εxc) is used as a

reference here. Plotted is its difference (δεx = εx − ε1e
x ) with the εx

curve in the HEG LDA (εx = εxc − εc). It can be seen that the 1e

LDA yields a larger exchange energy density than the HEG LDA at

all densities. Note: This is not true in the very low-density region

(n < 0.012), which we attribute to errors in the fits.

III. TESTING THE LDAs

In the previous section we observed the close similarity

between the four LDAs. In this section we apply them to a

range of model systems (see Supplemental Material [31]) in

order to identify the differences between them.

A. Weakly correlated systems

System 1 (2e harmonic well). We first consider a pair

of interacting electrons in a strongly confining harmonic

potential well (ω = 2
3

a.u.) where correlation is very weak.6 We

calculate the exact many-body electron density using iDEA,

and compare it against the densities obtained from applying

the LDAs self-consistently. There is a progression from the

1e–2e–3e–HEG LDA and so we choose to plot the 1e and

HEG LDA densities (i.e., the 2e and 3e LDA densities lie

between these) against the exact [Fig. 6(a)]. Both LDAs match

the exact density well, and so we plot their absolute errors

(δn = nLDA − nexact) to more clearly identify their differences

[Fig. 6(b)]. The 1e LDA has a slightly smaller net absolute

error (
∫

|δn| dx). While the HEG LDA gives a slightly better

electron density in the central region (dip in the density), the 1e

LDA better matches the decay of the density towards the edges

of the system, and perhaps more interestingly, the two peaks

in the density where the self-interaction correction is largest.

Due to the importance of energies in DFT calculations,

we also compare the exact Exc and total energy Etotal, with

those obtained from applying the LDAs self-consistently

(Table IV). While all the LDAs give good approximations to

both quantities, there are some significant differences due to

this system being dominated by regions of high density, and

the εxc curves separating in this limit (see Fig. 3). As with the

approximations to the electron density, there is a progression

from the 1e–2e–3e–HEG LDA, with the 1e LDA reducing the

absolute errors ( δExc

Exc
, δE

E
) in the HEG LDA by a factor of 5–6.

System 2 (3e harmonic well). Next, we consider a harmonic

potential well with three electrons, but slightly less confining

(ω = 1
2
), in order to avoid an unphysically high electron density

(n > 0.6 a.u.). As in the 2e harmonic well system, we find

a progression from the 1e–2e–3e–HEG LDA, with all LDAs

giving good electron densities [see Fig. 7(a) for the 1e and HEG

LDA densities plotted against the exact]. Again, the 1e LDA

has the smallest net absolute error, and outperforms the rest of

the LDAs in the regions where the density peaks [Fig. 7(b)].

We also compare the exact Exc and Etotal against the LDAs

(Table IV). All LDAs give good energies, with some noticeable

differences between them due to this system being dominated

by regions of high density, like in the 2e harmonic well system.

However, the magnitude of Exc in the 1e LDA is greater than

the exact (i.e., it overestimates the amount of exchange +

correlation), and subsequently it gives a total energy lower

than the exact. While the absolute error in Exc for each LDA

is similar to that in Etotal, this overestimation of exchange +

6We calculate the absolute error between the exact electron den-

sity and the density obtained from a self-consistent Hartree-Fock

calculation (δn = nHF − nexact), and find the net absolute error to

be
∫

|δn| dx ≈ 1.4 × 10−3. The correlation energy is 0.13% of the

exchange-correlation energy −0.62 a.u.
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FIG. 6. System 1 (two electrons in a harmonic potential well).

(a) The external potential (dotted-dashed blue line), together with

the exact electron density (solid red line), and the densities obtained

from applying the 1e (dashed green line) and HEG (dotted black line)

LDAs. Both LDAs are in very good agreement with the exact result.

(b) The absolute error in the density (δn = nLDA − nexact) in the 1e

(dashed green line) and HEG (dotted black line) LDAs, allowing their

differences to be more clearly identified.

correlation in the 1e LDA results in the 2e LDA giving the best

total energy.

