UNIVERSITY OF LEEDS

This is a repository copy of Gas-phase rate coefficients for a series of alkyl cyclohexanes with OH radicals and Cl atoms.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/133064/

Version: Accepted Version

Article:

Bejan, IG, Winiberg, FAF, Mortimer, N et al. (5 more authors) (2018) Gas-phase rate coefficients for a series of alkyl cyclohexanes with OH radicals and Cl atoms. International Journal of Chemical Kinetics, 50 (8). pp. 544-555. ISSN 0538-8066

https://doi.org/10.1002/kin.21179

© 2018 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Bejan, IG, Winiberg, FAF, Mortimer, N et al. (5 more authors) (2018) Gas-phase rate coefficients for a series of alkyl cyclohexanes with OH radicals and Cl atoms. International Journal of Chemical Kinetics, 50 (8). pp. 544-555, which has been published in final form at https://doi.org/10.1002/kin.21179. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Gas-phase Rate Coefficients for a Series of Alkyl Cyclohexanes with OH Radicals and Cl Atoms

I. Bejan^{1,2*}, F. A. F. Winiberg^{1,3}, N. Mortimer¹, D.J Medeiros¹, C. A. Brumby¹, S.C. Orr¹, J. Kelly¹and P. W. Seakins^{1,4*}

¹School of Chemistry, University of Leeds, LS2 9JT, United Kingdom
²Faculty of Chemistry and "Integrated Centre for Environmental Science Studies in the North-East Development Region – CERNESIM", "Al. I. Cuza" University of Iasi, Romania
³ Now at NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

⁴National Centre for Atmospheric Science, University of Leeds, LS2 9JT, United Kingdom

Corresponding authors:

Paul W. Seakins (P.W.Seakins@leeds.ac.uk)

Iustinian Bejan (iustinian.bejan@uaic.ro)

1 Abstract

The rate coefficients of the reactions of OH radicals and Cl atoms with three alkylcyclohexanes 2 3 compounds, methylcyclohexane (MCH), trans 1,4-dimethylcyclohexane (DCH) and 4 ethylcyclohexane (ECH) have been investigated at (293±1) K and 1000 mbar of air using 5 relative rate methods. A majority of the experiments were performed in the Highly Instrumented 6 Reactor for Atmospheric Chemistry (HIRAC), a stainless steel chamber using in situ FTIR 7 analysis and online GC-FID detection to monitor the decay of the alkylcyclohexanes and the 8 reference compounds. The studies were undertaken to provide kinetic data for calibrations of 9 radical detection techniques in HIRAC. The following rate coefficients (in cm^3 molecule⁻¹ s⁻¹) were obtained for Cl reactions: $k_{(Cl+MCH)} = (3.51 \pm 0.37) \times 10^{-10}$, $k_{(Cl+DCH)} = (3.63 \pm 0.38) \times 10^{-10}$, 10 $k_{\text{(Cl+ECH)}} = (3.88 \pm 0.41) \times 10^{-10}$ and for the reactions with OH radicals: $k_{\text{(OH+MCH)}} = (9.5 \pm 1.3) \times 10^{-12}$, 11 $k_{(OH+DCH)} = (12.1 \pm 2.2) \times 10^{-12}$, $k_{(OH+ECH)} = (11.8 \pm 2.0) \times 10^{-12}$. Errors are a combination of 12 13 statistical errors in the relative rate ratio (2σ) and the error in the reference rate coefficient. 14 Checks for possible systematic errors were made by the use of two reference compounds, two different measurement techniques, and also three different sources of OH were employed in 15 16 this study; photolysis of CH₃ONO with black lamps, photolysis of H₂O₂ at 254 nm and nonphotolytic trans-2-butene ozonolysis. For DCH some direct laser flash photolysis studies were 17 18 also undertaken, producing results in good agreement with the relative rate measurements. 19 Additionally, temperature dependent rate coefficient investigations were performed for the 20 reaction of methylcyclohexane with OH radical over the range 273 K to 343 K using the relative rate method; the resulting recommended Arrhenius expression is $k_{(OH + MCH)} = (1.85 \pm 0.27)$ 21 $\times 10^{-11} \exp((-1.62 \pm 0.16) \text{ kJ mol}^{-1}/\text{RT}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The kinetic data are discussed in 22 terms of OH and Cl reactivity trends and comparisons are made with the existing literature 23 24 values and with rate coefficients from structure activity relationship methods. This is the first 25 study on the rate coefficient determination of the reaction of ethylcyclohexane with OH radicals and chlorine atoms, respectively. 26

27

28 Introduction

Cycloalkanes are often used as radical scavengers in studies of atmospheric chemistry due to 29 30 their relatively fast kinetics and mechanistically simple oxidation [1,2]. Recently, the University 31 of Leeds, Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC)[3] has been used 32 to provide an alternative calibration method for OH detection via the FAGE (Fluorescence 33 Assay by Gaseous Expansion) method[4,5] by monitoring decays of cyclohexane[6]. As a 34 fluorescence technique, FAGE needs calibration and conventionally this is achieved by 35 introducing known concentrations of OH generated from water photolysis at 185 nm, into the FAGE apparatus[7]. This calibration technique is limited to ambient pressures and 36 37 temperatures, but when operating on an airborne platform, FAGE may be sampling air under 38 conditions that are very different from those under which it was calibrated. Additionally, typical 39 OH calibration concentrations are several orders of magnitude greater than day time ambient values of ~ 10^6 molecule cm⁻³[8]. We have used the hydrocarbon decay method to provide an 40 41 alternative calibration method [6]. For this technique, higher values of the rate coefficient for 42 OH + hydrocarbon, k_{OH}, and a simple pressure independent mechanism, provide more accurate 43 results.

44 Cyclohexane has been used in our previous OH calibration work[6], but the presence of 45 tertiary C-H bonds in alkyl substituted cyclohexanes and hence the potential of higher koH 46 values, makes these compounds more attractive and provides the main motivation for this study. 47 Future work will extend our evaluation of calibration techniques to a wider range of 48 temperature. The temperature dependence of cyclohexane with OH radicals has been 49 extensively studied and is summarized in Calvert et al.[9]. However, alkyl substituted 50 cycloalkanes have received much less attention, only the methylcyclohexane rate coefficient 51 with OH has been studied as a function of temperature[10].

52 Additionally, cycloalkanes are one of the major classes of constituents of the trace-gas 53 composition of the atmosphere making important contributions to atmospheric chemical 54 systems with implications from local to global scale[9]. An important constituent of vehicle 55 fuels, cycloalkanes have been found in the emissions from motor vehicles [11,12] and in road 56 tunnels[13]. Cycloalkanes are widely used as solvents in the manufacture of rubber, machinery 57 and plastics. Not surprisingly, given these sources, cycloalkanes have been detected in the urban 58 atmosphere[14]. Cycloalkanes have been also detected in atmospheric emissions near the 59 Deepwater Horizon oil spill event [15] and over oil sands mining operations[16]. Like other 60 alkanes, cycloalkanes are potential sources of ozone[17].

61 Only abstraction reactions with the atmospheric oxidants OH radicals and Cl atoms 62 contribute significantly to cycloalkane oxidation[9]. From the group of cycloalkanes, 63 cyclohexane has the lowest strain energy. The strain energy influences the kinetics of cycloalkanes toward OH radicals[9]. Cycloalkanes with no strain energy (cyclohexanes) 64 65 possess higher reactivity toward abstraction of hydrogen atoms than corresponding linear chain alkanes due to the presence of two more secondary hydrogen atoms than the linear alkanes, the 66 67 chains of which are terminated with methyl groups containing less reactive primary hydrogen atoms. Alkyl substituted cycloalkanes have gained less attention than their non-substituted 68 69 homologues.

