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Abstract

Probabilistic model-building Genetic Algorithms (PMBGAs) are a class of meta-

heuristics that evolve probability distributions favoring optimal solutions in the

underlying search space by repeatedly sampling from the distribution and updating it

according to promising samples. We provide a rigorous runtime analysis concerning

the update strength, a vital parameter in PMBGAs such as the step size 1/K in the

so-called compact Genetic Algorithm (cGA) and the evaporation factor ρ in ant colony

optimizers (ACO). While a large update strength is desirable for exploitation, there is

a general trade-off: too strong updates can lead to unstable behavior and possibly poor

performance. We demonstrate this trade-off for the cGA and a simple ACO algorithm

on the well-known OneMax function. More precisely, we obtain lower bounds on the

expected runtime of Ω(K
√

n + n log n) and Ω(
√

n/ρ + n log n), respectively, sug-

gesting that the update strength should be limited to 1/K , ρ = O(1/(
√

n log n)). In

fact, choosing 1/K , ρ ∼ 1/(
√

n log n) both algorithms efficiently optimize OneMax

in expected time Θ(n log n). Our analyses provide new insights into the stochastic

behavior of PMBGAs and propose new guidelines for setting the update strength in

global optimization.

Keywords Ant colony optimization · Estimation-of-distribution algorithms · Genetic

Algorithms · Probabilistic model-building Genetic Algorithms · Runtime analysis ·
Theory of randomized search heuristics
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1 Introduction

The term probabilistic model-building Genetic Algorithms describes a class of algo-

rithms that construct a probabilistic model which is used to generate new search points.

The model is adapted using information about previous search points. Both estima-

tion-of-distribution algorithms (EDAs) and swarm intelligence algorithms including

ant colony optimizers (ACO) and particle swarm optimizers (PSO) fall into this class.

These algorithms generally behave differently from evolutionary algorithms where a

population of search points fully describes the current state of the algorithm.

EDAs like the compact Genetic Algorithm (cGA) and many ACO algorithms update

their probabilistic models by sampling new solutions and then updating the model

according to information about good solutions found. In this work we focus on pseudo-

Boolean optimization (finding global optima in {0, 1}n , n the number of bits) and

simple univariate probabilistic models, that is, for each bit there is a value pi that

determines the probability of setting the i th bit to 1 in a newly created solution.

Recently, the runtime analysis of such univariate EDAs has received increasing

interest. Research has focused on the expected optimization time of not only cGA but

also the univariate marginal distribution algorithm (UMDA), for which upper bounds

[3,20,33] and lower bounds [18] on its expected runtime were obtained with respect

to the problem OneMax(x) :=
∑n

i=1 xi , a simple hill-climbing task. Friedrich et al.

[12,13] showed that the cGA is efficient on a noisy OneMax, even under extreme

Gaussian noise. Moreover, Friedrich et al. [11] describe general properties of EDAs

and how they are related to runtime analysis. In this paper, we follow up on work by

Droste [7] on the cGA and by Neumann, Sudholt and Witt [26] on 2-MMASib, an

ACO algorithm that is closely related.

The cGA was introduced by Harik et al. [15]. In brief, it simulates the behavior

of a Genetic Algorithm with population size K in a more compact fashion. In each

iteration two solutions are generated, and if they differ in fitness, pi is updated by

±1/K in the direction of the fitter individual. Here 1/K reflects the strength of the

update of the probabilistic model. Simple ACO algorithms based on the Max–Min

ant system (MMAS) [29], using the iteration-best update rule, behave similarly: they

generate a number λ of solutions and reinforce the best solution amongst these by

increasing values pi , here called pheromones, according to (1 − ρ)pi + ρ if the best

solution had bit i set to 1, and (1 − ρ)pi otherwise. Here the parameter 0 < ρ < 1 is

called evaporation factor; it plays a similar role to the update strength 1/K for cGA.

Neumann et al. [26] showed that λ = 2 ants suffice to optimize the function One-

Max, in expected time O(
√

n/ρ) if the update strength is chosen small enough,

ρ ≤ 1/(c
√

n log n) for a suitably large constant c > 0. This is O(n log n) for

ρ = 1/(c
√

n log n). If ρ is chosen unreasonably large, ρ ≥ c′/(log n) for some

c′ > 0, the algorithm shows a chaotic behavior and needs exponential time even on

this very simple function. In a more general sense, this result suggests that for global

optimization such high update strengths should be avoided for any problem, unless

the problem contains many global optima.

However, these results leave open a wide gap of parameter values between

∼ 1/(log n) and ∼ 1/(
√

n log n), for which no results are available. This leaves open

the question of which update strengths are optimal, and for which values performance
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degrades. Understanding the working principles of the underlying probabilistic model

remains an important open problem for both cGA and ACO algorithms. This is evi-

dent from the lack of reasonable lower bounds. The previous best known direct lower

bound for MMAS algorithms for reasonable parameters was Ω((log n)/ρ−log n) [25,

Theorem 5]; this bound holds for all functions with a unique global optimum. The best

known lower bound for cGA on OneMax is Ω(K
√

n) [7]. There are more general

bounds from black-box complexity theory [6,8], showing that the expected runtime of

comparison-based algorithms such as MMAS must be Ω(n) on OneMax. However,

these black-box bounds do not yield direct insight into the stochastic behavior of the

algorithms and do not shed light on the dependency of the algorithms’ performance

on the update strength.

In this paper, we study 2-MMASib and cGA with a much more detailed analy-

sis that provides such insights through rigorous runtime analysis. We prove lower

bounds of Ω(K
√

n + n log n) and Ω(
√

n/ρ + n log n) on OneMax. The terms K
√

n

and
√

n/ρ indicate that the runtime decreases when the update strength 1/K or ρ

is increased. However, the added terms + n log n set a limit: there is no asymptotic

decrease and hence no benefit for choosing update strengths 1/K or ρ growing faster

than 1/(
√

n log n). The reason is that in this regime both algorithms suffer from a phe-

nomenon well known in evolutionary biology and evolutionary computation as genetic

drift: the probabilistic model attains extreme values simply due to the randomness of

the sampling process, ignoring or overruling information about the quality of solu-

tions. In our context, genetic drift leads to incorrect decisions being made. Correcting

these incorrect decisions requires time Ω(n log n). These lower bounds hold in expec-

tation and with high probability; hence, they accurately reflect the algorithms’ typical

performance.

We further show that these bounds are tight for 1/K , ρ ≤ 1/(c
√

n log n). In this

parameter regime the impact of genetic drift is bounded and hence these parameter

choices provably lead to the best asymptotic performance on OneMax for arbitrary

problem sizes n.

The lower bounds formally apply to OneMax, but we believe that they also apply

more generally to functions with few optima. Among all functions with a unique

global optimum, the function OneMax is provably the easiest function for certain

evolutionary algorithms (see [5] for a proof for the (1+1) EA and [30,32] for extensions

to populations), and similar results were shown for the cGA on linear functions by

Droste [7]. We believe that the lower bounds give general performance limits for all

functions with a unique global optimum. However, new arguments will be required to

prove (or disprove) this formally.

From a technical point of view, our work uses a novel approach: using a second-

order potential function to approximate the distribution of hitting times for a random

walk that underlies changes in the probabilistic model. This approach has been recently

picked up in [19] to analyze a different type of EDAs and we are confident that it will

find further applications.

Finally, by pointing out similarities between cGA and 2-MMASib, using the same

analytical framework to understand changes in the probabilistic model, we make a

step towards a unified theory of probabilistic model-building Genetic Algorithms.
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This paper is structured as follows. Section 2 introduces the algorithms and Sect. 3

presents important analytical concepts. Section 4 proves efficient upper bounds for

small update strengths, whereas Sect. 5 deals with the lower bounds for large update

strengths. We finish with some conclusions.

2 Preliminaries

In the remainder, pt = (pt,1, . . . , pt,n) denotes a vector of probabilities and xt =
(xt,1, . . . , xt,n), yt = (yt,1, . . . , yt,n) denote search points from {0, 1}n . Hence pt,i

refers to the i-th entry of pt and xt,i refers to the i th bit in xt .

Algorithm 1: Compact Genetic Algorithm (cGA)

1 t ← 0

2 pt,1 ← pt,2 ← · · · ← pt,n ← 1/2

3 while termination criterion not met do

4 for i ∈ {1, . . . , n} do

5 xt,i ← 1 with prob. pt,i , xt,i ← 0 with prob. 1 − pt,i

6 for i ∈ {1, . . . , n} do

7 yt,i ← 1 with prob. pt,i , yt,i ← 0 with prob. 1 − pt,i

8 if f (xt ) < f (yt ) then swap xt and yt for i ∈ {1, . . . , n} do

9 if xt,i > yt,i then pt+1,i ← pt,i + 1/K if xt,i < yt,i then pt+1,i ← pt,i − 1/K if

xt,i = yt,i then pt+1,i ← pt,i Restrict pt+1,i to be within [1/n, 1 − 1/n]
10 t ← t + 1

Our presentation of cGA follows Droste [7]; see also Friedrich et al. [12]. The

parameter 1/K is called update strength (classically, K is called population size) and

the pt,i are called marginal probabilities. Pseudocode of cGA is shown in Algorithm 1.

The cGA in each iteration generates two search points according to the probabilistic

model. Then the better solution is reinforced: if the two solutions differ on some bit i ,

the probabilistic model pt,i is adjusted in the direction of the better solution, using

a step size of 1/K . If the two solutions have equal values on bit i then pt,i remains

unchanged.

The simple MMAS algorithm 2-MMASib, analyzed before in [26],1 is shown in

Algorithm 2. Note that the two algorithms only differ in the update mechanism. In

contrast to cGA, 2-MMASib always changes the probabilistic model by either decreas-

ing values pt,i to (1 − ρ)pt,i or increasing it to (1 − ρ)pt,i + ρ. Here ρ determines

the strength of the update. In the context of ACO, pt,i are usually called pheromone

values, however we also refer to them as marginal probabilities to unify our approach

to both algorithms.

1 The 2-MMASib in [26] used a randomized tie-breaking rule that swaps x and y with probability 1/2 if

f (x) = f (x). We omit this swap to ease presentation without changing the stochastic behavior; namely,

conditioning on creating two specific samples x and y, where x 	= y, in one of the two possible orders, the

probability of sampling x first is 1/2 due to the independence of the trials.
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Algorithm 2: 2-MMASib

1 t ← 0

2 pt,1 ← pt,2 ← · · · ← pt,n ← 1/2

3 while termination criterion not met do

4 for i ∈ {1, . . . , n} do

5 xt,i ← 1 with prob. pt,i , xt,i ← 0 with prob. 1 − pt,i

6 for i ∈ {1, . . . , n} do

7 yt,i ← 1 with prob. pt,i , yt,i ← 0 with prob. 1 − pt,i

8 if f (x) < f (y) then swap x and y for i ∈ {1, . . . , n} do

9 if xt,i ≥ yt,i then pt+1,i ← (1 − ρ)pt,i + ρ if xt,i < yt,i then pt+1,i ← (1 − ρ)pt,i

Restrict pt+1,i to be within [1/n, 1 − 1/n]
10 t ← t + 1

We note that the marginal probabilities for both algorithms are restricted to the

interval [1/n, 1 − 1/n]. These bounds are used such that the algorithms always show

a finite expected optimization time, as otherwise certain bits can be irreversibly fixed

to 0 or 1. Our results also apply to algorithms without these borders: our analysis can

be easily adapted to show that when the optimum is found efficiently in the presence

of borders, it is found with high probability when borders are removed, and when the

algorithm is inefficient, many bits are fixed opposite to the optimum.