B. A system dominated by the self-interaction correction

The self-interaction correction (SIC) is absent in xc func-

tionals constructed from the HEG. However, the xc energy

of the 1e slab systems (which were used to construct the 1e

LDA) consists entirely of SIC. In the first two model systems,

we found that the 1e LDA (and indeed the other finite LDAs)

better describes the electron density in regions where the SIC

is strongest, than the HEG LDA. We now investigate this

further.

System 3 (2e double well). We choose a system with two

electrons confined to a double-well potential. The wells are

separated, such that the electrons are highly localized and can

be considered as two separate subsystems [Fig. 8(a)]. This

0.0
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FIG. 7. System 2 (three electrons in a harmonic potential well).

(a) The external potential (dotted-dashed blue line), together with

the exact electron density (solid red line), and the densities obtained

from applying the 1e (dashed green line) and HEG (dotted black line)

LDAs. Much like the 2e harmonic well system, both LDAs match

the exact density well. (b) The absolute error in the density in the 1e

(dashed green line) and HEG (dotted black line) LDAs. Again, the

1e LDA outperforms the HEG LDA in the density peaks, which is

dominated by the self-interaction correction.

results in the Hartree potential being small outside of the wells,

and being dominated by the electron self-interaction within the

wells. Consequently, a large proportion of the xc potential is

self-interaction correction. Applying the LDAs, we find the

usual progression 1e–2e–3e–HEG. Focusing on the peaks in

the electron density, the 1e LDA substantially reduces the

error present in the HEG LDA [Fig. 8(b)]. To understand this,

we analyze the xc potential [Fig. 8(c)]. The 1e LDA better

reproduces the large dips in Vxc, corresponding to the peaks

in the electron density. Hence, the SIC is more effectively

captured.

While the LDA errors in Exc are larger than in the first

two systems, they are still small (4.8%–6.8%) (Table IV). The

absolute errors in Etotal are similar.

TABLE IV. Total energies and xc energies for the set of weakly correlated systems (1–3), from exact calculations and from applying the

four LDAs self-consistently (δELDA = ELDA − Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise stated in parentheses.

System Etotal (a.u.) Exc (a.u.)

Exact δE1e
total δE2e

total δE3e
total δEHEG

total Exact δE1e
xc δE2e

xc δE3e
xc δEHEG

xc

2e harmonic well 1.6932 0.0037 0.0126 0.0153 0.0211 −0.6192 0.0045 0.0137 0.0165 0.0225

3e harmonic well 3.1875 −0.0073 0.0065 0.0108 0.0199 −0.9305(5) −0.0058(5) 0.0085(5) 0.0129(5) 0.0223(5)

2e double well −1.0301 0.0237 0.0286 0.0296 0.0323 −0.5349 0.0256 0.0317 0.0331 0.0363
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FIG. 8. System 3 (two electrons in a double-well potential). (a)

The external potential (dotted-dashed blue line), together with the

exact electron density (solid red line), and the densities obtained from

applying the 1e (dashed green line) and HEG (dotted black) LDAs.

The wells are separated, such that the electrons are highly localized.

(b) The absolute error in the density in the 1e (dashed green line)

and HEG (dotted black line) LDAs. The 1e LDA is far superior in

the regions where the density peaks, and hence where the Hartree

potential is large and dominated by the electron self-interaction. (c)

The exact xc potential (solid red line), and the xc potentials given by

the 1e (dashed green line) and HEG (dotted line) LDAs. The dips in

Vxc are more closely matched by the 1e LDA due to it better capturing

the self-interaction correction, present in the exact Vxc.