70 Although OH is the primary radical initiator of hydrocarbon oxidation in the 71 atmosphere, atomic chlorine can be an important initiator under certain circumstances and Cl 72 atoms are often used as a convenient method of initiating oxidation in chamber studies[18]. 73 Chlorine is present in the atmosphere in various forms from a range of processes [19-22]; 74 although ambient Cl concentrations are much lower than OH, chlorine atoms can play an 75 important role in atmospheric chemistry since their reactions with hydrocarbons are typically 76 several orders of magnitude greater than the corresponding OH reaction. The concentration of Cl atoms in coastal areas could reach as much as 1×10^5 atom cm⁻³ for a brief period at dawn[23] 77 78 and there is evidence for an influence of atomic chlorine, derived from ClNO₂, over continental 79 landmasses[24].

80 At room temperature, Aschmann and Atkinson [25] have determined the rate coefficient of Cl with methylcyclohexane (($(3.47\pm0.12)\times10^{-10}$ cm³ molecule⁻¹ s⁻¹ using a relative method 81 82 with n-butane as the reference compound in a reaction chamber with Cl atoms being produced 83 by Cl₂ photolysis with black lamps. The rate coefficient for the reaction of methylcyclohexane 84 with OH radicals has been reported at 1 atm and room temperature with very good agreement between the values measured by Atkinson et al. [26], $(10.6 \pm 0.3) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ and 85 Kramp and Paulson [27], (9.4±0.6)×10⁻¹² cm³ molecule⁻¹ s⁻¹, determined using relative rate 86 techniques, and with the room temperature determination of Sprengnether et al.[10], (9.3 \pm 87 0.1)×10⁻¹² cm³ molecule⁻¹ s⁻¹ measured using a discharge flow, laser induced fluorescence 88 89 technique. In 2015, Ballesteros et al.[28] reported the room temperature rate coefficients for a 90 series of methylated cyclohexanes with OH radicals and chlorine atoms. The rate coefficients 91 obtained by Ballesteros et al. were determined using a relative kinetic technique, with 92 experiments being performed in a small (16L) borosilicate glass cylinder and the result for the reaction of OH with methylcyclohexane, $k_{OH+MCH}=(11.8\pm1.2)\times10^{-12}$ cm³ molecule⁻¹ s⁻¹, is slightly higher than the previous studies, but still in agreement, within the mutual error limits.

To our knowledge this work is the first rate coefficient determination for the reaction of OH radical and Cl atom with ethylcyclohexane, whereas for trans-1.4-dimethylcyclohexane only one study has been previously reported by Ballesteros et al.[28]. Additionally, this is only the second reported Arrhenius equation for the methylcyclohexane reaction with OH radicals over atmospherically relevant temperatures.

100

101 Experimental

The relative kinetic technique has been applied to investigate the kinetics of the reactions of
OH radicals and chlorine atoms with methylcyclohexane (MCH), trans-1,4-dimethylcyclohexane (DCH) and ethylcyclohexane (ECH) at ~293 K and 760 Torr of synthetic air.

105	$Cl + CH_3$ -c- C_6H_{11}	\rightarrow	products	R 1
106	$Cl + CH_3$ - cC_6H_{10} - CH_3	\rightarrow	products	R2
107	$Cl + CH_3CH_2$ -c-C ₆ H ₁₁	\rightarrow	products	R3
108	$OH+CH_3\text{-}c\text{-}C_6H_{11}$	\rightarrow	products	R4
109	$OH+CH_3\text{-}cC_6H_{10}\text{-}CH_3$	\rightarrow	products	R5
110	$OH + CH_3CH_2$ -c-C ₆ H ₁₁	\rightarrow	products	R6

111 Most kinetic measurements were performed in the HIRAC (Highly Instrumented Reactor for 112 Atmospheric Chemistry) photoreactor, described in detail elsewhere.[3] HIRAC is a ~2 m³ 113 stainless steel cylindrical reactor. The photolysis processes for Cl₂ and methylnitrite were 114 initiated by irradiation with eight blacklamps (Philips TL-D/36 W BLB; 320 nm < λ < 420 nm, 115 λ_{max} =365 nm) housed within eight evenly distributed, temperature controlled quartz tubes inside 116 the reactor. Mercury lamps housed in the same quartz tubes were used to generate OH radicals 117 from hydrogen peroxide photolysis predominantly at 254 nm.

118 The photolysis of Cl₂was used as the Cl atom source:

119 $Cl_2 + hv (320 \text{ nm} < \lambda < 420 \text{ nm}) \rightarrow 2Cl$ R7

120 The photolysis of methyl nitrite (CH₃ONO) in the presence of NO was used as the OH radical121 source for majority of the OH experiments with MCH (R4):

122
$$CH_3ONO + hv (320 \text{ nm} < \lambda < 420 \text{ nm}) \rightarrow CH_3O + NO$$
 R8

123
$$CH_3O + O_2 \rightarrow HCHO + HO_2$$
 R9

124
$$HO_2 + NO \rightarrow OH + NO_2$$
 R10

125 Experiments on the kinetics of OH with DCH and ECH were initiated by the photolysis of H₂O₂126 (R11):

127
$$H_2O_2+hv (\lambda \text{ predominantly } 254 \text{ nm}) \rightarrow 20H$$
 R11

Additionally, the ozonolysis of trans-2-butene (t2B, C_4H_8) was used as an OH radical source in the room temperature studies of R4.

130
$$O_3 + C_4 H_8 \rightarrow OH + products$$
 R12

O₃ was produced by photolysis of oxygen passed through an external cell irradiated with a penray lamp at 185 nm. The ozone concentration was monitored using a UV photometric O₃ analyzer (model TEC 49C) with a detection limit of 1 ppbv for a 30 s measurement period. O₃ was mixed with the air, MCH and cyclohexane (CH, the reference) using fans located within HIRAC. The reaction was initiated by the injection of trans-2-butene. To our knowledge only one previous kinetic study with OH radicals involved the ozonolysis of alkenes as the OH radical source[29].

138 A Chernin-type multiple reflection mirror system[30] operated at a total optical path 139 length of 128.52 m coupled to a Bruker IFS/66 FTIR spectrometer was used for reactant and 140 reference compound detection. The IR spectra were recorded at a spectral resolution of 1 cm⁻¹ in the range 700 – 4000 cm⁻¹ using a KBr beamsplitter and external liquid nitrogen-cooled 141 142 mercury-cadmium-telluride (MCT) detector. Typically, 100 interferograms were co-added per 143 spectrum. Each spectrum requires around two minutes acquisition time. The data were collected 144 over different time periods for each type of reaction, from 20 min for chlorine initiated reactions 145 to 60 min for the OH radical initiated reaction when OH was produced by the ozonolysis of 146 trans-2-butene.

Additional to the FTIR measurements, gas chromatography with flame ionization detection (GC-FID, Agilent 6890N) was used for online detection of the compounds. Gas samples were injected onto the column (Varian Chrompack CP-Sil 5CB column, 50 m, 0.32 mm i.d. and film thickness of 5 μ m) every 2 min, with helium as the carrier gas. The separation method (flows and oven temperatures) varied dependant on the mixture of the compounds to be separated. The online sampling system was based on the collection of chamber samples into 153 5 ml evacuated sampling loops. Samples are injected afterwards, through a 2-position 6-way
154 multiport valve controlled by the GC. Between the injections the sampling line was evacuated.