There are intriguing similarities in the definition of cGA and 2-MMASib, despite

these two algorithms coming from quite different strands from the natural compu-

tation community. As mentioned earlier, they only differ in the update mechanism:

cGA uses a symmetrical update rule with 1/K as the amount of change and changes

a marginal probability if and only if both offspring differ in the corresponding bit

value. 2-MMASib will always change a marginal probability in either positive or

negative direction by a value dependent on its current state; however, the maximum

absolute change will always be at most ρ. We are not the first to point out these

similarities (e. g., see the survey by Hauschild and Pelikan [16], who embrace both

algorithms under the umbrella of EDAs). However, our analyses will reveal the surpris-

ing insight that both cGA and 2-MMASib have the same runtime behavior as well as

the same optimal parameter set on OneMax and can be analyzed with almost the same

techniques.

Several parts of our analysis will consider random variables X that follow the

so-called Poisson-binomial distribution with probability vector (p1, . . . , pn). Then

X is the sum of n Bernoulli trials with possibly different success probabilities pi ,

1 ≤ i ≤ n, i. e., X = X1 + · · · + Xn , where X i = 1 with probability pi and X i = 0

with probability 1 − pi , independently for all trials. Note that the number of ones

in the search points xt and yt sampled at time t by the cGA and 2-MMASib follows

the Poisson-binomial distribution with probability vector (pt,1, . . . , pt,n), which is

why this distribution appears naturally in the analysis of OneMax. Section A.3 in the

Appendix describes powerful bounds for such Poisson-binomially distributed random

variables.

In the remainder of the paper, “poly(n)” is used as a shorthand for “nO(1).”
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3 On the Dynamics of the Probabilistic Model

We first elaborate on the stochastic processes underlying the probabilistic model in

both algorithms. These insights will then be used to prove upper runtime bounds for

small update strengths in Sect. 4 and lower runtime bounds for large update strengths

in Sect. 5.

We fix an arbitrary bit i and pt,i , its marginal probability at time t . Note that pt,i

is a random variable, and so is its random change Δt := pt+1,i − pt,i in one step.

This change depends on whether the value of bit i matters for the decision whether

to update with respect to the first bit string x sampled in iteration t (using pt as

sampling distribution) or the second one y (cf. also [26]). More precisely, we inspect

Dt := |xt |− |xt,i |− (|yt |− |yt,i |), which is the change of OneMax-value at bits other

than i .

We assume pt,i to be bounded away from the borders such that Δt is not affected

by the borders. Then cGA experiences two different kinds of steps:

Random-walk steps If |Dt | ≥ 2, then bit i does not affect the decision whether to

update with respect to xt or yt . For Δt > 0 it is necessary that bit i is sampled dif-

ferently. Hence, the pt,i -value increases and decreases by 1/K with equal probability

pt,i (1 − pt,i ); with the remaining probability pt+1,i = pt,i . In this case, Δt can be

described by a variable Ft where

Ft :=

⎧

⎪

⎨

⎪

⎩

+1/K with probability pt,i (1 − pt,i ),

−1/K with probability pt,i (1 − pt,i ),

0 with the remaining probability.

We call a step where |Dt | ≥ 2 a random-walk step (rw-step) since the process in such a

step is a fair random walk (with self-loops) as E
(

Δt | pt,i , |Dt |≥2
)

=E
(

Ft | pt,i

)

= 0.

If Dt = 1 then |xt+1| ≥ |yt+1| such that xt+1 and yt+1 are never swapped in line 8

of cGA. Hence, the same argumentation as in the previous case applies and the process

performs an rw-step as well.

Biased steps If Dt = −1 then xt+1 and yt+1 are swapped unless bit i is sampled to 1

in xt+1 and to 0 in yt+1. Hence, both events of sampling bit i differently increase the

pt,i -value. We have Δt = 1/K with probability 2pt,i (1− pt,i ) and Δt = 0 otherwise.

If Dt = 0 then as in the case Dt = −1 both events of sampling bit i differ-

ently increase the pt,i -value. Hence, we again have Δt = 1/K with probability

2pt,i (1 − pt,i ) and Δt = 0 otherwise. Let Bt be a random variable such that

Bt :=

{

+1/K with probability 2pt,i (1 − pt,i ),

0 with the remaining probability.

Hence, in the cases Dt = −1 and Dt = 0 we get that Δt has the same distribution

as Bt . We call such a step a biased step (b-step) since E
(

Δt | pt,i , Dt ∈ {−1, 0}
)

=
E
(

Bt | pt,i

)

= 2pt,i (1 − pt,i )/K > 0 here.
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Whether a step is an rw-step or b-step for bit i depends only on circumstances being

external to the bit (and independent of it). Let Rt be the event that Dt = 1 or |Dt | ≥ 2.

We get the equality

Δt = Ft · P[Rt ] + Bt · (1 − P[Rt ]), (1)

which we denote as superposition. Informally, the change of pt,i -value is a super-

position of a fair (unbiased) random walk and biased steps. The fair random walk

reflects the genetic drift underlying the process, i. e. the variance in the process may

lead the algorithm to move in a random direction. In contrast, the biased steps reflect

steps where the algorithm learns about which bit value leads to a better fitness at the

considered bit position. We remark that the superposition of two different behaviors as

formulated here is related to the approach taken in [2], where an EDA called UMDA

was decomposed into a derandomized, deterministic EDA and a stochastic component

modeling genetic drift.

For 2-MMASib, structurally this kind of superposition holds as well, however, the

underlying random variables look somewhat different.

Random-walk steps If |Dt | ≥ 2 or Dt = 1, then the considered bit does not affect the

choice whether to update with respect to xt or yt . Hence, the marginal probability of the

considered bit increases with probability pt,i and decreases with probability 1 − pt,i .

We get that Δt = pt+1,i − pt,i is distributed as Ft in this case, where Ft is a random

variable such that

Ft :=

{

ρ · (1 − pt,i ) with probability pt,i ,

−ρ · pt,i with probability 1 − pt,i .

We call such a step an rw-step in analogy to cGA as in expectation the current state

does not change: E
(

Δt | pt,i , |Dt | ≥ 2 ∨ Dt = 1
)

= E
(

Ft | pt,i

)

= 0.

Biased steps If Dt = 0 or Dt = −1 then the marginal probability can only decrease

if both offspring sample a 0 at bit i ; otherwise it will increase. The difference Δt is a

random variable

Bt :=

{

ρ · (1 − pt,i ) with probability 1 − (1 − pt,i )
2,

−ρ · pt,i with probability (1 − pt,i )
2.

This is called a biased step (b-step) as E
(

Δt | pt,i , Dt ∈ {−1, 0}
)

= E
(

Bt | pt,i

)

=
ρ · (1 − pt,i ) · (1 − (1 − pt,i )

2)−ρ · pt,i · (1 − pt,i )
2 = ρ(1 − pt,i )(1 − (1 − pt,i )

2 −
pt,i (1 − pt,i )) = ρ pt,i (1 − pt,i ) > 0.

Altogether, the superposition for 2-MMASib is also given by (1), with the modified

meaning of Bt and Ft .

The strength of the update plays a key role here: if the update is too strong, large

steps are made during updates, and genetic drift through rw-steps may overwhelm

the probabilistic model, leading to “wrong” decisions being made in individual bits.

On the other hand, small updates imply that rw-steps have a bounded impact, and the
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algorithm receives more time to learn optimal bit values in b-steps. We will formalize

these insights in the following sections en route to proving rigorous upper and lower

runtime bounds. Informally, one main challenge is to understand the stochastic process

induced by the mixture of b- and rw-steps.

4 Small Update Strengths are Efficient

We first show that small update strengths are efficient for OneMax. This has been

shown for 2-MMASib in [26].

Theorem 1 ([26]) If ρ ≤ 1/(c
√

n log n)) for a sufficiently large constant c > 0 and

ρ ≥ 1/poly(n) then 2-MMASib optimizes OneMax in expected time O(
√

n/ρ).

For ρ = 1/(c
√

n log n) the runtime bound is O(n log n).

Here we exploit the similarities between both algorithms to prove an analogous

result for cGA.

Theorem 2 The expected optimization time of cGA on OneMax with K ≥ c
√

n log n

for a sufficiently large c > 0 and K = poly(n) is O(
√

nK ). This is O(n log n) for

K = c
√

n log n.

The analysis follows the approach for 2-MMASib in [26], adapted to the different

update rule, and using modern tools like variable drift analysis2 [17] and drift analysis

with tail bounds [21]. We also extend previous work by showing in Sect. 4.1 that the

upper bound for cGA holds with high probability (see Theorem 5 in Sect. 4.1). The

main idea is that marginal probabilities are likely to increase from their initial values

of 1/2. If the update strength is chosen small enough, the effect of genetic drift (as

present in rw-steps) is bounded such that with high probability all bits never reach

marginal probabilities below 1/3. Under this condition, we show that the marginal

probabilities have a tendency (stochastic drift) to move to their upper borders, such

that then the optimum is found with good probability.

The following lemma uses considerations and notation from Sect. 3 to establish a

stochastic drift, i. e. a positive trend towards optimal bit values, for cGA. We use the

same notation as in Sect. 3.

Lemma 3 If 1/n + 1/K ≤ pt,i ≤ 1 − 1/n − 1/K then

E
(

Δt | pt,i

)

≥
2

11

pt,i (1 − pt,i )

K

⎛

⎝

∑

j 	=i

pt, j (1 − pt, j )

⎞

⎠

−1/2

.

Proof The assumptions on pt,i assure that pt+1,i is not affected by the borders 1/n and

1 − 1/n. Then the expected change is given by the expectation of the superposition (1):

E
(

Δt | pt,i

)

= E
(

Ft | pt,i

)

· P[Rt ] + E
(

Bt | pt,i

)

· (1 − P[Rt ]).

2 The term “drift” is used in both “genetic drift” and in “drift analysis.” In the latter, “drift” is used to

indicate the expected progress towards a target. We sometimes use the term “stochastic drift” to distinguish

it from “genetic drift”. Drift theorems always refer to stochastic drift.
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From Sect. 3 we know E
(

Ft | pt,i

)

= 0 and E
(

Bt | pt,i

)

= 2pt,i (1− pt,i )/K . Further,

1 − P[Rt ] ≥ P[Dt = 0] ≥
1

11

⎛

⎝

∑

j 	=i

pt, j (1 − pt, j )

⎞

⎠

−1/2

,

where the last inequality was shown in [26, proof of Lemma 1]. Here we exploit that

cGA and 2-MMASib use the same construction procedure. Together this proves the

claim. ⊓⊔

Note that the term
(

∑

j 	=i pt, j (1 − pt, j )

)1/2
reflects the standard deviation of the

sampling distribution on all bits j 	= i .

Lemma 3 indicates that the drift increases with the update strength 1/K . However,

a too large value for 1/K also increases genetic drift. The following lemma shows

that, if 1/K is not too large, this positive drift implies that the marginal probabilities

will generally move to higher values and are unlikely to decrease by a constant.

Lemma 4 Let 0 < α < β < 1 be two constants. For each constant γ > 0 there exists

a constant cγ > 0 (possibly depending on α, β, and γ ) such that for a specific bit the

following holds. If the bit has marginal probability at least β and K ≥ cγ

√
n log n then

the probability that during the following nγ steps the marginal probability decreases

below α is at most O(n−γ ).

Proof The proof uses a similar approach as the proof of Lemma 3 in [26], using 1/K

instead of ρ and drift bounds from Lemma 3.