C. Systems where correlation is stronger

System 4 (2e atom). We now consider a system where the

relative size of electron correlation increases significantly:7

two electrons confined to a softened atomiclike potential Vext =

−(|ax| + 1)−1, where a = 1
20

. Although we find the same

7We calculate the absolute error between the exact electron den-

sity and the density obtained from a self-consistent Hartree-Fock

calculation (δn = nHF − nexact), and find the net absolute error to

be
∫

|δn| dx ≈ 7.4 × 10−2. The correlation energy is 1.1% of the

exchange-correlation energy −0.37 a.u.
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FIG. 9. System 4 (two electrons in a softened atomiclike poten-

tial). (a) The external potential (dotted-dashed blue line), together with

the exact electron density (solid red line), and the densities obtained

from applying the 1e (dashed green line) and HEG (dotted black

line) LDAs. Unlike in the weakly correlated systems, the LDAs give

poor electron densities. (b) The absolute error in the density in the 1e

(dashed green line) and HEG (dotted black line) LDAs. While the net

absolute errors are much larger than in the weakly correlated systems,

the 1e LDA still performs the best.

progression (1e–2e–3e–HEG) as seen in the first three model

systems, in which correlation was weak, all LDAs give in-

adequate electron densities. This can be seen by plotting the

1e and HEG LDA densities against the exact [Fig. 9(a)]. The

LDAs give densities that are not even qualitatively correct, e.g.,

predicting a single peak in the center of the system, which is

absent in the exact density. The net absolute errors are much

larger than in the weakly correlated systems, however, the 1e

LDA once again gives the smallest [Fig. 9(b)].

We find that although the LDA densities are poor, the xc

energies are surprisingly good (Table V). This can be attributed

somewhat (see Sec. III D for investigation of further causes) to

errors in the density being partially canceled by errors inherent

in the approximate xc energy functional [34]. We infer this by

noting the progression (HEG–3e–2e–1e) when we apply the

LDAs to the exact density, in contrast to the self-consistent

solutions in Table V. As in the weakly correlated systems, the

absolute errors in Etotal are smaller than in Exc, due to a partial

cancellation of errors from the Hartree energy component. It is

much more apparent in this system due to the LDAs incorrectly

predicting a central peak in the electron density [Fig. 9(a)].

System 5 (3e atom). Finally, we consider three electrons

in an external potential of the same form as the 2e atom, but

less confining, with a = 1
50

. Along with the usual progression

(1e–2e–3e–HEG), we find a similar result to the 2e atom,

with the LDAs giving poor electron densities [Fig. 10(a)].

Although the densities are qualitatively correct, unlike in the
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TABLE V. Total energies and xc energies for the set of strongly correlated systems (4 and 5), from exact calculations and from applying the

four LDAs self-consistently (δELDA = ELDA − Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise stated in parentheses.

System Etotal (a.u.) Exc (a.u.)

Exact δE1e
total δE2e

total δE3e
total δEHEG

total Exact δE1e
xc δE2e

xc δE3e
xc δEHEG

xc

2e atom −1.5099 0.0053 0.0044 0.0032 0.0022 −0.3728 0.0084 0.0101 0.0099 0.0111

3e atom −2.3282(5) 0.0121(5) 0.0085(5) 0.0057(5) 0.0029(5) −0.493(4) 0.029(4) 0.029(4) 0.027(4) 0.028(4)

2e atom, the LDAs significantly underestimate the peaks in

the electron density. Subsequently, the absolute errors are very

large [Fig. 10(b)]. The 1e LDA, along with giving the lowest

net absolute error, most accurately reproduces the peaks in the

density, where the SIC is largest.

While the absolute errors in Exc are larger than in the 2e

atom, they are still small (Table V). Again, this partially arises

from applying approximate xc energy functionals to incorrect

densities. As in the 2e atom, the absolute errors in Etotal are

much lower than those in Exc, due to a partial cancellation of

errors from the Hartree energy component.

D. Cancellation of errors between exchange and correlation

HEG-based LDAs have been known to typically under-

estimate the magnitude of the exchange energy Ex, while

overestimating the magnitude of the correlation energy Ec.