Prior to the reaction with OH radicals or Cl atoms the wall loss deposition, dilution and possible artefacts or interferences were monitored in the dark over a period of 10 min (5 GC samples and/or 5 FTIR spectra). No wall loss was observed for the alkylated cyclohexanes and reference compounds employed in this study. The dilution due to the sampling on the GC-FID is minimal. Also no cycloalkane decay was observed due to interfering processes, for example removal by Cl₂ when investigating the reactions of alkyl cyclohexanes with Cl atoms, or reaction with O₃ for those studies where OH was generated by ozonolysis.

162 The OH radicals/Cl atoms will react with both the alkyl cyclohexane, ACH, and the 163 reference hydrocarbon:

164

165

$ACH + OH/CI \longrightarrow$	products	(k _{ACH})	(1)
-------------------------------	----------	---------------------	-----

- 166 Reference+OH/Cl \longrightarrow products (k_{REF}) (2)
- 167

168 For the systems under investigation the following kinetic expression applies:

169

170
$$\ln\left(\frac{[ACH]_{0}}{[ACH]t}\right) = \frac{k_{ACH}}{k_{REF}} \ln\left(\frac{[reference]_{0}}{[reference]t}\right)$$
(3)

171

where $[ACH]_0$, and $[reference]_0$ are the concentrations of the ACH and reference compounds at time t = 0, respectively, and $[ACH]_t$, and $[reference]_t$ are the concentrations at time t. Plots of $\ln([ACH]_0/[ACH]_t)$ vs $\ln([reference]_0/[reference]_t)$ should yield a straight line with slope k_{ACH}/k_{REF} and zero intercept.

176Two reference compounds have been used for the determination of the rate coefficients177of the reaction of Cl atoms with alkylcylohexanes:trans-2-butene (t-2B) and cyclohexane (CH).178The rate coefficients for the reference reactions with Cl atoms are $k_{(Cl+t-2B)} = (3.50 \pm 0.50) \times 10^{-10}$ 179cm³ molecule⁻¹ s⁻¹[31]and $k_{(Cl+CH)} = (3.30 \pm 0.49) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹[9]. For t-2B, the value180determined by Kaiser et al. [31] was chosen as the most comprehensive recent study and for181cyclohexane, the rate coefficient is from a recent critical review by Calvert et al. [9].

Additionally, in preparation for temperature dependent FAGE calibration studies, the reaction of MCH with OH radicals has been studied over the temperature range 273 to 343 K using only the photolysis of CH₃ONO as a source of OH radical while the room temperature

185 rate coefficients have used ozonolysis with CH as a reference and H₂O₂ photolysis with CH and 186 isopentane as reference compounds. For the reaction of DMCH and ECH with OH radicals, H₂O₂ photolysis has been used as the primary source of OH radicals with CH, isopentane and 187 188 diethyl ether as reference compounds. Reference hydrocarbons (and their recommended rate 189 coefficients in cm³ molecule⁻¹ s⁻¹) used in the OH study were: cyclohexane (CH); $k_{(OH + CH)} =$ 190 $(3.26 \times 10^{-17}) \times T^2 \exp [(262)/T]$ [32], toluene; $k_{(OH + C7H8)} = (5.7 \pm 1.5) \times 10^{-12}$ [33], isopentane; $k_{(OH + iC5H12)} = (3.6 \pm 1.1) \times 10^{-12}$ diethyl ether; $k_{(OH + C4H10O)} = (1.32 \pm 0.13) \times 10^{-11}$ [34], ethene; 191 $k_{(OH + C2H4)} = (8.7 \pm 2.2) \times 10^{-12}$ [35], propene; $k_{(OH + C3H6)} = (2.63 \pm 0.66) \times 10^{-11}$ [35]. 192

193 Compounds (MCH, DMCH, ECH, CH, CH₃ONO, NO, toluene, t-2B, Cl₂) were added 194 into the reactor from a known partial pressure in a 1 litre vessel using a flow of nitrogen. The initial concentrations (in units of molecule cm⁻³) were: ACH, 4-6×10¹³; CH₃ONO, ~ 8×10^{13} ; 195 NO, ~ 3×10^{13} ; toluene, $4-6 \times 10^{13}$; trans-2-butene, $2-4 \times 10^{13}$ when used as reference in ACH + 196 Cl reactions and ~ 8×10^{13} when used as precursor of OH radicals in the ozonolysis experiments. 197 Various concentrations of O_3 up to 12.5×10^{13} molecule cm⁻³ have been used in the OH radical 198 199 initiated rate coefficient determinations. Cl₂ concentrations did not exceed 15×10^{13} molecule cm⁻³. 200

201 In addition to the experiments performed in HIRAC chamber, a few experiments on the 202 kinetics of ECH with OH radicals have been performed in QUAREC (QUArtz REaction 203 Chamber) in Wuppertal, Germany to check for any systematic differences. The QUAREC 204 chamber is described in detail elsewhere [36,37]. Briefly, the chamber consists of a cylindrical 205 quartz cylinder, volume 1080 l, evacuated between the experiments to 10^{-2} mbar with a 206 turbomolecular pump. At the both ends the chamber is equipped with a number of sampling 207 and injection ports. Mixing inside the chamber is managed by 3 fans. The reactor is surrounded by 32 photolysis lamps which emit light in the range of 300 nm $< \lambda < 460$ nm, $\lambda_{max} = 360$ nm). 208 209 Monitoring of the reactant and reference compounds was performed using a FTIR instrument, 210 Thermo Nicolet, coupled to a White-type multiple reflection mirror system mounted inside the chamber with a total optical path length of 484±0.8 m. The FTIR spectrometer has a liquid 211 212 nitrogen cooled mercury-cadmium-telluride (MCT) detector. IR spectra were recorded at a resolution of 1 cm⁻¹ in the range 700–4000 cm⁻¹. Typically, 120 co-added interferograms per 213 214 spectrum were collected leading to a time resolution of around 1 min.

All the alkylated cyclohexanes used in this study were obtained from Aldrich and used without further purification. Their purities were as follows: MCH, >99%; DCH, >98% and ECH, >99%. The reference compounds used in this study had the following specifications: 218 trans-2-butene, 99+% (Aldrich), toluene and cyclohexane 99% (Fisher Scientific).Cl₂ (Aldrich) 219 had a purity of > 99.5%. The method of Taylor et al.[38] has been used for the synthesis of 220 methylnitrite. Ultra-high-purity (UHP) 1:4 synthetic air was obtained by a mix of O₂ (BOC, 221 zero-grade, >99.999 %) and N₂ (BOC, zero-grade, >99.998 %).Experiments in QUAREC 222 chamber have been performed using synthetic air provided by Air Liquide with a purity >99.999 223 %.

224 Initial experiments with reaction R5, OH + DCH with toluene as the reference 225 compound and with OH being generated from H₂O₂ photolysis, produced surprising results, the 226 origin of which was traced to toluene photolysis from a small amount of 185 nm light from the 227 mercury lamps and sensitisation reactions. In attempting to identify the issues, we also carried 228 out some laser flash photolysis studies of reaction R5. Details of the apparatus used can be 229 found in previous publications [39-41]. Briefly, OH radicals were generated by the pulsed laser 230 photolysis of H₂O₂ at 248 nm in a slow-flow cell and reacted with excess DCH in a bath gas of 231 nitrogen (total pressure 200 Torr). The exponential decay of OH radicals was monitored by 232 pulsed laser induced fluorescence tuned to ~282 nm to match a rovibrational channel in the A 233 - X transition of OH. The resulting fluorescence at ~308 nm was passed through a filter ((308 234 \pm 5) nm) and collected on a channel photomultiplier tube (Perkin-Elmer C1943P), mounted 235 perpendicularly to the gas stream and probe radiation beam. The delay between the photolysis 236 and probe pulses was systematically varied by a delay generator (BNC 555) to build up an OH time profile (see inset to figure in the results section for a typical example) including 237 238 information on the pre-photolysis background level of OH. Each trace typically consisted of 239 200 points (with 20 points providing pre-trigger background) and the final trace was typically 240 an average of 5 - 10 repetitions.