The aim is to apply the negative drift theorem, Theorem 20 in the Appendix, with

respect to the stochastic process X t := K pt,i , obtained by scaling the process on the

marginal probabilities of the considered bit i by a factor of K . Note that the X t -process

is on {K/n, 1, 2, . . . , K − 1, K − K/n, K }.
We use the interval [a, b] := [αK , βK ] in the drift theorem. To establish the first

condition of the drift theorem, we use Lemma 3. Hence, we obtain the following bound

on the drift

E(X t+1 − X t | X t ; a < X t < b) ≥ K ·
2α(1 − β)

11K
·

⎛

⎝

∑

j 	=i

pt, j (1 − pt, j )

⎞

⎠

−1/2

≥
α(1 − β)

11
√

n
=: ε

using that a < X t < b implies α < pt,i < β, and estimating pt, j (1 − pt, j ) ≤ 1/4

for all j and t .

For the second condition, we note that always |X t − X t+1| ≤ 1 since the marginal

probabilities change by at most 1/K . Hence, the second condition is trivially satisfied

by choosing r := 2.

To verify the third condition, we will use that K ≥ cγ

√
n log n for a constant cγ

that may depend on α, β and γ . We compute, using ℓ := (β − α)K and r , ε defined

above,
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εℓ

132 log(r/ε)
≥

(β − α)Kα(1 − β)

132 · 11
√

n log(Θ(
√

n))
≥

α(β − α)(1 − β)cγ

√
n log n

716
√

n log n + Θ(
√

n)
,

which is at least 4 if cγ is chosen large enough but constant; here we use that α and β

are constants in (0, 1). Then 1 ≤ r2 ≤ ε(b−a)
132 log(r/ε)

as demanded by the third condition.

To finally apply the drift theorem, similar calculations as before yield that

εℓ

132r2
≥

α(β − α)(1 − β)cγ

√
n log n

528 · 11
√

n
,

which is at least γ ln n if cγ is chosen appropriately. By assumption X0 ≥ b. Hence,

the theorem establishes that P[T ≤ nγ ] = O(n−γ ). ⊓⊔

With these lemmas, we now prove the main statement of this section.

Proof of Theorem 2 We assume in the following that 1/K divides 1/2−1/n, implying

that marginal probabilities are restricted to {1/n, 1/n +1/K , . . . , 1/2, . . . , 1−1/n −
1/K , 1 − 1/n}.

Following [26, Theorem 3] we show that, starting with a setting where all probabil-

ities are at least 1/2 simultaneously, with probability Ω(1) after O(
√

nK ) iterations

either the global optimum has been found or at least one probability has dropped

below 1/3. In the first case we speak of a success and in the latter case of a failure.

The expected time until either a success or a failure happens is then O(
√

nK ).

Now choose a constant γ > 0 such that nγ ≥ K n3. According to Lemma 4 applied

with α := 1/3 and β := 1/2, the probability of a failure in nγ iterations is at most

n−γ , provided the constant c in the condition K ≥ c
√

n log n is large enough. In case

of a failure we wait until the probabilities simultaneously reach values at least 1/2

again and then we repeat the arguments from the preceding paragraph. It is easy to

show (cf. Lemma 2 in [26]) that the expected time for one probability to reach the

upper border is always bounded by O(n3/2 K ), regardless of the initial probabilities.

By standard arguments on independent phases, the expected time until all probabilities

have reached their upper border at least once is O(n3/2 K log n). Once a bit reaches the

upper border, we apply Lemma 4 again with α := 1/2 and β := 2/3 to show that the

probability of a marginal probability decreasing below 1/2 in time nγ is at most n−γ

(again, for large enough c). The probability that there is a bit for which this happens

is at most n−γ+1 by the union bound. If this does not happen, all bits attain value at

least 1/2 simultaneously, and we apply our above arguments again.

As the probability of a failure is at most n−γ+1, the expected number of restarts

is O(n−γ+1) and considering the expected time until all bits recover to values at

least 1/2 only leads to an additional term of n−γ+1 · O((n3/2 log n)K ) ≤ o(1) (as

n−γ ≤ n−3/K ) in the expectation.

We only need to show that after O(
√

nK ) iterations without failure the probability

of having found the global optimum is Ω(1). To this end, we consider a simple poten-

tial function that takes into account marginal probabilities for all bits. An important

property of the potential is that once the potential has decreased to some constant

value, the probability of generating the global optimum is constant.
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Let p1, . . . , pn be the current marginal probabilities and qi := 1−1/n− pi for all i .

Define the potential function ϕ :=
∑n

i=1 qi , which measures the distance to an ideal

setting where all probabilities attain their maximum 1 − 1/n. Let q ′
i be the qi -value

in the next iteration and p′
i = 1 − q ′

i . We estimate the expectation of ϕ′ :=
∑n

i=1 q ′
i

and distinguish between two cases. If pi ≤ 1 − 1/n − 1/K , by Lemma 3

E
(

q ′
i | qi

)

≤ qi −
pi (1 − pi )

K
·

2

11
·

⎛

⎝

∑

j 	=i

p j (1 − p j )

⎞

⎠

−1/2

.

We bound pi (1 − pi ) from below using pi ≥ 1/3 and 1 − pi = qi + 1/n and the sum

from above using

∑

j 	=i

p j (1 − p j ) ≤
n
∑

j=1

(1 − p j ) =
n
∑

j=1

(q j + 1/n) = 1 + ϕ.

Then

E
(

q ′
i | qi

)

≤ qi −
qi

K
·

2

33
·
(

1

1 + ϕ

)1/2

≤ qi

(

1 −
2

33K
·

1

1 + ϕ1/2

)

.

If pi > 1 − 1/n − 1/K , then pi = 1 − 1/n (as 1/K is a multiple of 1/2 − 1/n)

and pi can only decrease. A decrease by 1/K happens with probability 1/n, thus

E
(

q ′
i | qi

)

≤ qi +
1

nK
.

To ease the notation we assume w. l. o. g. that the bits are numbered according to

decreasing probabilities, i. e., increasing q-values. Let m ∈ N0 be the largest index

such that pm = 1 − 1/n. Observe that by definition of the qi we have
∑m

i=1 qi = 0

and
∑n

i=m+1 qi = ϕ. It follows

m
∑

i=1

E
(

q ′
i | qi

)

≤
m
∑

i=1

qi +
m

nK
≤

1

K
.

Putting everything together,

E
(

ϕ′ | ϕ
)

=
m
∑

i=1

E
(

q ′
i | qi

)

+
n
∑

i=m+1

E
(

q ′
i | qi

)

≤
1

K
+

n
∑

i=m+1

qi

(

1 −
2

33K
·

1

1 + ϕ1/2

)
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=
1

K
+ ϕ

(

1 −
2

33K
·

1

1 + ϕ1/2

)

= ϕ +
1

K
−

2

33K
·

ϕ1/2

ϕ−1/2 + 1
.

For ϕ ≥ 10000 this can further be bounded using

2

33K
·

ϕ1/2

ϕ−1/2 + 1
≥

2

33K
·

100

101/100
>

6

K

thus

E
(

ϕ′ | ϕ
)

≤ ϕ +
1

K
−

1

6
·

2

33K
·

ϕ1/2

ϕ−1/2 + 1
−

5

6
·

2

33K
·

ϕ1/2

ϕ−1/2 + 1

≤ ϕ −
5

6
·

2

33K
·

ϕ1/2

ϕ−1/2 + 1

≤ ϕ −
5

6
·

2

33K
·

100

101
· ϕ1/2

≤ ϕ −
ϕ1/2

17K

where in the third inequality we used ϕ ≥ 10000 again. We now apply the variable

drift theorem (given by Theorem 18 in the Appendix) to bound the expected time for

the potential ϕ to decrease from any initial value ϕ ≤ n to a value ϕ ≤ 10000. To

this end, we use the drift function h(ϕ) := ϕ1/2/(17K ) as we just established that the

expected change (drift) in one step is at least h(ϕ) for all ϕ ≥ 10000.

Since Theorem 18 only considers the hitting time of state 0 and the condition on

the drift needs to hold for all states larger than 0, we consider a modified process

instead where we merge all states with potentials 0 < ϕ < 10000 with state 0: all

steps reducing a potential of ϕ ≥ 10000 to a value smaller than 10000 yield a potential

of 0. In the modified process, the smallest state larger than 0 is xmin = 10000. The

modification can only increase the drift, hence the drift is still bounded from below

by h(ϕ) for all states ϕ ≥ xmin.

Now Theorem 18 yields that the expected time to reach state 0 in the modified

process, or, equivalently, any state ϕ < 10000 in the original process, is at most

10000

h(10000)
+
∫ n

10000

1

h(ϕ)
dϕ = O(K ) + O(K ) ·

∫ n

10000

ϕ−1/2 dϕ = O(
√

nK ).

Consider an iteration where ϕ ≤ 10000. The probability of creating ones on all

bits simultaneously, given that all marginal probabilities are at least 1/3, is minimal

in the extreme setting where a maximal number of bits has marginal probabilities

at 1/3 and all other bits, except at most one, have marginal probabilities at their

upper border. Then the probability of creating the optimum in one step is at least
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(

1 − 1
n

)n−1 · 3−⌈ϕ·3/2⌉ = Ω(1). Hence a successful phase finds the optimum with

probability Ω(1). ⊓⊔

4.1 A Tail Bound on the Running Time

We further show that the upper bound from Theorem 2 holds with high probability.

Along with the lower tail bounds to be presented in Sect. 5, this demonstrates that

the runtime of cGA is highly concentrated, and that we have developed a very good

understanding of its performance and dynamic behaviour. In the following result, the

failure probability can be made an arbitrarily small polynomial.

Theorem 5 For every κ > 0 there is a constant c = c(κ) such that the upper bound

O(
√

nK ) for the time of the cGA on OneMax from Theorem 2 holds with probability

1 − O(n−κ), provided K ≥ c
√

n log n and K = poly(n).

Throughout this section we re-use the notation from the proof of Theorem 2, in

particular the potential function ϕ and variables pi and qi := 1 − 1/n − pi for

1 ≤ i ≤ n.

We still consider the stochastic process w. r. t. the potential function ϕ from the proof

of Theorem 2 and consider its drift. As done in said proof, we use that the probability

that there exists a pi whose value decreases below 1/3 in nγ steps is at most n−γ+1

if the constant c in K ≥ c
√

n log n is chosen large enough. Note that we can make γ

larger to decrease the probability of such a failure; however, this dictates what values

of c are appropriate. In the following, we assume that the probability of such a failure

is at most n−κ and work under the assumption that no failure occurs.

To get a high-probability statement, we aim to apply drift analysis with tail bounds,

stated as Theorem 19 in the Appendix.3 To this end, we have to bound the moment-

generating function (mgf.) of (a stochastic upper bound on) the absolute value of

∫ ϕt

ϕt+1

1

h(max{x, xmin})
dx ≤

∫ ϕt

ϕt+1

K ′
√

x
dx,

where we use K ′ = 17K to improve readability and xmin = 10000.

The following lemma gives a tail bound for the time to reach a potential of at most

xmin.

Lemma 6 Consider the potential ϕ and the drift function h(ϕ) := ϕ1/2/(17K ) as

defined in the proof of Theorem 2, and assume that no pi decreases below 1/3. Let T

denote the random time for the potential to decrease below xmin = 10000 for the first

time, when starting with an initial value of ϕ0. Then for every t > 0, conditional on

the potential always being bounded by a maximum value xmax,

P[T > t | ϕ0, . . . , ϕt ≤ xmax] ≤ e
Ω((xmin/h(xmin)+

∫ ϕ0
xmin

1/h(x) dx−t/2)/xmax)
.

3 To apply Theorem 19 we will again consider a slightly modified process, where potential values 0 < ϕ <

10000 are being merged with state 0.
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Proof For the purpose of bounding the tail of the first hitting time for potentials below

10000 we again consider a modified process where states 0 < ϕ < 10000 are merged

with state 0 (cf. proof of Theorem 18). The following calculations implicitly assume

that ϕt ≥ 10000 as otherwise we have reached a potential below 10000.