Consequently, while the total Exc is underestimated in magni-

tude, the approximation proves to be better than was originally

expected due to a partial cancellation of errors.
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FIG. 10. System 5 (three electrons in a softened atomiclike poten-

tial). (a) The external potential (dotted-dashed blue line), together with

the exact electron density (solid red line), and the densities obtained

from applying the 1e (dashed green line) and HEG (dotted black line)

LDAs. Like in the 2e atom, the LDAs give poor electron densities.

The 1e LDA more accurately reproduces the peaks in the density,

where the SIC is largest. (b) The absolute error in the density in the

1e (dashed green line) and HEG (dotted black line) LDAs. Again, the

net absolute errors are large, with the 1e LDA giving the smallest.

We investigate how well our HEG LDA approximates Ex

and Ec in the model systems, and how this contributes to

accurate values for Exc. To do this we perform Hartree-Fock

calculations for each of the model systems, and together with

the exact solutions obtained through iDEA, are able to divide

the exact Exc into its exchange and correlation components.

We then apply the HEG LDA, which is split into separate Ex

and Ec functionals, for comparison (Table VI). In all systems,

the HEG LDA underestimates the magnitude of Ex, while

it overestimates the magnitude of Ec. However, due to the

exchange energy being the dominant component of Exc, even

in strongly correlated systems, this only leads to a partial

cancellation of errors.

The 1e LDA yields a larger magnitude for εx than the HEG

LDA across the entire density range studied (up to 0.6 a.u.)

(Fig. 5), which arises from a better description of the SIC

(Sec. III B). In the 1e LDA correlation is absent. Consequently,

the 1e xc energies that follow from Tables IV and V can be

considered as approximations to Ex. We note that the 1e LDA

substantially reduces the error in Ex that arises in the HEG

LDA.8 We infer that this error reduction will also extend to the

2e and 3e LDAs.

8This is also true in the 2e double-well system where correlation is

negligible, and the exchange energy is dominated by the SIC.

TABLE VI. Exchange energies and correlation energies for

all systems (1–5), from exact calculations and from applying the

HEG LDA self-consistently (δELDA = ELDA − Eexact). Estimated

errors are ±1 in the last decimal place, unless otherwise stated in

parentheses.

System Ex (a.u.)

Exact δEHEG
x

2e harmonic well −0.6184 0.0268

3e harmonic well −0.9286(5) 0.0276(5)

2e double well −0.5349 0.0441

2e atom −0.3686 0.0185

3e atom −0.488(3) 0.041(3)

System Ec (a.u.)

Exact δEHEG
c

2e harmonic well −0.0008 −0.0043

3e harmonic well −0.0019 −0.0053

2e double well −0.0000 −0.0077

2e atom −0.0042 −0.0074

3e atom −0.0043(5) −0.0142(5)
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IV. CONCLUSIONS

We have constructed an LDA based on the homogeneous

electron gas (HEG) through suitable quantum Monte Carlo

techniques and find that it is remarkably similar in many

regards to a set of three LDAs constructed from finite systems.

Applying them to test systems to explore the differences

between them, we find that the finite LDAs give better densities

and energies in highly confined systems in which correlation is

weak. Most interestingly, the LDA constructed from systems of

just one electron most accurately describes the self-interaction

correction. All LDAs give poor densities in systems where

correlation is stronger, but give reasonably good energies,

with the HEG LDA giving the best total energies. Across all

test systems, the HEG LDA underestimates the magnitude of

the exchange energy and overestimates the magnitude of the

correlation energy, leading to a partial cancellation of errors.

As a consequence of the finite LDAs giving a better description

of the self-interaction correction, we infer that they would

reduce the error in the exchange energy. Furthermore, we

expect that finite LDA functionals will also provide a better

treatment of the SIC for spinful electrons. Their derivation and

usage could lead to an improved description of the electronic

structure in a variety of situations, such as at the onset of Wigner

oscillations.

Data created during this research is available by request

from the York Research Database [35].
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