241 OH reacted under pseudo-first-order conditions; in this regime, the concentration of OH 242 as a function of time is given by:

243
$$[OH]_t = [OH]_0 e^{-k't}$$
 (4)

244 where k' is the pseudo-first-order rate coefficient given by:

245
$$k' = k_5[DC]$$

 $[H] + k_{1st}$ (5)

246 Here k₅ is the bimolecular rate coefficient for reaction R5 and k_{1st} represents the rate coefficient 247 for the loss processes due to diffusion and reaction of OH with the constant concentration of 248 precursor. Under these conditions, a plot of k' vs [DCH] should give a straight line where the 249 gradient is k₅ and the intercept is the sum of the first order loss processes. An example of such 250 a bimolecular plot is shown in the results section.

251 **Results**

(i) Reaction with chlorine atoms

253 An example of the relative rate data obtained for the reaction of chlorine atoms with DCH (R2) 254 are plotted according to Equation 3 in Figure 1; Figures S1 and S2 in the Supplementary 255 Information show equivalent plots for reactions R1 and R3. At least two experiments were 256 recorded for each reference compound involved in this study. All the plots show very good 257 linearity for both reference hydrocarbons used in this study, cyclohexane and trans-2-butene. 258 Table 1 lists the rate coefficient ratios k_{ACH}/k_{REF} determined from the plots and the absolute 259 values of the rate coefficients, k_{ACH}, calculated for the reactions of Cl with the three 260 alkylcyclohexane compounds investigated. The errors quoted in Table 1 for the rate coefficients 261 k_{ACH} include the 2σ statistical error obtained from the linear regression analyses of the plots, 262 plus a 20% contribution from the uncertainty in the recommended values of the rate coefficients 263 for the reference compounds. The quoted errors for the rate coefficients ratios k_{ACH}/k_{REF} are 264 only the 2σ statistical errors.

265

266 (ii) Reaction with OH radicals

267 Temperature dependent rate coefficients for the reaction of methylcyclohexane with OH 268 radicals have been obtained over the temperature range 273 K to 343 K using cyclohexane as 269 the reference hydrocarbon. Room temperature rate coefficients for three ACH with OH radicals 270 have been determined at ~293 K in the HIRAC chamber using a relative kinetic method and 271 FTIR and GC-FID as detection techniques. Table 2 presents the rate coefficient ratios k_{ACH}/k_{REF} 272 obtained from the plots and the absolute values of the rate coefficients, k_{ACH}, calculated for the 273 reactions of OH radicals with MCH, DCH and ECH investigated in this study. The errors quoted 274 have been calculated in the same way as for Table 1.

Figure 2 presents the kinetic data plotted for the MCH reaction with OH radical at different temperatures and the resulting Arrhenius plot is shown in Figure 3. The best fit line through the data gives:

278

 $k_{(OH + MCH)} = (1.71 \pm 0.22) \times 10^{-11} \exp((-1.62 \pm 0.16) \text{kJ mol}^{-1}/\text{RT}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

where the errors are only statistical at the 2σ level. The rate coefficients of methylcyclohexane with OH radicals in the temperature range of 273 - 343 K exhibit a slight positive temperature dependence, consistent with a simple abstraction mechanism. Errors included for room temperature rate coefficients are the average of the assumed 20% error for the reference rate 283 coefficient and the 2σ error from the slope. Figures 4 and 5 and the data in Table 2 show very 284 good agreement for the rate coefficients for reaction R4 when two different OH radical 285 generation processes (CH₃ONO photolysis or ozonolysis) have been used.

In addition to MCH rate coefficient determination for the reaction with OH radicals, two other alkylated cyclohexanes have been investigated, DCH and ECH with OH being produced by H_2O_2 photolysis. Both GC-FID and FTIR analysis have been used for monitoring the decay of reactant and reference compounds. Reaction R5 was also studied using direct laser flash photolysis methods as described above. An example of a bimolecular plot from which k₅ can be extracted is shown in Figure 6; the inset shows a typical OH exponential decay.

292

293 Discussion and conclusions

Cyclohexane reactions have not received as much attention as open chain alkanes so an evaluation by comparison with other rate coefficients is limited. Previous literature data, where available, have been included in Tables 1 and 2. Using structure-activity relationship (SAR) methods it is possible to obtain the rate coefficient values to compare with the values obtained in this study. The SAR method is based on the partial contribution of each reactive site to the overall rate coefficient value. These approaches are used by the US Environmental Protection Agency in the AOP WIN estimation programme (U.S.EPA, 2011).

301 The SAR estimations of the rate coefficients of Cl radical initiated reaction with 302 alkylcyclohexanes are presented in Table 1 where they are compared with the values 303 determined in this study. For the reaction of Cl atoms with MCH (R1), there is good agreement 304 with the literature values [25,28] and with the SAR of Tyndall et al. [42]. The SAR of Aschmann 305 and Atkinson [25] predicts a slightly lower value, but still within the error bars of the current 306 determinations. This work, Ballesteros et al. [28] and the SAR are consistent in determining or 307 predicting that the rate coefficient for Cl with DCH (R2) is essentially identical, within error, 308 to that of reaction (R1). For the rate coefficient of the reaction Cl + ECH (R3), a more significant 309 increase is observed over the rate coefficient for Cl + MCH (11%), again qualitatively 310 consistent with the predictions of the SAR. In general the agreement between experiment and 311 SAR is very good as has been noted in previous studies on Cl + alkane kinetics [43,44]. 312 However, the absolute values for the rate coefficient for Cl + DCH from this work and 313 Ballesteros et al. do not overlap and the Ballesteros value is approximately 20% lower than that 314 determined in this study. Cyclohexane was used in both relative rate studies for and so here the 315 relative rates (the primary experimental data) can be compared. Ballesteros et al. report a value 316 of k_{Cl+DCH}/k_{Cl+CH} 14% lower than this work. There is no obvious reason why there should be 317 such a discrepancy in the primary experimental data. Both relative rate studies use a range of 318 detection methods (FTIR and chromatography) which should highlight any systematic errors 319 such as co-elution with product peaks. The slightly higher values for the rate coefficients of Cl 320 + DCH is also mirrored in the MCH work (however, here the error bars do overlap). For Cl + 321 MCH, our higher value is in excellent agreement with the study of Aschmann and Atkinson 322 [25].

323 As can be seen from Table 2 and Figures 4 and 5, the various methods of OH generation 324 (methylnitrite or H₂O₂ photolysis and ozonolysis of t-2B) give good agreement, independent of 325 the method of analysis (GC-FID or FTIR) or reference compound (cyclohexane or toluene) for 326 the reaction of OH with MCH (R4). Figure 5 demonstrates that the signal to noise for O₃ 327 initiated reactions is not as good as for photolytic initiation. It is possible that conditions could 328 be further optimized, however, this study does demonstrate the potential for studying OH 329 reactions with photo-labile species. There is also excellent agreement between the rate 330 coefficients determined for reaction (R6), OH + ECH, determined in HIRAC and QUAREC. 331 An example of data from QUAREC can be found in Supplementary Information (Fig S3).