We first note that always ϕt+1 ≥ ϕt (1 − 1/K ) ≥ ϕt/2. This holds since a step of

cGA in the worst case increases all frequencies by 1/K (except for those at the upper

border), which decreases each qi by 1/K . Hence, we get

∣

∣

∣

∫ ϕt

ϕt+1

1

h(max{x, xmin})
dx

∣

∣

∣
≺
∫ ϕt

ϕt+1

K ′
√

x
dx ≺

K ′|ϕt+1 − ϕt |√
ϕt/2

,

and we are left with an analysis of Δ =: |ϕt+1 − ϕt |. Here we note that for any

bit i , its frequency changes by an absolute value of at most 1/K with probability at

most qi + 1/n ≤ 2qi . Hence, KΔ is stochastically dominated by a Poisson-binomial

distribution with parameters n and 2qi , where 1 ≤ i ≤ n. Let A be the random variable

describing this Poisson-binomial distribution. While we do not know the individual

success probabilities, we know their average p∗ :=
∑

(2qi/n) = 2ϕt/n and can

bound A by a random variable B, where B ∼ np∗ + Bin(n, p∗) + 2. To show this,

we note that P[B ≥ t] ≥ P[A ≥ t] is trivial for t ≤ np∗ + 2 (as P[B ≥ t] = 1). For

t > np∗ + 2, even the dominance P
[

Bin(n, p∗) ≥ t
]

≥ P[A ≥ t] holds by the results

of Gleser [14], see [23, p. 495] for a summary. Hence,

∣

∣

∣

∫ ϕt

ϕt+1

1

h(max{x, xmin})
dx

∣

∣

∣
≺

1

K

K ′(np∗ + 2 + Bin(n, p∗))
√

ϕt/2

=
c1(np∗ + 2 + Bin(n, p∗))

√
ϕt

=: Z

for some constant c1 > 0.

We now bound the mgf. of Z . Looking up the mgf. of a binomial distribution, we

obtain

E
(

eλZ
)

= E

(

(

eλ(np∗+2+Bin(n,p∗))
)c1/

√
ϕt
)

=
(

eλnp∗+2 ·
(

1 − p∗ + p∗eλ
)n
)c1/

√
ϕt

=
(

eλ(p∗+2/n)
(

1 − p∗ + p∗eλ
)

)nc1/
√

ϕt

Assuming λ ≤ min{1, 1/(16c1
√

ϕt )} and using eλ ≤ 1 +λ+λ2 ≤ 1 + 2λ, we bound

the last expression from above by

(

eλ(p∗+2/n)(1 − p∗ + p∗(1 + 2λ))

)nc1/
√

ϕt

=
(

eλ(p∗+2/n)(1 + 2p∗λ))

)nc1/
√

ϕt

,

which, since 1 + x ≤ ex for x ∈ R, is at most

eλ(np∗+2)c1/
√

ϕt eλ2p∗nc1/
√

ϕt ≤ eλ4np∗c1/
√

ϕt ≤ e8λc1
√

ϕt ,
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since p∗ = 2ϕt/n and np∗ ≥ 20000 ≥ 2 by our assumption on ϕt .

Using (again) ex ≤ 1 + 2x for x ≤ 1 and recalling that λ ≤ 1/(16c1
√

ϕt ), we

arrive at the bound

E
(

eλZ
)

≤ 1 + 32c1λ
√

ϕt ≤ 1 + c2λ
√

ϕt =: D,

for some some constant c2 > 0. Hence, using the variable drift theorem with tail

bounds, Theorem 19 in the Appendix, we get for any δ > 0 and η ≤ min{λ, δλ2/(D−
1 − λ)} that

P[T > t] ≤ e
η(xmin/h(xmin)+

∫ ϕ0
xmin

1/h(x) dx−(1−δ)t)
. (2)

We note that
√

ϕt ≥ 100 if ϕt ≥ xmin = 10000. Hence, using our bound D, we satisfy

δλ2

D − 1 − λ
=

δλ2

(c2
√

ϕt − 1)λ
≥

δλ

c2
√

ϕt

,

if c2 is chosen large enough for c2
√

ϕt − 1 ≥ 0 to hold. Similarly, we show that

δλ2/(D − 1 − λ) ≤ λ if δ is sufficiently small, so that only the second argument

of min{λ, δλ2/(D − 1 − λ)} needs to be considered. We let δ := 1/2. We choose

λ := 1/(16c1
√

xmax) and η := δλ/(c2
√

xmax) = c3/xmax for some constant c3 to

satisfy the requirements on λ and η. Substituting η and δ in (2) proves the claim. ⊓⊔

Reaching a small potential is not sufficient to show that the optimum is found with

high probability. We also need to show that the algorithm spends a sufficiently large

number of steps at a small potential. The following lemma shows that, after having

reached a potential of at most xmin, the algorithm quickly returns to this regime.

Lemma 7 Consider the potential ϕ as defined in the proof of Theorem 2, where K ≥
c
√

n log n for a sufficiently large c > 0 and K = poly(n). Whenever ϕ0 < 10000, the

time R = min{t ≥ 1 | ϕt < 10000, ϕ0 < 10000} to return to a potential below 10000

is at most K log2 n with probability 1 − n−ω(1).

Proof We first show that with high probability the potential never rises beyond O(K )

in any polynomial number of steps.

Consider pi that are at the upper border initially. The probability that in one

step more than log n variables move away from the upper border is at most
(

n
log n

)

(1/n)log n ≤ 1/((log n)!) = n−ω(1). Assuming this never happens within the

next K log2 n steps, during this time at most K log3 n bits move away from the upper

border. As every bit can only increase the potential by 1/K in one step, these bits only

contribute at most log3 n to the potential.

All bits that are not at the upper border initially can contribute up to 1 to the potential

each. However, as they contribute at least 1/K (the minimum distance to the upper

border), the number of such bits is bounded by 10000K . Together, the potential is at

most log3 n +10000K = O(K ) with probability 1−(K log2 n) ·n−ω(1) = 1−n−ω(1)

(as K log2 n = poly(n)) throughout the first K log2 n steps.
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Now consider the potential ϕ1 at time 1. If ϕ1 < 10000, the return time is R = 1.

Otherwise, by the same arguments as above, ϕ1 ≤ 10000 + O(1) with probability

1−n−ω(1) as with this probability at most log n bits move away from the upper border,

and at most 10000K bits that are away from the border initially only move by ±1/K

in one step.

Applying Lemma 6 with an initial potential (denoted by ϕ0 in Lemma 6 but cor-

responding to ϕ1 in the time scale of the present lemma) of at most 10000 + O(1),

t = K log2 n, and xmax = log3 n + 10000K = O(K ) yields that the probability of

not returning to a potential below 10000 in K log2 n steps is at most

e

(

xmin/h(xmin)+
∫ 10000+O(1)

xmin
1/h(x) dx−K log2 n

)

/O(K )
.

Note that

xmin

h(xmin)
+
∫ 10000+O(1)

xmin

1

h(x)
dx

=
10000

√
10000/(17K )

+
∫ 10000+O(1)

10000

1
√

x/(17K )
dx = O(K ),

(still using the definition of h from the proof of Theorem 2), so that the probability

under consideration is

e(O(K )−K log2 n)/O(K ) = e−Ω(log2 n) = n−ω(1)

as claimed. ⊓⊔

We now prove Theorem 5.

Proof of Theorem 5 Applying Lemma 4 as in the proof of Theorem 2, the probability

of all pi remaining above 1/3 all the time for nγ ′
steps is at least 1−n−γ ′+1 ≥ 1−n−κ ,

where γ ′ = max{γ, κ − 1} and γ is chosen as in the proof of Theorem 2.

The aim is to apply Lemma 6 with T ∗ := xmin/h(xmin)+
∫ n

xmin
1/h(x) dx , t := 3T ∗

and xmax = n. Note that T ∗ just represents the upper bound O(K
√

n) on the expected

value derived from variable drift in the proof of Theorem 2. This bound is at least

T ∗ ≥
∫ n

0 1/h(x) dx = 17K
∫ n

0 x−1/2 dx = 34K
√

n. Invoking the lemma yields

P
[

T > 3T ∗] = P[T > t] ≤ eΩ((T ∗−t/2)/n) ≤ e−c′((T ∗/2)/n) ≤ e−c′17K/
√

n

for some constant c′ > 0. As K ≥ c
√

n ln n, this means that the time is at most

3T ∗ = O(K
√

n) with probability at least 1 − e−cc′17 ln n . This probability becomes at

least 1 − n−κ if c is chosen as a large enough constant.

Whenever the potential is at most 10000, we have a probability of Ω(1) to

create the optimum (see proof of Theorem 2). By Lemma 7, the algorithm with

high probability returns to such a state within K log2 n steps. Applying these argu-

ments log2 n times (and considering failure probabilities for log2 n applications of
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Lemma 7), the probability that after K log4 n steps the optimum has not been found

is (log2 n) · e−Ω(log2 n) = n−ω(1).

Adding up all failure probabilities yields the claimed result. ⊓⊔

5 Large Update Strengths Lead to Genetic Drift

The bound O(
√

nK ) from Theorem 2 shows that larger update strengths (i. e., smaller

K ) result in smaller bounds on the runtime. However, the theorem requires that K ≥
c
√

n log n so that the best possible choice results in O(n log n) runtime. An obvious

question to ask is whether this is only a weakness of the analysis or whether there is

an intrinsic limit that prevents smaller choices of K from being efficient.

In this section, we will show that smaller choices of K (i. e., larger update strengths)

cannot give runtimes of lower orders than n log n. In a nutshell, even though larger

update strengths support faster exploitation of correct decisions at single bits by quickly

reinforcing promising bit values they also increase the risk of genetic drift reinforcing

incorrectly made decisions at single bits too quickly. Then it typically happens that

several marginal probabilities reach their lower border 1/n, from which it (due to so-

called coupon collector effects) takes Ω(n log n) steps to “unlearn” the wrong settings.

The very same effect happens with 2-MMASib if its update strength ρ is chosen too

large.

We now state the lower bounds we obtain for the two algorithms, see Theorems 8

and 9 below. Note that the statements are identical if we identify the update strength

1/K of cGA with the update strength ρ of 2-MMASib. Also the proofs of these two

theorems will largely follow the same steps. Therefore, we describe the proof approach

in detail with respect to cGA in Sect. 5.1. In Sect. 5.2, we describe the few places where

slightly different arguments are needed to obtain the result for 2-MMASib.

Theorem 8 The optimization time of cGA with K ≤ poly(n) is Ω(
√

nK + n log n)

with probability 1 − poly(n) · 2−Ω(min{K ,n1/2−o(1)}) and in expectation.

Theorem 9 The optimization time of 2-MMASib with 1/ρ ≤ poly(n) is Ω(
√

n/ρ +
n log n) with probability 1 − poly(n) · 2−Ω(min{1/ρ,n1/2−o(1)}) and in expectation.

We first describe at an intuitive level why large update strengths can be risky. In

the upper bounds from Theorems 1 and 2, we have shown that for sufficiently small

update strengths, the positive stochastic drift by b-steps is strong enough such that

even in the presence of rw-steps all bits never reach marginal probabilities below 1/3,

with high probability. Then no “incorrect” decision is made.

With larger update strengths than 1/(
√

n log n) the effect of rw-steps is strong

enough such that with high probability some bits will make an incorrect decision and

reach the lower borders of marginal probabilities.

More specifically, the lower bounds of Ω(n log n) in Theorems 8 and 9 will be

established from the following arguments. We show that many marginal probabilities

will remain close to their initial values during the early stages of a run (Lemmas 13

and 15). This then implies that b-steps will be rare (Lemma 12) throughout this time,

and thus genetic drift dominates. Through a detailed analysis of the distribution of
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first hitting times in rw-steps we show that then some marginal probabilities will hit

the lower border (Lemmas 10 and 16). Finally, we show that once sufficiently many

marginal probabilities have reached the lower border, then this implies a lower bound

of Ω(n log n) as claimed (Lemma 14).