332 There have been very limited previous kinetic studies using ozonolysis of alkenes as the 333 OH source [29]; potentially the method has two important advantages in being non-photolytic 334 and not requiring the addition of NOx to the reactor. The avoidance of NOx can be important 335 in some chambers, e.g. EUPHORE or SAPHIR, where it is difficult to evacuate the chamber 336 and residual NOx may interfere with subsequent studies. The presence of NOx can also cause 337 interferences in the FAGE detection method [45]; having a range of validated OH sources for 338 calibration/interference studies is relevant to our future work. Of course ozonolysis has its own 339 disadvantages; a range of co-products are formed which could influence studies, the rate 340 coefficients under study need to be reasonably fast otherwise a majority of OH loss occurs via 341 reaction with the alkene (t-2B in this study) resulting in limited consumption of the alkanes 342 under investigation and of course there must be no reaction of the substrate or reference with 343 ozone. The scatter in the relative rate plots for the ozonolysis initiated reactions was 344 significantly greater than other plots and we have therefore given significantly less weight to 345 these data in our evaluation of the average room temperature rate coefficient presented in Table 346 2.

347 The methylcyclohexane room temperature rate coefficient for the reaction with OH 348 radicals has been studied by Atkinson et al. [26], Kramp and Paulson [27] and more recently by 349 Sprengnether et al.[10] and Ballesteros et al.[28] The room temperature rate coefficient, k_{4,293} _K, for reaction of OH with MCH determined in this study, $(9.5 \pm 1.3) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ 350 351 is at the lower end of the reported determinations, in good agreement with the direct studies of 352 Sprengnether et al. and the relative rate studies of Kramp and Paulson. The value from Atkinson et al. $[26]((10.6 \pm 0.3) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ is slightly higher than this work and recent 353 literature, however, using the most recent IUPAC recommendation for the rate coefficient for 354 355 OH + n-butane reference reaction, brings the rate coefficient into excellent agreement with this 356 work ((9.7 \pm 0.3) \times 10⁻¹² cm³ molecule⁻¹ s⁻¹). The most recent determination is a relative rate study by Ballesteros et al., reporting a value ~22% higher than this work, but still within the 357 358 combined error ranges.

359 Sprengnether et al.[10] have investigated k4 over the temperature range 230-379 K at 8-360 10 Torr pressure of nitrogen. The results of this study and our work is presented in Figure 3 and 361 there is good agreement (better than 15%) in the absolute rate coefficients over the common 362 temperature range although our data are systematically slightly lower in magnitude. Our measured activation energy ((1.62 \pm 0.16) kJ mol⁻¹) is slightly greater than that obtained from 363 364 a linear Arrhenius fit to the Sprengnether et al. data ((1.24 ± 0.30) kJ mol⁻¹) although the error 365 bars do overlap. The temperature dependence of our study depends on both the temperature 366 dependence of the relative rate and the reference reaction (OH + CH). We have used the 367 temperature dependence recommended by Atkinson et al. [32] and the temperature dependence 368 is in good agreement (10 - 20%) with other studies including Sprengnether et al. and Droege 369 and Tully [46]. Sprengnether et al. measured the temperature dependence of three other non-370 branched alkylcycloalkanes and the activation energies for these reactions were approximately 371 50% greater than for MCH. Our study confirms the weak positive temperature dependence for 372 the OH + MCH, but suggests that the temperature dependence is slightly stronger than that 373 reported by Sprengnether et al. The spread in the value of the room temperature rate coefficients 374 for OH + MCH from this study suggests that the errors in the A factor are greater than the 375 statistical error from the Arrhenius fit. Our recommended Arrhenius expression incorporates 376 the activation energy from our relative rate study with cyclohexane as the reference, but with 377 the A factor scaled to agree with our average room temperature rate coefficient of $(9.5 \pm 1.3) \times$ 10^{-12} cm³ molecule⁻¹ s⁻¹. The resulting expression is: 378

379
$$k_{(MCH + OH)} = (1.85 \pm 0.27) \times 10^{-11} \exp((-1.62 \pm 0.16) \text{ kJ mol}^{-1}/\text{RT}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

380 Apart from one study on the kinetics of DCH [28] with OH radicals at 298 K, no other 381 literature data are available for DCH and ECH. For DCH, there is good agreement between the 382 relative rate studies and the direct measurement using laser flash photolysis/laser induced 383 fluorescence. Given that these are very different approaches to determining rate coefficients, it 384 would suggest that our results are free from significant systematic errors. Our initial relative 385 rate studies using H₂O₂ photolysis at 254 nm and toluene as a reference compound demonstrate 386 that a significant interference occurs with aromatic reference compounds and these should be 387 avoided.

388 The substitution of H atoms by the alkyl groups (-CH₃, -C₂H₅) in cycloalkane increases 389 the rate coefficients over those for OH + CH due to the faster H atom abstraction from tertiary 390 C-H compared to the secondary C-H bond in cyclohexane. As would be expected due to 391 presence of secondary C-H bonds in the alkyl side chain, ECH reacts faster with OH than MCH, 392 in good agreement with SAR predictions. OH reacts faster with DCH than MCH due to the 393 presence of a second tertiary C-H bond. Whilst both DCH and ECH react slightly faster than 394 MCH, their lower vapour pressures make them more difficult to work with and therefore CH 395 and MCH are probably the most practical species for further in situ OH calibration studies in 396 HIRAC.

397 Using the kinetic data obtained in the present study in combination with a daytime 398 average radical concentrations allows for the estimation of the tropospheric lifetimes, $\tau_{OH/CI}$, 399 using:

400 $\tau_{OH/Cl} = 1/k_{(OH/Cl + ACH)}[OH/Cl]$

Accordingly, for a globally averaged [OH] of 1×10^6 cm⁻³[8], the atmospheric residence times 401 402 for the MCH, DCH and ECH are estimated to be around 20-30 hours (see Table 2). Cl atom 403 concentrations are more spatially variable. In highly polluted regions or coastal locations [Cl] can range from 1 - 5 \times 10⁴ atom cm⁻³ [23,46]. With [Cl] at the upper end of this range, 404 405 atmospheric lifetimes for MCH, DCH and ECH are between 13 – 16 hours (see Table 1) and 406 Cl chemistry can contribute significantly to their removal. However, global levels are 407 significantly lower, typically ~500 atom cm⁻³ [46]; in these regimes, removal will be dominated 408 by reaction with OH. With lifetimes of approximately one day, alkyl cyclohexanes will 409 contribute only to local air pollution.

410

411 Acknowledgements

412 I.Bejan gratefully acknowledges a fellowship support from the European Marie Curie

413 fellowship (LAMUNIO 302342) and UEFISCDI support within the projects PN-II-TE-2014-

414 4-2461 and PN-III-P2-2.1-PED-2016-1621. D. Medeiros gratefully acknowledges support from

415 the Brazilian National Council for Scientific and Technological Development (CNPq, grant

416 reference number 206527/2014-4). Facilities at Leeds and Wuppertal are supported by

- 417 EUROCHAMP2 and EUROCHAMP2020 funding from the EU.
- 418

419 **References**

420

421 1. Malkin TL, Goddard A, Heard DE, Seakins PW. Measurements of OH and HO₂ yields
422 from the gas phase ozonolysis of isoprene. Atmos Chem Phys 2010;10:1441-1459.

423 2. Kourtchev I, Bejan I, Sodeau JR, Wenger JC. Gas-phase reaction of (E)-beta-farnesene
424 with ozone: Rate coefficient and carbonyl products. Atmos Environ 2009;43:3182-3190.

Glowacki DR, Goddard A, Hemavibool K, Malkin TL, Commane R, Anderson F, Bloss
WJ, Heard DE, Ingham T, Pilling MJ, Seakins PW. Design of and initial results from a highly
instrumented reactor for atmospheric chemistry (HIRAC). Atmos Chem Phys 2007;7:53715390.

429 4. Hard TM, O'Brien RJ, Chan CY, Mehrabzadeh AA. Tropospheric Free-radical
430 determination by FAGE. Environmental Science & Technology 1984;18:768-777.