5.1 Proof of Lower Bound for cGA

We start with a detailed analysis of the hitting time for a marginal probability to reach

the lower border 1/n and the distribution hitting times.

To illustrate this setting, fix one bit and imagine that all steps were rw-steps (we

will explain later how to handle b-steps), and that all rw-steps change the current value

of the bit’s marginal probability (i. e., there are no self-loops). Then the process would

be a fair random walk on {0, 1/K , 2/K , . . . , (K − 1)/K , 1}, started at 1/2. This fair

random walk is well understood (see, e. g., Chapter 14.3 in [9]) and it is well known

that the hitting time is not sharply concentrated around the expectation. More precisely,

there is still a polynomially in K small probability of hitting a border within at most

O(K 2/ log K ) steps and also of needing at least Ω(K 2 log K ) steps. The underlying

idea is that the central limit theorem (CLT) approximates the progress within a given

number of steps.

The real process is more complicated because of self-loops. Recall from the defi-

nition of Ft that the process only changes its current state by ±1/K with probability

2pt,i (1− pt,i ), hence with probability 1−2pt,i (1− pt,i ) a self-loop occurs on this bit.

The closer the process is to one of its borders {1/n, 1 − 1/n}, the larger the self-loop

probability becomes and the more the random walk slows down. Hence the actual

process is clearly slower in reaching a border since every looping step is just wasted.

One might conjecture that the self-loops will asymptotically increase the expected

hitting time. But interestingly, as we will show, the expected hitting time in the pres-

ence of self-loops is still of order Θ(K 2). Also the CLT (in a generalized form) is still

applicable despite the self-loops, leading to a similar distribution as above.

The distribution of the hitting time of the random walk with self-loops will be

analyzed in Lemma 10 below. In order to deal with self-loops, in its proof, we use

a potential function mapping the actual process to a process on a scaled state space

with nearly position-independent variance. Unlike the typical applications of potential

functions in drift analysis, the purpose of the potential function is not to establish a

position-independent first-moment stochastic drift but a (nearly) position-independent

variance, i. e., the potential function is designed to analyze a second moment. This

argument seems to be new in the theory of drift analysis and may be of independent

interest.

Lemma 10 Consider a bit of cGA on OneMax and let pt be its marginal probability

at time t. Let t1, t2, . . . be the times where cGA performs an rw-step (before hitting

one of the borders 1/n or 1 − 1/n) and let Δi := pti +1 − pti . For s ∈ R, let Ts be the

smallest t such that sgn(s)
(
∑t

i=0 Δi

)

≥ |s| holds.
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Choosing 0 < α < 1, where 1/α = o(K ), and −1 ≤ s < 0 constant, we have

P
[

Ts ≤ α(sK )2 or pt exceeds 5/6 or reaches 1/n before tTs

]

( 1

13
√

1/(|s|α)
−

1

(13
√

1/(|s|α))3

) 1
√

2π
e
− 169

2|s|α − O
( 1

|s|
√

αK

)

.

Moreover, for any α > 0 and s ∈ R,

P
[

Ts ≥ α(sK )2 or a border is reached until time tα(sK )2

]

≥ 1 − e−1/(4α).

Informally, the lemma means that every deviation of the hitting time Ts by a constant

factor from its expected value (which turns out as Θ(s2 K 2)) still has constant probabil-

ity, and even deviations by logarithmic factors have a polynomially small probability.

We will mostly apply the lemma for α < 1, especially α ≈ 1/ log n, to show that

there are marginal probabilities that quickly approach the lower border; in fact, this

effect implies that the smallest possible update strength K ∼
√

n log n in Theorem 2

necessarily involves a log n-term. Note that the second statement of the lemma also

holds for α ≥ 1; however, in this realm also Markov’s inequality works. Then, by the

inequality e−x ≤ 1− x/2 for x ≤ 1, we get P
[

Ts ≥ α(sK )2
]

≥ 1/(8α), which means

that Markov’s inequality for deviations above the expected value is asymptotically

tight in this case.

We start with the proof of the second statement, which is can be obtained by a

relatively straightforward analysis of a fair random walk.

Proof of Lemma 10, 2nd statement Throughout this proof, to ease notation we consider

the scaled process on the state space S := {0, 1, . . . , K } obtained by multiplying all

marginal probabilities by K ; the random variables X t = K pt will live on this scaled

space. Note that we also remove the borders (K/n and K − K/n), which is possible

as all considerations are stopped when such a border is reached. For the same reason,

we only consider current states from {1, . . . , K − 1} in the remainder of this proof.

The first hitting time Ts becomes only stochastically larger if we ignore all

self-loops. Formally, recalling the trivial scaling of the state space, we consider

the fair random walk where P
[

X ti +1 = j − 1
]

= P
[

X ti +1 = j + 1
]

= 1/2 if

X ti = j ∈ {1, . . . , K − 1}. We write Yt =
∑t−1

i=0 Δti . Clearly, Δi is uniform on

{−1, 1}, E
(

Δi | 0 < X ti < K
)

= 0, Var(Δi | 0 < X ti < K ) = 1 and Yt is a

sum of independent, identically distributed random variables. It is well known that

(Yt − E(Yt ))/
√

Var(Yt ) converges in distribution to a standard normally distributed

random variable (see, e. g., Chapter 10 in [9]). However, we do not use this fact directly

here. Instead, to bound the deviation from the expectation, we use a classical Hoeffd-

ing bound. We assume s ≥ 0 now and will see that the case s < 0 can be handled

symmetrically.

Theorem 1.11 in [4] yields, with ci = 2 as the size of the support of Δi , that

P
[

Yαs2 K 2 ≥ sK
]

≤ e−(sK )2/(4αs2 K 2) = e−1/(4α).
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Moreover, according to Theorem 1.13 in [4], the bound also holds for all k ≤ αs2 K 2

together, more precisely,

P
[

∃k ≤ αs2 K 2 : Yk ≥ sK
]

≤ e−1/(4α).

Symmetrically, we obtain

P
[

∃k ≤ αs2 K 2 : Yk ≤ −sK
]

≤ e−1/(4α).

Hence, a distance that is strictly smaller than sK is bridged through α(sK )2 rw-steps

(or the process reaches a border before) with probability at least 1 − e−1/(4α). ⊓⊔

To illustrate the main idea for the proof of the first statement Lemma 10, we ignore

b-steps for a while and recall that we are confronted with a fair random walk then.

However, the random walk is not homogeneous with respect to place as the self-loops

slow the process down in the vicinity of a border. Unlike the classical fair random

walk, the random variables describing the change of position from time t to time t +1

(formally, Δt := pt+1 − pt ) are not identically distributed. In fact, the variance of Δt

becomes smaller the closer pt is to one of the borders.

In more detail, the potential function used in the proof of Lemma 10 will essentially

use the self-loop probabilities to construct extra distances to bridge. For instance, states

with low self-loop probability (e. g., 1/2), will have a potential that is only by Θ(1)

larger or smaller than the potential of its neighbors. On the other hand, states with a

large self-loop probability, say 1/K , will have a potential that can differ by as much as

2
√

K from the potential of its neighbors. Interestingly, this choice leads to variances

of the one-step changes that are basically the same on the whole state space (very

roughly, this is true since the squared change (2
√

K )2 = Θ(K ) is observed with

probability Θ(1/K )). However, using the potential for this trick is at the expense of

changing the support of the underlying random variables, which then will depend

on the state. Nevertheless, as the support is not changed too much, the Central Limit

Theorem (CLT) still applies and we can approximate the progress made within T steps

by a normally distributed random variable. This approximation is made precise in the

following lemma, along with a bound on the absolute error.

Lemma 11 (CLT with Lyapunov condition, Berry-Esseen inequality [10], p. 544 ). Let

X1, . . . , Xm be a sequence of independent random variables, each with finite expected

value μi and variance σ 2
i . Define

s2
m :=

m
∑

i=1

σ 2
i and Cm :=

1

sm

m
∑

i=1

(X i − μi ) .

If there exists a δ > 0 such that

lim
m→∞

1

s2+δ
m

m
∑

i=1

E
(

|X i − μi |2+δ
)

= 0
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(assuming all the moments of order 2 + δ to be defined), then Cm converges in distri-

bution to a standard normally distributed random variable.

Moreover, the approximation error is bounded as follows: for all x ∈ R,

|P[Cm ≤ x] − Φ(x)| ≤ C ·
∑m

i=1 E
(

|X i − μi |3
)

s3
m

where C is an absolute constant and Φ(x) denotes the cumulative distribution function

of the standard normal distribution.

We now turn to the formal proof of the outstanding 1st statement of Lemma 10.

Proof of Lemma 10, 1st statement As in the proof of the 2nd statement of Lemma 10

above, we consider the scaled search space {1, . . . , K − 1}. Here we will essentially

use an approximation of the accumulated state within αs2 K 2 steps by the normal

distribution, but have to be careful to take into account steps describing self-loops.

To analyze the hitting time Ts for the X ti -process, we now define a potential function

g : S → R. Unlike the typical applications of potential functions, the purpose of g

is not to establish a position-independent first-moment drift (in fact, there is no drift

within S since the original process is a martingale) but a (nearly) position-independent

variance, i. e., the potential function is designed to analyze a second moment.

Potential function We proceed with the formal definition of the potential function, the

analysis of its expected first-moment change and the corresponding variance, and a

proof that the Lyapunov condition holds for the accumulated change within αs2 K 2

steps. The potential function g is monotonically decreasing on {1, . . . , K/2} and

centrally symmetric around K/2. We define it as follows:

g(K/2) := 0 (3)

g(i) − g(i + 1) :=
√

2K/(i + 1) for 1 ≤ i ≤ K/2 − 1, (4)

g(K − i) := −g(i) for i ≥ K/2. (5)

Inductively, we have for 1 ≤ i ≤ K/2 that

g(i) = g(i) − g(K/2) =
K/2−1
∑

j=i

(g( j) − g( j + 1)) =
K/2−1
∑

j=i

√

2K/( j + 1),

where the second equality holds since the sum is telescoping. We also note that g(0) =
O(K ), more precisely it holds that

g(0) =
√

2K

⎛

⎝

K/2
∑

j=1

√

1/ j

⎞

⎠ ≤
√

2K

(

1 +
∫ K/2−1

1

1
√

x
dx

)

≤
√

2K (2
√

K/2) = 2K ,
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where the first inequality used
∑K/2−1

j=2

√
1/ j as a lower sum of the integral. More

generally, using the monotonicity of g and the same kind of estimations as before, we

obtain for i < j ≤ K/2 that

g(i) − g( j) ≤ g(0) − g( j − i) =
√

2K

j−i
∑

k=1

√

1/k ≤ 2
√

2K (
√

j − i) (6)

Informally, the potential function stretches the whole state space by a factor of at

most 4 but adjacent states in the vicinity of borders can be by 2
√

K apart in potential.

Let Yt := g(X t ). We consider the one-step differences Ψi := Yti +1 − Yti at the

times i where rw-steps occur, and we will show via the representation Yti :=
∑i−1

j=0 Ψ j

that Yti approaches a normally distributed variable. Note that Yti is not necessarily the

same as g(X ti ) − g(X t0) since only the effect of rw-steps is covered by Yti .

In the following, we assume 1 ≤ X ti ≤ K/2 and note that the case X ti > K/2

can be handled symmetrically with respect to −Ψi . We proceed with the announced

analysis of different moments of Ψi .

Analysis of expected change of potential We claim that for all i ≥ 0

0 ≤ E
(

Ψi | X ti

)

≤
√

2/(X ti K ) ≤ o(1), (7)

where the o-notation is with respect to K .

The lower bound E
(

Ψi | X ti

)

≥ 0 is easy to see since X ti is a fair random walk and

g( j − 1)− g( j) ≥ g( j)− g( j + 1) holds for all j ≤ K/2. To prove the upper bound,

we note that X ti +1 ∈ {X ti − 1, X ti , X ti + 1} so that

E
(

Ψi | X ti

)

= P
[

X ti +1 < X ti

]

(g(X ti − 1) − g(X ti ))

+ P
[

X ti +1 > X ti

]

(g(X ti + 1) − g(X ti ))

Using the properties of rw-steps, we have that P
[

Yti +1 	= Yti

]

= 2
(K−X ti

)X ti

K 2 . More-

over, on Yti +1 	= Yti , Yti +1 takes each of the two values g(X ti − 1) and g(X ti + 1)

with the same probability. Hence

E
(

Ψi | X ti

)

=
(K − X ti )X ti

K 2

(

(g(X ti − 1) − g(X ti )) + (g(X ti + 1) − g(X ti ))
)

=
(K − X ti )X ti

K 2

(

(g(X ti − 1) − g(X ti )) − (g(X ti ) − g(X ti + 1))
)

=
(K − X ti )X ti

K 2
·
√

2K

(

1
√

X ti

−
1

√

X ti + 1

)

≤
X ti

K
·
√

2K

(

1
√

X ti

−
1

√

X ti + 1

)

,

where the last equality used (4).
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We estimate the bracketed terms using

1
√

X ti

−
1

√

X ti + 1
=
√

X ti + 1 −
√

X ti
√

X ti

√

X ti + 1
≤

1/(2
√

X ti )

X ti

≤
1

(

X ti

)3/2
,

where the penultimate inequality exploited that f (x + h) − f (x) ≤ h f ′(x) for any

concave, differentiable function f and h ≥ 0; here using f (x) =
√

x and h = 1.

Altogether,

E
(

Ψi | X ti

)

≤
X ti

K
·

√
2K

(

X ti

)3/2
=

√
2X ti√

K
(

X ti

)3/2
=

√

2

X ti K
,

which proves (7) since X ti ≥ 1 and K = ω(1).

Analysis of the variance of the change of potential We claim that for all i ≥ 0

Var(Ψi | X ti ) ≥ 1/4. (8)

To show this, note that

Var(Ψi | X ti ) ≥ E
(

(Ψi − E
(

Ψi | X ti

)

)2 · 1{Ψi ≤ 0} | X ti

)

≥ E
(

(Ψi )
2 · 1{Ψi ≤ 0} | X ti

)

since E
(

Ψi | X ti

)

≥ 0. Now, as 0 < X ti ≤ K/2, we have P
[

Yti +1 < Yti

]

=
(K−X ti

)X ti

K 2 ≥ X ti

2K
. Moreover, Yti +1 < Yti implies that X ti +1 = X ti + 1 since g is

monotone decreasing on {1, . . . , K/2} and the X ti -value can change by either −1, 0,

or 1. Hence, if Yti +1 < Yti then Yti +1−Yti = g(X ti +1)−g(X ti ) = −
√

2K/(X ti + 1).

Altogether,

Var(Ψi | X ti ) ≥
X ti

2K
·
(

−
√

2K/(X ti + 1)

)2
≥ 1/4,

where we used X ti /(X ti + 1) ≥ 1/2. This proves the lower bound on the variance.

Approximating the accumulated change of potential by a Normal distribution We

are almost ready to prove that Yti :=
∑i−1

j=0 Ψ j can be approximated by a normally

distributed random variable for sufficiently large t . We denote by s2
i :=

∑i−1
j=0 Var(Ψ j |

X t j
) and note that s2

i ≥ i/4 by our analysis of variance from above. The so-called

Lyapunov condition, which is sufficient for convergence to the normal distribution

(see Lemma 11), requires the existence of some δ > 0 such that

lim
i→∞

1

s2+δ
i

i−1
∑

j=0

E
(

|Ψ j − E
(

Ψ j | X t j

)

|2+δ | X t j

)

= 0. (9)
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We will show that the condition is satisfied for δ = 1 (smaller values could be used

but do not give any benefit) and i = ω(K ) (which, as i = αs2 K 2, holds due to our

assumptions 1/α = o(K ) and |s| = Ω(1)). We argue that

|Ψi − E
(

Ψi | X ti

)

| ≤ |Ψi | + |E
(

Ψi | X ti

)

|
≤
∣

∣max
{

k | P
[

|Ψi | ≥ k | X ti

]

> 0
}
∣

∣+ o(1),

where we have used the bound on |E
(

Ψi | X ti

)

| from (7). As the X ti -value can only

change by {−1, 0, 1}, we get, by summing up all possible changes of the g-value, that

|Ψi − E
(

Ψi | X ti

)

| ≤ (g(X ti − 1) − g(X ti )) + (g(X ti ) − g(X ti + 1)) + o(1)

≤ g(X ti − 1) − g(X ti + 1) + o(1)

≤
(

2 ·
√

2K/(X ti − 1)

)

+ o(1)

for K large enough.

Hence, plugging this in the Lyapunov condition (9) for δ = 1, we obtain

E
(

|Ψ j − E
(

Ψ j | X t j

)

|3 | X t j

)

≤
2X t j

K

(

2 ·
√

2K/(X t j
− 1)

)3

(1 + o(1)) + o(1) = O(
√

K ),

implying that

1

s3
i

i−1
∑

j=0

E
(

|Ψ j − E
(

Ψ j

)

|3 | X t j

)

≤
1

(i/4)1.5
O(i

√
K ) = O(

√

K/i), (10)

which goes to 0 as i = ω(
√

K ). Hence, for the value i := αs2 K 2 considered in the

lemma we obtain that

Yti − E
(

Yti | X0

)

si

(11)

converges in distribution to N (0, 1) according to Lemma 11. The absolute error of

this approximation is also O(
√

K/i) by reusing (10).

Estimating the accumulated progress Recall that our aim is to show that the event
∑i−1

j=0 Δ j ≤ s (where s is negative and i = αs2 K 2) happens with at least the proba-

bility stated in the lemma. Since we analyzed the change of the potential function g, we

establish a sufficient increase of the g-value (corresponding to a decrease of marginal

probability) that implies
∑i−1

j=0 Δ j ≤ s. By (6), we know that g(X ti ) − g(X0) ≥
2
√

|s|K implies X ti − X0 ≤ sK < 0 and therefore also
∑i−1

j=0 Δ j ≤ s. Hence, in the

following it suffices to study the event g(X ti ) − g(X0) ≥ 2
√

|s|K and to show that it

happens with the required probability.
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As already mentioned, the random variable Yti denotes the accumulated progress

(in terms of g-value) due to rw-steps up to time ti . To show that Yti is at least 2
√

|s|K
with the claimed probability bounds, we exploit the above-established property that

(11) converges in distribution to N (0, 1). Hence, we need to estimate the variance si

and the expected value E
(

Yti

)

.

Note that s2
i ≥ αs2 K 2/4 by our analysis of variance above and therefore si ≥√

α|s|K/2. We have to be more careful when computing E
(

Yti

)

since E
(

Ψi | X ti

)

is

negative for X ti > K/2. Note, however, that considerations are stopped when the

marginal probability exceeds 5/6, i. e., when X ti > 5K/6. Using (7), we hence have

that E
(

Ψi | X ti

)

≥ −
√

2/(5K 2/6) ≥ −1.55/K . Therefore, E
(

Yti

)

≥ i ·(−1.55/K ) =
−1.55αs2 K and E

(

Yti /si

)

≥ −3.1|s|
√

α.

We study the event Yti ≥ r K for general r ≥ 0, which is equivalent to
Yti

−E
(

Yti
|X0

)

si
≥ r K/si − E

(

Yti /si

)

. If (11) was really N (0, 1)-distributed, the proba-

bility of the event would be Φ(r K/si − E
(

Yti /si

)

), where Φ denotes the cumulative

distribution function of the standard normal distribution. Taking into account the

approximation error O(
√

K/i) computed above and plugging in our estimates for

expected value and variance, we altogether have that

P
[

Yti ≥ r K
]

≥
(

1 − Φ
(

r K/si − E
(

Yti /si

))

)

− O(
√

K/i) (12)

= 1 − Φ

(

r/(|s|
√

α/4) + 3.1|s|
√

α

)

− O(
√

K/i) (13)

for any r leading to a positive argument of Φ,

Using r = 3
√

|s| in (13) , we compute

r

|s|
√

α/4
+ 3.1|s|

√
α ≤

3
√

|s|
|s|

√
α/4

+ 3.1|s|
√

α ≤
13

√
|s|α

.

Using Lemma 21 (in the Appendix) we can now bound the term 1 − Φ

(

r/(|s|
√

α/4)

+ 3.1|s|
√

α

)

from (13) below and obtain

(

1

13
√

1/(|s|α)
−

1

(13
√

1/(|s|α))3

)

1
√

2π
e−169/(2|s|α) =: p(α, s),

using |s| ≤ 1 and α ≤ 1. This means that distance sK (in negative direction) is

bridged by the rw-steps before or at time ti , where i = αs2 K 2, with probability at

least p(α, s) − O(
√

K/i) = p(α, s) − O(α−1/2s−1 K −1/2), where the O-term is the

bound on the approximation error computed above. Undoing the scaling of the state

space introduced at the beginning of this proof, this corresponds to an accumulated

change of the actual state of cGA in rw-steps by s; more formally,
(
∑t

i=0 Δi

)

≤ s in

terms of the original state space. This establishes also the first statement of the lemma

and completes the proof. ⊓⊔

123



Algorithmica

As rw-steps are interleaved with b-steps, Lemma 10 alone is not sufficient to analyze

the overall movement of a marginal probability. We also requires a bounded number

of b-steps within a given period of time. To establish this, we first show that, during

the early stages of a run, the probability of a b-step is only O(1/
√

n). Intuitively,

during early stages of the run many bits will have marginal probabilities in the interval

[1/6, 5/6]. Then the standard sampling deviation of the OneMax-value is of order

Θ(
√

n), and the probability of a b-step is 1 − P[Rt ] = O(1/
√

n). The link between

1 − P[Rt ] and the standard deviation already appeared in Lemma 3 above; roughly, it

says that every step is a b-step for bit i with probability at least (
∑

j 	=i p j (1− p j ))
−1/2,

which is the reciprocal of the standard deviation in terms of the other bits.

The following Lemma 12 represents a kind of counterpart of Lemma 3, but here

we seek an upper bound on 1 − P[Rt ].

Lemma 12 Assume that at time t there are γ n bits for some constant γ > 0 bits whose

marginal probabilities are within [1/6, 5/6]. Then the probability of having a b-step

on any fixed bit position is

1 − P[Rt ] = O(1/
√

n),

regardless of the decisions made in this step on all other n − γ n − 1 bits.

Proof We know from our earlier discussion that a b-step at bit i requires Dt ∈ {−1, 0}
where Dt := |xt | − |xt,i | − (|yt | − |yt,i |) is the change of the OneMax-value at bits

other than i in the two solutions xt and yt sampled at time t .

We apply the principle of deferred decisions and fix all decisions for creating xt as

well as decisions for yt on all but the m := γ n selected bits with marginal probabilities

in [1/6, 5/6]. Let p1, p2, . . . , pm denote the corresponding marginal probabilities

after renumbering these bits, and let S denote the random number of these bits set to 1.

Note that there are at most 2 values for S which lead to the algorithm making a b-step.

Since S is determined by a Bernoulli trial with success probabilities p1, . . . , pm ,

Theorem 22 in the Appendix implies that the probability of S attaining any particular

value is at most

1

2

√

∑m
i=1 pi (1 − pi )

≤
1

2

√

∑m
i=1(1/6) · (5/6)

= O(1/
√

m) = O(1/
√

n).