431 5. Stone D, Whalley LK, Heard DE. Tropospheric OH and HO₂ radicals: field 432 measurements and model comparisons. Chem Soc Rev 2012;41:6348-6404.

433 6. Winiberg FAF, Smith SC, Bejan I, Brumby CA, Ingham T, Malkin TL, Orr SC, Heard
434 DE, Seakins PW. Pressure-dependent calibration of the OH and HO₂ channels of a FAGE HOx
435 instrument using the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC).
436 Atmos Meas Tech 2015;8:523-540.

437 7. Heard DE. Atmospheric field measurements of the hydroxylradical using laser-induced
438 fluorescence spectroscopy. Annu Rev Phys Chem 2006;57:191-216.

8. Prinn RG, Weiss RF, Miller BR, Huang J, Alyea FN, Cunnold DM, Fraser PJ, Hartley
DE, Simmonds PG. Atmospheric trends and lifetime of CH₃CCl₃ and global OH concentrations.
Science 1995;269:187-192.

442 9. Calvert JG, Derwent RG, Orlando JJ, Tyndall GS, Wallington TJ. Mechanisms of
443 Atmospheric Oxidation of the Alkanes; Oxford University Press: New York, 2008.

444 10. Sprengnether MM, Demerjian KL, Dransfield TJ, Clarke JS, Anderson JG, Donahue

NM. Rate Constants of Nine C6-C9 Alkanes with OH from 230 to 379 K: Chemical Tracersfor OH. J Phys Chem A 2009;113:5030-5038.

11. Zweidinger RB, Sigsby JE, Tejada SB, Stump FD, Dropkin DL, Ray WD, Duncan JW.
Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies.
Environmental Science & Technology 1988;22:956-962.

450 12. Worton DR, Isaacman G, Gentner DR, Dallmann TR, Chan AWH, Ruehl C, Kirchstetter
451 TW, Wilson KR, Harley RA, Goldstein AH. Lubricating Oil Dominates Primary Organic
452 Aerosol Emissions from Motor Vehicles. Environmental Science & Technology 2014;48:3698453 3706.

454 13. Lonneman WA, Seila RL, Meeks SA. Nonmethane organic composition in the Lincoln
 455 Tunnel. Environmental Science & Technology 1986;20:790-796.

- Leach J, Blanch A, Bianchi AC. Volatile organic compounds in an urban airborne
 environment adjacent to a municipal incinerator, waste collection centre and sewage treatment
 plant. Atmos Environ 1999;33:4309-4325.
- 459 15. Yuan B, Warneke C, Shao M, de Gouw JA. Interpretation of volatile organic compound
 460 measurements by proton-transfer-reaction mass spectrometry over the deepwater horizon oil
 461 spill. International Journal of Mass Spectrometry 2014;358:43-48.
- 462 16. Simpson IJ, Blake NJ, Barletta B, Diskin GS, Fuelberg HE, Gorham K, Huey LG, 463 Meinardi S, Rowland FS, Vay SA, Weinheimer AJ, Yang M, Blake DR. Characterization of 464 trace gases measured over Alberta oil sands mining operations: 76 speciated C_2 - C_{10} volatile 465 organic compounds (VOCs), CO₂, CH₄, CO, NO, NO₂, NOy, O₃ and SO₂. Atmos Chem Phys 466 2010;10:11931-11954.
- 467 17. Derwent RG, Jenkin ME, Passant NR, Pilling MJ. Reactivity-based strategies for
 468 photochemical ozone control in Europe. Environmental Science & Policy 2007;10:445-453.
- 469 18. Seakins PW. A brief review of the use of environmental chambers for gas phase studies
 470 of kinetics, chemical mechanisms and characterisation of field instruments. The European
 471 Physical Journal, Web of Conferences 2010;9:143-163.
- 472 19. Faxon CB, Allen DT. Chlorine chemistry in urban atmospheres: a review. Environ
 473 Chem 2013;10:221-233.
- Riedel TP, Bertram TH, Crisp TA, Williams EJ, Lerner BM, Vlasenko A, Li SM,
 Gilman J, de Gouw J, Bon DM, Wagner NL, Brown SS, Thornton JA. Nitryl Chloride and
 Molecular Chlorine in the Coastal Marine Boundary Layer. Environmental Science &
 Technology 2012;46:10463-10470.
- Tanaka PL, Oldfield S, Neece JD, Mullins CB, Allen DT. Anthropogenic sources of
 chlorine and ozone formation in urban atmospheres. Environmental Science & Technology
 2000;34:4470-4473.
- 481 22. Saiz-Lopez A, von Glasow R. Reactive halogen chemistry in the troposphere. Chem
 482 Soc Rev 2012;41:6448-6472.
- 483 23. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD,
- 484 Berkowitz CM. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature
 485 1998;394:353-356.
- 486 24. Thornton JA, Kercher JP, Riedel TP, Wagner NL, Cozic J, Holloway JS, Dube WP,
 487 Wolfe GM, Quinn PK, Middlebrook AM, Alexander B, Brown SS. A large atomic chlorine
 488 source inferred from mid-continental reactive nitrogen chemistry. Nature 2010;464:271-274.
- 489 25. Aschmann SM, Atkinson R. Rate constants for the gas-phase reactions of alkanes with 490 Cl atoms at 296 K. Int J Chem Kinet 1995;27:613-622.
- 491 26. Atkinson R, Carter WPL, Aschmann SM, Winer AM, Pitts JN. Kinetics of the reaction 492 of OH radicals with A series of branched alkanes at (297 +/- 2) K. Int J Chem Kinet 493 1984;16:469-481.
- 494 27. Kramp F, Paulson SE. On the uncertainties in the rate coefficients for OH reactions with
 495 hydrocarbons, and the rate coefficients of the 1,3,5-trimethylbenzene and m-xylene reactions
 496 with OH radicals in the gas phase. J Phys Chem A 1998;102:2685-2690.
- 497 28. Ballesteros B, Ceacero-Vega AA, Jimenez E, Albaladejo J. Atmospheric reactions of
 498 methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and
 499 degradation products. Environmental Science and Pollution Research 2015;22:4806-4819.
- 500 29. Noziere B, Spittler M, Ruppert L, Barnes I, Becker KH, Pons M, Wirtz K. Kinetics of 501 the reactions of pinonaldehyde with OH radicals and with Cl atoms. Int J Chem Kinet 502 1999;31:291-301.
- 503 30. Glowacki DR, Goddard A, Seakins PW. Design and performance of a throughput-504 matched, zero-geometric-loss, modified three objective multipass matrix system for FTIR 505 spectrometry. Appl Opt 2007;46:7872-7883.