Taking the union bound over 2 values proves the claim. ⊓⊔

Even though one main aim is to show that rw-steps make certain marginal proba-

bilities reach their lower border, we will also ensure that with high probability, Ω(n)

marginal probabilities do not move by too much, resulting in a large sampling variance

and a small probability of b-steps. The following lemma serves this purpose. Its proof

is a straightforward application of Hoeffding’s inequality since it is pessimistic here

to ignore the self-loops.

Lemma 13 For any bit, with probability Ω(1) for any t ≤ κK 2, κ > 0 a small enough

constant, the first t rw-steps lead to a total change of the bit’s marginal probability

within [−1/6, 1/6]. This fact holds independently of all other bits.
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The probability that the above holds for less than γ n bits amongst the first n/2 bits

is 2−Ω(n), regardless of the decisions made on the last n/2 bits.

Proof Note that the probability of exceeding [−1/6, 1/6] increases with the number

of rw-steps that do increase or decrease the marginal probability (as opposed to self-

loops). We call these steps relevant and pessimistically assume that all t steps are

relevant steps.

Now defining X j :=
∑ j

i=1 X i as the total progress in the first j relevant steps, we

have E
(

X j

)

= 0, for all j ≤ t , and the total change in these j steps exceeds 1/6 only

if X j ≥ K/6. Applying a Hoeffding bound, Theorem 1.13 in [4], the maximum total

progress is bounded as follows:

P

[

max
j≤t

X j ≤ K/6

]

≤ exp

(

−2(K/6)2

4t

)

≤ exp

(

−
1

12κ

)

.

By symmetry, the same holds for the total change reaching values less or equal to −1/6.

By the union bound, the probability that the total change always remains within the

interval [−1/6, 1/6] is thus at least

1 − 2 exp

(

−
1

12κ

)

.

Assuming κ < 1/(12 ln 2) gives a lower bound of Ω(1).

Note that due to our pessimistic assumption of all steps being relevant, all bits are

treated independently. Hence we may apply standard Chernoff bounds to derive the

second claim. ⊓⊔

The following lemma shows that whenever a small number of bits has reached the

lower border for marginal probabilities, the remaining optimization time is Ω(n log n)

with high probability. The proof is similar to the well known coupon collector’s the-

orem [24].

Lemma 14 Assume cGA reaches a situation where at least Ω(nε) marginal prob-

abilities attain the lower border 1/n. Then with probability 1 − e−Ω(nε/2), and in

expectation, the remaining optimization time is Ω(n log n).

Proof Let m = Ω(nε) be the number of bits that have reached the lower border 1/n.

A necessary condition for reaching the optimum within t := (n/2 − 1) · (ε/2) ln n

iterations is that during this time each of these m bits is sampled at value 1 in at least

one of the two search points constructed. The probability that one bit never samples

a 1 in t iterations is at least (1−2/n)t . The probability that all m bits sample a 1 during

t steps is at most, using (1 − 2/n)n/2−1 ≥ 1/e and 1 + x ≤ ex for x ∈ R,

(

1 −
(

1 −
2

n

)t)m

≤
(

1 − n−ε/2
)m

≤
(

exp
(

−n−ε/2
))m

≤ exp(−Ω(nε/2)).
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Hence with probability 1−exp(−Ω(nε/2)) the remaining optimization time is at least

t = Ω(n log n). As 1−exp(−Ω(nε/2)) = Ω(1), the expected remaining optimization

time is of the same order. ⊓⊔

We have collected most of the machinery to prove Theorem 8. The following lemma

identifies a set of bits that stay centered in a phase of Θ(K min{K ,
√

n}) steps, resulting

in a low probability of b-steps. Basically, the idea is to bound the accumulated effect of

b-steps in the phase using Chernoff bounds: given K/6 b-steps, a marginal probability

cannot change by more than 1/6. Note that this applies to many, but not all bits. Later,

we will see that within the phase, some of the remaining bits will reach their lower

border with not too low probability.

Lemma 15 Let κ > 0 be a small constant. There exists a constant γ , depending on κ ,

and a selection S of γ n bits among the first n/2 bits such that the following properties

hold regardless of the last n/2 bits throughout the first T := κK · min{K ,
√

n} steps

of cGA with K ≤ poly(n), with probability 1 − poly(n) · 2−Ω(min{K ,n}):

1. the marginal probabilities of all bits in S is always within [1/6, 5/6] during the

first T steps,

2. the probability of a b-step at any bit is always O(1/
√

n) during the first T steps,

and

3. the total number of b-steps for each bit is bounded by K/6, leading to a displace-

ment of at most 1/6.

Proof The first property is trivially true at initialization, and we show that an event of

exponentially small probability needs to occur in order to violate the property. Taking

a union bound over all T steps ensures that the property holds throughout the whole

phase of T steps with the claimed probability.

By Lemma 13, with probability 1 − 2−Ω(n), for at least γ n of these bits the total

effect of all rw-steps is always within [−1/6,+1/6] during the first T ≤ κK 2 steps.

We assume in the following that this happens and take S as a set containing exactly

γ n of these bits.

It remains to show that for all bits in S the total effect of b-steps is bounded by 1/6

with high probability. Note that, while this is the case, according to Lemma 12, the

probability of a b-step at every bit in S is at most c2/
√

n for a positive constant c2. This

corresponds to the second property, and so long as this holds, the expected number

of b-steps in T ≤ κK 2 steps is at most κ · c2 K . Each b-step changes the marginal

probability of the bit by 1/K . A necessary condition for increasing the marginal

probability by a total of at least 1/6 is that we have at least K/6 b-steps amongst the

first T steps. Choosing κ small enough to make κ · c2 K ≤ 1/2 · K/6, by Chernoff

bounds the probability to get at least K/6 b-steps in T steps is e−Ω(K ). In order for

the first property to be violated, an event of probability e−Ω(K ) is necessary for any

bit in S and any length of time t ≤ T ; otherwise all properties hold true.

Taking the union bound over all T ≤ κK 2 steps and all γ n bits gives a probability

bound of κK 2 · γ n · e−Ω(K ) ≤ poly(n) · 2−Ω(K ) for a property being violated. This

proves the claim. ⊓⊔

Finally, we put everything together to prove our lower bound for cGA.
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Proof of Theorem 8 If K = O(1) then it is easy to show, similarly to Lemma 17, that

each bit independently hits the lower border with probability Ω(1) by sampling only

zeros. Then the result follows easily from Chernoff bounds and Lemma 14. Hence we

assume in the following K = ω(1).

For K ≥
√

n, Lemma 15 implies a lower bound of Ω(K
√

n) as then the probability

of sampling the optimum in any of the first T := κK · min{K ,
√

n} steps is at most

(5/6)γ n = 2−Ω(n). Taking a union bound over the first T steps and adding the error

probability from Lemma 15 proves the claim for a lower bound of Ω(K
√

n) with

the claimed probability. This proves the theorem for K = Ω(
√

n log n) as then the

Ω(
√

nK ) term dominates the runtime. Hence we may assume K = o(
√

n log n) in the

following and note that in this realm proving a lower bound of Ω(n log n) is sufficient

as here this term dominates the runtime.

We still assume that the events from Lemma 15 apply to the first n/2 bits. We now

use Lemma 10 to show that some marginal probabilities amongst the last n/2 bits are

likely to walk down to the lower border. Note that Lemma 10 applies for an arbitrary

(even adversarial) mixture of rw-steps and b-steps over time. This allows us to regard

the progress in rw-steps as independent between bits.

In more detail, we will apply both statements of Lemma 10 to a fresh marginal

probability from the last n/2 bits, to prove that it walks to its lower border with a not

too small probability. First we apply the second statement of the lemma for a positive

displacement of s := 1/6 within T steps, using α := T /(sK )2. The random variable

Ts describes the first point of time where the marginal probability reaches a value of

at least 1/2 + 1/6 + s = 5/6 through a mixture of b- and rw-steps. This holds since

we work under the assumption that the b-steps only account for a total displacement

of at most 1/6 during the phase. Lemma 10 now gives us a probability of at least

1 − e−1/(4α) = Ω(1) (using α = O(1)) for the event that the marginal probability

does not exceed 5/6. In the following, we condition on this event.

We then revisit the same stochastic process and apply Lemma 10 again to show

that, under this condition, the random walk achieves a negative displacement. Note

that the event of not exceeding a certain positive displacement is positively correlated

with the event of reaching a given negative displacement (formally, the state of the

conditioned stochastic process is always stochastically smaller than of the uncondi-

tioned process), allowing us to apply Lemma 10 again despite dependencies between

the two applications.

We now apply the first statement of Lemma 10 for a negative displacement of

s := −1 through rw-steps within T steps, using α := T /((sK )2). Since we still

work under the assumption that the b-steps only account for a total displacement

of at most 1/6 during the phase, the displacement is then altogether no more than

s + 1/6 ≤ −5/6, implying that the lower border is hit as the marginal frequency does

not exceed 5/6.

The conditions on α in of Lemma 10 hold as 0 < α < 1 choosing κ small enough,

and 1/α = O(K/ min{
√

n, K }) = o(K ) for K = ω(1). Also note that 1/α =
O(K/ min{

√
n, K }) = o(log n) since K = o(n log n). Now the lemma states that the

probability of the random walk reaching a displacement through rw-steps of at most s

(or hitting the lower border before) is at least
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( 1

13
√

1/(|s|α)
−

1

(13
√

1/(|s|α))3

) 1
√

2π
e
− 169

2|s|α − O
(

1/(s
√

αK )
)

(14)

To bound the last expression from below, we distinguish between two cases. If

K ≤
√

n, then α = Ω(1) and (14) is at least

Ω(1) − O

(

1
√

K

)

= Ω(1) −
1

ω(1)
= Ω(1)

since K = ω(1) and s = Θ(1). If K ≥
√

n, then with 1/α = o(log n) we estimate

(14) from below by

Ω

(

1

o(
√

log n)
· e−o(ln n)

)

− O
(

1/(s
√

αK )
)

= Ω

(

1

o(
√

log n)
· e−o(ln n)

)

− o

(√
log n

n1/4

)

≥ n−β ,

for some β = β(n) = o(1).

Combining with the probability of not exceeding 5/6, which we have proved to be

constant, the probability of the bit’s marginal probability hitting the lower border within

T steps is Ω(n−β). Hence by Chernoff bounds, with probability 1 − 2−Ω(n1−β ), the

final number of bits hitting the lower border within T steps is Ω(n1−β) = Ω(n1−o(1)).

Once a bit has reached the lower border, while the probability of a b-step is

O(1/
√

n), the probability of leaving the bound again is O(n−3/2) as it is necessary

that either the bit is sampled as 1 at one of the offspring and a b-step happens, or in

both offspring the bit is sampled at 1. So the probability that this does not happen until

the T = O(n log n) steps are completed is (1− O(n−3/2))T ≤ e−O(log(n)/
√

n) = o(1).

Again applying Chernoff bounds leaves Ω(n1−o(1)) bits at the lower border at time T

with probability 1 − 2−Ω(n1−o(1)).

Then Lemma 14 implies a lower bound of Ω(n log n) that holds with probability

1 − 2−Ω(n1/2−o(1)). ⊓⊔

5.2 Proof of Lower Bound for 2-MMASib

We will use, to a vast extent, the same approach as in Sect. 5.1 to prove Theorem 9.

Most of the lemmas can be applied directly or with very minor changes. In particular,

Lemmas 13, 14 and 15 also apply to 2-MMASib by identifying 1/K with ρ. Intuitively,

this holds since the analyses of b-steps always pessimistically bound the absolute

change of a marginal probability by the update strength (1/K for cGA). This also

holds with respect to the update strength ρ for 2-MMASib.