- 506 31. Kaiser EW, Donahue CJ, Pala IR, Wallington TJ, Hurley MD. Kinetics, products, and 507 stereochemistry of the reaction of chlorine atoms with cis- and trans-2-butene in 10-700 Torr 508 of N_2 or N_2/O_2 diluent at 297 K. J Phys Chem A 2007;111:1286-1299.
- 509 32. Atkinson R. Kinetics of the gas-phase reactions of OH radicals with alkanes and 510 cycloalkanes. Atmos Chem Phys 2003;3:2233-2307.
- 511 33. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME,
- 512 Rossi MJ, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume
- I gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 2004;4:1461-1738.
- 515 34. Mellouki A, Teton S, Lebras G. Kinetics of OH radical reactions with A series of ethers.
 516 Int J Chem Kinet 1995;27:791-805.
- 517 35. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ, Yarwood
 518 G. The Mechanism of Atmospheric Oxidation of the Alkenes; OUP: Oxford, 2000.
- 519 36. Bejan I, Schuermann A, Barnes I, Benter T. Kinetics of the gas-phase reactions of OH 520 radicals with a series of trimethylphenols. Int J Chem Kinet 2012;44:117-124.
- 521 37. Barnes I, Becker KH, Mihalopoulos N. An FTIR product study of the photooxidation of 522 dimethyl disulfide. J Atmos Chem 1994;18:267-289.
- 523 38. Taylor WD, Allston TD, Moscato MJ, Fazekas GB, Kozlowski R, Takacs GA.
- Atmospheric photo-dissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate.
 Int J Chem Kinet 1980;12:231-240.
- S26 39. Carr SA, Still TJ, Blitz MA, Eskola AJ, Pilling MJ, Seakins PW, Shannon RJ, Wang B,
 S27 Robertson SH. Experimental and Theoretical Study of the Kinetics and Mechanism of the
 S28 Reaction of OH Radicals with Dimethyl Ether. J Phys Chem A 2013;117:11142-11154.
- 529 40. Eskola AJ, Carr SA, Shannon RJ, Wang B, Blitz MA, Pilling MJ, Seakins PW, 530 Robertson SH. Analysis of the Kinetics and Yields of OH Radical Production from the 531 $CH_3OCH_2 + O_2$ Reaction in the Temperature Range 195-650 K: An Experimental and 532 Computational study. J Phys Chem A 2014;118:6773-6788.
- McKee KW, Blitz MA, Cleary PA, Glowacki DR, Pilling MJ, Seakins PW, Wang LM.
 Experimental and master equation study of the kinetics of OH+C₂H₂: Temperature dependence
 of the limiting high pressure and pressure dependent rate coefficients. J Phys Chem A
 2007;111:4043-4055.
- 537 42. Tyndall GS, Orlando JJ, Wallington TJ, Dill M, Kaiser EW. Kinetics and Mechanisms
 538 of the Reactions of Chlorine Atoms with Ethane, Propane and n-Butane. Int J Chem Kinet
 539 1997;29:43-55.
- 540 43. Choi N, Pilling MJ, Seakins PW, Wang L. Studies of site selective hydrogen atom
 541 abstractions by Cl atoms from isobutane and propane by laser flash photolysis/IR diode laser
 542 spectroscopy. Phys Chem Chem Phys 2006;8:2172-2178.
- 44. Qian HB, Turton D, Seakins PW, Pilling MJ. A laser flash photolysis/IR diode laser
 absorption study of the reaction of chlorine atoms with selected alkanes. Int J Chem Kinet
 2001;34:86-94.
- 546 45. Whalley LK, Blitz MA, Desservettaz M, Seakins PW, Heard DE. Reporting the 547 sensitivity of laser-induced fluorescence instruments used for HO₂ detection to an interference 548 from RO₂ radicals and introducing a novel approach that enables HO₂ and certain RO₂ types to
- be selectively measured. Atmos Meas Tech 2013;6:3425-3440.
- 550 46. Droege AT, Tully FP. Hydrogen-atom abstraction from alkanes by OH .6. Cyclopentane551 and cyclohexane. J Phys Chem 1987;91:1222-1225.
- 552
- 553 554

Figure captions:

555

556	Figure 1. Plot of the kinetic data according to eq (3) for the reaction of Cl atoms with methyl
557	cyclohexane (MCH) using (\bullet, \mathbf{v}) trans-2-butene and (\mathbf{n}, \mathbf{A}) cyclohexane as the reference
558	hydrocarbon. The data have been displaced vertically for clarity.
559	
560	Figure 2. Plot of the kinetic data according to eq (3) for the reaction of OH radicals (CH ₃ ONO
561	photolysis) with MCH using cyclohexane as the reference hydrocarbon at five different
562	temperatures. The data have been displaced vertically for clarity.
563	
564	Figure 3. Arrhenius plot of the rate constants for the reaction of OH radicals with MCH (■) this
565	work, (•) Sprengnether et al. (2009). The linear fits to the data are: this work, $k_4 = (1.71 \pm 1.00)$
566	0.22)×10 ⁻¹¹ exp(-(1.62 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , Sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ , sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) sprengnether et al., k ₄ =(1.59 ± 0.16) kJ mol ⁻¹)/RT) sprengnether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprengnether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprengnether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol ⁻¹)/RT) sprendether et al., k ₄ =(1.59 \pm 0.16) kJ mol
567	0.20)×10 ⁻¹¹ exp(-(1.24 ± 0.30) kJ mol ⁻¹)/RT) cm ³ molecule ⁻¹ s ⁻¹ . The errors represent statistical
568	errors at the 2σ level.
569 570	Figure 4. Kinetic data plotted according to eq (3) for the reactions of OH radicals with MCH
571	using cyclohexane as reference hydrocarbons and two different sources of OH radicals: trans-
572	2-butene ozonolysis (•) and CH ₃ ONO photolysis (\blacksquare).
573	
574	Figure 5. Plot of the kinetic data according to eq (3) for the reaction of OH radicals (generated
575	by the t2B+O ₃ reaction) with methylcyclohexane (MCH) using (\bullet ,slope = 1.21 ± 0.11) and
576	CH ₃ ONO photolysis (\blacksquare , slope = 1.29 ± 0.02).
577	
578	Figure 6. Main figure: Bimolecular plot of pseudo-first-order rate coefficient vs [DCH]. The
579	gradient, $(1.212 \pm 0.015) \times 10^{-11}$ cm ³ molecule ⁻¹ s ⁻¹ , is k ₅ . The error is the standard error at the
580	2σ level. Inset: Example of typical OH LIF temporal profile with exponential decay fit.

Compound	Reference	k _{Cl+ACH} /k _{REF}	$\frac{10^{10}k_{ACH}/cm^3}{molecule^{-1} s^{-1}}$	10 ¹⁰ k _{average} /cm ³ molecule ⁻¹ s ⁻¹	Lifetime	$10^{10} k_{SAR} / cm^3$ molecule ⁻¹ s ⁻¹	Literature values $(10^{10}$ k/ cm ³ molecule ⁻¹ s ⁻¹)
Methyl cyclohexane (MCH)	Cyclohexane ^a	1.04±0.01	3.42±0.52	3.51±0.37	66 days ^c	3.58[42] 3.24[25]	$\begin{array}{c} 3.47 \pm 0.11 [25]^{e} \\ 3.11 \pm 0.16 [28] \end{array}$
	trans-2-butene ^b	1.03±0.02	3.60±0.52		16 hrs ^d		
trans-1,4-dimethyl cyclohexane (DCH)	Cyclohexane	1.06±0.04	3.51±0.54	3.63±0.38	64 days ^c	3.64[42] 3.37[25]	$2.89 \pm 0.16[28]$
	trans-2-butene	1.07±0.04	3.75±0.55		15 hrs ^d		
Ethyl cyclohexane (ECH)	Cyclohexane	1.16±0.03	3.81±0.58	2.89.0.41	60 days ^c	4.22[42] 3.82[25]	None
	trans-2-butene	1.13±0.01	3.94±0.56	3.00±0.41	14 hrs ^d		

Table 1.Rate coefficients for the reactions of Cl atoms with methyl cyclohexane, 1,4 dimethyl cyclohexane and ethyl cyclohexane at 293 K.

a Rate coefficient used $(3.3 \pm 0.49) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ [9]

b Rate coefficient used (3.50 \pm 0.50) \times $10^{\text{-10}} \text{ cm}^3$ molecule^{\text{-1}} s^{\text{-1}} [31]

c [Cl] =500 atom cm⁻³ typical of global background [46]

d [Cl] =50000 atom cm⁻³ typical of polluted northern hemisphere or coastal location [46]

e n-butane as reference compound.

Compound	Location, OH source and technique	Reference	k _{OH+ACH} /k _{REF}	$\frac{10^{12}k_{ACH}/\ cm^3}{molecule^{-1}\ s^{-1}}$	$\frac{10^{12}k_{av}/cm^3}{molecule^{-1} s^{-1}}$ (Lifetime, τ) ^a	$\frac{10^{12}k_{SAR}/cm^3}{molecule^{-1} s^{-1}}$	Literature values $(10^{12}$ k/cm ³ molecule ⁻¹ s ⁻¹)
Methyl cyclohexane (293 K)	LEEDS, CH ₃ ONO, GC	Cyclohexane ^b	1.29 ± 0.01	8.8 ± 1.8			
Methyl	LEEDS, H ₂ O ₂ , GC	Cyclohexane ^b	1.37 ± 0.02	9.6 ± 1.9	9.5 ± 1.3 ($\tau = 29$ hrs)	9.28[26] 9.79[9]	$ \begin{array}{r} 10.6 \pm 0.3 \ (9.7 \pm 0.3)^{\circ} \\ [26] \\ 9.4 \pm 0.6 \ [27] \\ 9.29 \pm 0.13 \ [10] \\ 11.8 \pm 1.2 \ [28] \end{array} $
(293 K)		Isopentane ^d	3.01 ± 0.26	$10.9 \pm 1.0 (3.3)^{c}$			
Methyl cyclohexane	LEEDS, O ₃ +t- 2B, GC and	Cyclohexane ^b	1.21 ± 0.22	8.3 ± 2.2			11.0 ± 1.2 [20]
(293 K)	FTIR	Toluene ^e	1.54 ± 0.28	8.8 ± 2.7			
Methyl	LEEDS, CH ₃ ONO, GC	Cyclohexane ^b 0°C	1.32 ± 0.01	$8.38\pm0.11^{\rm f}$	$k_{(MCH + OH)} = (1.71 \pm 0.22) \times 10^{-11} \exp((-1.62 \pm 0.16) \text{ kJ} \text{ mol}^{-1}/\text{RT}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$		
cyclohexane		Cyclohexane 35°C	1.25 ± 0.01	9.05 ± 0.14			
dependent study		Cyclohexane 50°C	1.22 ± 0.01	9.34 ± 0.11			
		Cyclohexane 70°C	1.18 ± 0.01	9.72 ± 0.09			
Trans-1,4- dimethyl cyclohexane	LEEDS, H ₂ O ₂ , GC	Diethylether ^g	0.77 ± 0.07	10.2 ± 1.4	12.1 ± 2.2 $10.9[26]$ $11.0[9]$		
	LEEDS, H ₂ O ₂ , GC	Cyclohexane ^b	2.05 ± 0.05	14.3 ± 2.9		14.1 ± 1.5[28]	
	LEEDS, LIF, absolute technique			11.9±1.2	$(\tau = 23 \text{ hrs})$		

Table 2. Rate coefficients for the reactions of OH radicals with three alkyl cyclohexane (ACH) compounds at 293 K and methylcyclohexane in the temperature range 273 to 343 K.

Ethyl Cyclohexane	LEEDS, H ₂ O ₂ , GC	Isopentane ^d	3.07± 0.19	$11.0 \pm 0.8 (3.3)^{h}$	11.8 ± 2.0 ($\tau = 24$ hrs)	10.9[26] 11.7[9]	
Ethyl Cyclohexane	WUPPERTAL, CH₃ONO, FTIR	Ethene ⁱ	1.34 ± 0.07	11.6 ± 3.0			
		Propene ^j	0.49 ± 0.02	12.9 ± 3.3			

a The lifetime is calculated with $[OH] = 1 \times 10^6$ molecule cm⁻³ [8]

b The recommendation of Atkinson[32] is $k(T) = 3.26 \times 10^{-17} T^2 \exp(262/T)$ cm³ molecule⁻¹ s⁻¹ based on an evaluation of both absolute and relative rate experiments. The recommended uncertainty at room temperature is $\pm 20\%$

cThe value in brackets is using the latest IUPAC recommendation for the rate coefficient of the OH + n-butane reference reaction

d The error given is for the precision of the relative rate gradient (9%) and precision of the reference determination ($(3.60 \pm 0.10) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹), 3%). In his review of OH + alkane chemistry, Atkinson [32] recommends a conservative estimate of 30% in the uncertainty of the reference reaction and this is reflected in the error given in brackets.

e Reference value is $(5.7 \pm 1.5) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹[33]

f Errors in temperature dependent study are precision only.

g Estimated error of 10% in the reference reaction $(1.32 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ which was obtained using direct methods (laser flash photolysis) [34].

h The error given is for the precision of the relative rate gradient (6%) and precision of the reference determination ($(3.60 \pm 0.10) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹), 3%). In his review of OH + alkane chemistry, Atkinson [32] recommends a conservative estimate of 30% in the uncertainty of the reference reaction and this is reflected in the error given in brackets.

iReference value is $(8.7 \pm 2.1) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ [35].

j Reference value is $(26.3 \pm 6.6) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ [35].

FIGURES

Figure 1. Plot of the kinetic data according to eq (3) for the reaction of Cl atoms with methyl cyclohexane (MCH) using (\bullet, \mathbf{v}) trans-2-butene and (\mathbf{n}, \mathbf{A}) cyclohexane as the reference hydrocarbon. The data have been displaced vertically for clarity.

Figure 2. Plot of the kinetic data according to eq (3) for the reaction of OH radicals (generated from CH₃ONO photolysis) with MCH using cyclohexane as the reference hydrocarbon at five different temperatures. The data have been displaced vertically for clarity.

Figure 3. Arrhenius plot of the rate constants for the reaction of OH radicals with MCH (\blacksquare) this work, (•) Sprengnether et al. (2009). The linear fits to the data are: this work, k₄ =(1.71 ± 0.22)×10⁻¹¹exp(-(1.62 ± 0.16) kJ mol⁻¹)/RT) cm³ molecule⁻¹ s⁻¹, Sprengnether et al., k₄ =(1.59 ± 0.20)×10⁻¹¹exp(-(1.24 ± 0.30) kJ mol⁻¹)/RT) cm³ molecule⁻¹ s⁻¹. The errors represent statistical errors at the 2 σ level.

Figure 4. Kinetic data plotted according to eq (3) for the reactions of OH radicals with MCH using cyclohexane as reference hydrocarbons and two different sources of OH radicals: trans-2-butene ozonolysis (\bullet , slope = 1.21 ± 0.11) and CH₃ONO photolysis (\bullet , slope = 1.29 ± 0.02).

Figure 5. Plot of the kinetic data according to eq (3) for the reaction of OH radicals (generated by the $t2B+O_3$ reaction) with methylcyclohexane (MCH) using (•) toluene and (\blacksquare) cyclohexane as the reference hydrocarbon.

Figure 6. Main figure: Bimolecular plot of pseudo-first-order rate coefficient vs [DCH]. The gradient, $(1.212 \pm 0.015) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹, is k₅. The error is the standard error at the 2σ level. Inset: Example of typical OH LIF temporal profile with exponential decay fit.

Supplementary Figures

Figure S1. Plot of the kinetic data according to eq (3) for the reaction of Cl atoms with methylcyclohexane (MCH) using (•) trans-2-butene and (•) cyclohexane as the reference hydrocarbon. The data have been displaced vertically for clarity.

Figure S2. Plot of the kinetic data according to eq (3) for the reaction of Cl atoms with ethylcyclohexane (ECH) using (•) trans-2-butene and (•) cyclohexane as the reference hydrocarbon. The data have been displaced vertically for clarity.

Figure S3. Kinetic data plotted according to eq (3) for the reaction of OH radicals with ECH performed in QUAREC chamber using propene (■) and ethene (●) as reference hydrocarbons.