To prove lower bounds on the time to hit a border through rw-steps, the next lemma

is used. It is very similar to Lemma 10, except for two minor differences: first, also

the accumulated effect of b-steps is included in the quantity pt − p0 analyzed in the

lemma. Second, considerations are stopped when the marginal probability becomes

less than ρ or more than 1−ρ. This has technical reasons but is not a crucial restriction.
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We supply an additional lemma, Lemma 17 below, that applies when the marginal

probability is less than ρ. The latter lemma uses known analyses similar to so-called

landslide sequences defined in [26, Section 4].

Lemma 16 Consider a bit of 2-MMASib on OneMax and let pt be its marginal prob-

ability at time t. We say that the process breaks a border at time t if min{pt , 1− pt } ≤
max{1/n, ρ}. Given s ∈ R and arbitrary starting state p0, let Ts be the smallest t

such that sgn(s)(pt − p0) ≥ |s| holds or a border is reached.

Choosing 0 < α < 1, where 1/α = o(ρ−1), and −1 ≤ s < 0 constant, and

assuming that every step is a b-step with probability at most ρ/(4α), we have

P
[

Ts ≤ α(s/ρ)2 or pt exceeds 5/6 before Ts

]

≥
( 1

24
√

(1/(|s|α)
−

1

(24
√

1/(|s|α))3

) 1
√

2π
e−288/(|s|α) − O

( √
ρ

|s|
√

α

)

.

Moreover, for any α > 0 and constant 0 < s ≤ 1, if there are at most s/(2αρ)

b-steps until time α(s/ρ)2, then

P
[

Ts ≥ α(s/ρ)2 or a border is reached until time α(s/ρ)2
]

≥ 1 − e−1/(16α).

Proof We follow similar ideas as in the proof of Lemma 10. Again, we start with the

second statement, where s ≥ 0 is assumed, and aim for applying a Hoeffding bound.

We note that a marginal probability of 2-MMASib can only change by an absolute

amount of at most ρ in a step. Hence, the b-steps until time α(s/ρ2) account for an

increase of the X t -value by at most s/2. With respect to the rw-steps, Theorem 1.11

from [4] can be applied with ci = 2ρ and λ = s/2.

Also for the first statement, we follow the ideas from the proof of Lemma 10. In

particular, the borders stated in the lemma will be ignored as all considerations are

stopped when they are reached. We will apply a potential function and estimate its

first and second moment separately with respect to rw-steps and non-rw steps.

Definition of potential function Our potential function is

g(x) :=
∫ 1/2

x

1

ρ
√

z
dz,

which can be considered the continuous analogue of the function g used in the proof

of Lemma 10. For r > 0 and x ≤ 1/2, we note that

g(x − r) − g(x) =
2

ρ

(√
x −

√
x − r

)

. (15)

For better readability, we denote by X t := pt , t ≥ 0, the stochastic process obtained

by listing the marginal probabilities of the considered bit over time. Let Yt := g(X t )

and Δt := Yt+1 − Yt . In the remainder of this proof, we assume X t ≤ 1/2; analyses

for the case X t > 1/2 are symmetrical by switching the sign of Δt . We also assume

X t ≥ ρ as we are only interested in statements before the first point of time where a
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border is reached. As mentioned, following the structure of the proof of Lemma 10, we

now analyze several moments of Δt , with the final aim of establishing the Lyapunov

condition in Lemma 11.

Analysis of expected change of potential We claim for all t ≥ 0 where rw-steps occur

(hence, formally we enter the conditional probability space on Rt , the event that an

rw-step occurs at time t) that

0 ≤ E(Δt | X t ; Rt ) ≤
3ρ

2
√

X t

= o(1) (16)

Moreover, we claim for the unconditional expected value that

E(Δt | X t ) ≥ −
ρ

2α
. (17)

For a proof of (16), we exploit the martingale property

E(X t+1 | X t ; Rt ) = (1 − X t )(X t − ρX t ) + X t (X t + ρ(1 − X t )) = X t .

that holds in rw-steps of 2-MMASib, where there are two possible successor states

different from X t . Since g(x) is a convex function on [0, 1/2], we have by Jensen’s

inequality

E(Δt | X t ; Rt ) = E(g(X t+1) | X t ) − g(X t ) ≥ g(E(X t+1 | X t )) − g(X t ) = 0.

To bound the expected value from above, we carefully estimate the error introduced

by the convexity. Note that

g(x − xρ) − g(x) =
∫ x

x−xρ

1

ρ
√

z
dz ≤

x
√

x − xρ
(18)

since the integrand is non-increasing. Analogously,

1 − x
√

x + (1 − x)ρ
≤ g(x) − g(x + (1 − x)ρ) ≤

1 − x
√

x
(19)

Inspecting the g-values of two possible successor states of x := X t , we get that

E(Δt | X t = x; Rt ) = E(g(X t+1) − g(x) | X t = x; Rt ) (20)

≤ (1 − x)
x

√
x − xρ

− x
1 − x

√
x + (1 − x)ρ

= (1 − x)x

(

1
√

x − xρ
−

1
√

x + (1 − x)ρ

)

= (1 − x)x ·
√

x + (1 − x)ρ −
√

x − xρ
√

x + (1 − x)ρ ·
√

x − xρ
≤

(1 − x)x
ρ

2
√

x−xρ

x − xρ
≤

xρ

2(x/2)3/2

≤
3ρ

2
√

x
, (21)
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where the third-last inequality estimated 1 − x ≤ 1 and used that f (z + ρ) − f (z) ≤
ρ f ′(z) for any concave, differentiable function f and ρ ≥ 0; here using f (z) =

√
z

and z = x − ρ. The penultimate used ρ ≤ 1/2. Since the final bound is O(ρ/
√

x) =
o(1) due to our assumption on X t ≥ ρ, we have proved (16).

We now consider the case that a b-step occurs at time t . We are only interested

in bounding E(Δt | X t ) from below now. Given X t = x , we have X t+1 > x (which

means Δt < 0) with probability at most 1 − (1 − x)2 = 1 − (1 − 2x + x2) ≤ 2x .

With the remaining probability, X t+1 < x . Since X t+1 ≤ x + ρ, we get

E
(

Δt | X t = x; Rt

)

≥ −2x

∫ x+ρ

x

1

ρ
√

z
dz ≥ −2

√
x . (22)

Now, since by assumption a b-step occurs with probability at most ρ/(4α), the uncon-

ditional expected value of Δt can be computed using the superposition equality.

Combining (16) and (22), we get

E(Δt | X t = x) ≥ 0 −
ρ

4α
2
√

x ≥ −
ρ

2α
. (23)

since x ≤ 1, proving (17).

Analysis of variance of change of potential Regarding the variance of Δt , we claim

that

Var(Δt | X t ; Rt ) ≥ 1/16 (24)

and, without the condition of having an rw-step,

Var(Δt | X t = x) ≥
1

32
. (25)

To prove this, we expand the definition of variance to estimate

Var(Δt | X t ) ≥ E
(

(Δt − E(Δt | X t = x))2 · 1{Δt ≤ 0} | X t = x
)

≥ E
(

(Δt )
2 · 1{Δt ≤ 0} | X t = x

)

since E(Δt | X t ) ≥ 0. We note that for X t = x , we have P
[

X t+1 ≥ x
]

= x . On

X t+1 ≥ x , we have Δt < 0, which means P[Δt < 0] = x . Now,

|Δt | = g(x + (1 − x)ρ) − g(x) ≥
1 − x

√
x + ρ(1 − x)

≥
1 − x

√
x + x(1 − x)

≥
1

4
√

x
,

(26)

where the penultimate inequality used ρ ≤ x and the last one x ≤ 1/2. Plugging this

in, we get

Var(Δt | X t = x Rt ) ≥ x ·
(

1

4
√

x

)2

≥
1

16
,
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which completes the proof of (24).

By the law of total probability, we get for the unconditional variance that

Var(Δt | X t ) = Var(Δt | X t ; Rt )P[Rt ] + Var(Δt | X t ; Rt )(1 − P[Rt ]),

Since P[Rt ] ≥ 1/2, we altogether have for the unconditional variance that

Var(Δt | X t = x) ≥ 1/32,

as claimed in (25).

Approximating the accumulated change of potential by a Normal distribution The aim

is to apply the central limit theorem (Lemma 11) on the sum of the Δt . To this end,

we will verify the Lyapunov condition for δ = 1 (smaller values could be used but

do not give any benefit) and t = ω(1/ρ) (which, as t = α(s/ρ)2, holds due to our

assumptions 1/α = o(ρ−1) and |s| = Ω(1)). We compute

E
(

|Δt − E(Δt | X t )|3 | X t

)

≤ P[Δt > 0] · (Δt − E(Δt | X t ))
3 + P[Δt < 0] · (|Δt | + |E(Δt | X t )|)3

≤ (1 − x)

(

x
√

x − xρ

)3

+ x ·
(

1 − x
√

x
+

3ρ

2
√

x
+

ρ

2α

)3

,

where we again have used (18) and the upper bound from (19) with respect to the

two outcomes of X t+1. Moreover, we have used the bound E(Δt | X t ) ≥ 0 in the first

term and E(|Δt | | X t ) ≤ 3ρ/(2
√

x) + ρ/(2α) in the second term, which is a crude

combination of (21) and (17). As ρ ≤ 1/2 and ρ ≤ x as well as α ≥ ρ, the expected

value satisfies

E
(

|Δt − E(Δt | X t )|3 | X t

)

≤
(

x
√

x/2

)3

+ x

(

O

(

1
√

x
+ 3

√
x +

1

2

)3
)

≤ 1 + x

(

O

(

1
√

x

)3
)

= O(1/
√

x) = O(1/
√

ρ),

where we used x ≤ 1 and x ≥ ρ. Using s2
t :=

∑t−1
j=0 Var(Δ j | X j ) in the notation of

Lemma 11 and using that Var(Δ j | X j ) ≥ 1/32 by (25), we get

1

s3
t

t−1
∑

j=0

E
(

|Ψ j − E
(

Ψ j

)

|3 | X j

)

≤
182

t1.5
O(t/

√
ρ) = O(

√

1/(tρ)), (27)
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which goes to 0 as t = ω(1/ρ). This establishes the Lyapunov condition. Hence, for

the value t := α(s/ρ)2 considered in the lemma, we obtain that
Yt −E(Yt |X0)

st
converges

in distribution to the normal distribution N (0, 1).

Estimating the accumulated progress Note that s2
t ≥ α(s/ρ)2/32 since Var(Δt |

X t ) ≥ 1/32 by (25). Hence, st =
√

α/32(|s|/ρ), recalling that s < 0. Moreover,

as x ≤ 5/6 is assumed in this part of the lemma, by combining (21) and (17), we

get E(Δt | X t ) ≥ −ρ/(2α) − ρ · (3/2)
√

6/5 ≥ −ρ/(2α) − 1.7ρ ≥ −2.2ρ/α and

E(Yt ) = Y0+
∑t−1

i=0 E(Δi | X i ) ≥ 0+t(−2.2ρ/α) ≥ −2.2s2/ρ. Together, this means
E(Yt )

st
≥ − 2.2s2/ρ√

α/32(|s|/ρ)
≥ −

√
155/α|s| ≥ −

√
155/α since |s| ≤ 1 and α ≤ 1. By the

normalization to N (0, 1), we have that

P[Yt ≥ r ] = P

[

Yt

st

−
E(Yt | X0)

st

≥
r

st

−
E(Yt | X0)

st

]

,

hence

P[Yt ≥ r ] ≥
(

1 − Φ(rρ/(|s|
√

α/32) +
√

155/α)

)

− O(
√

1/(tρ))

for any r leading to a positive argument of Φ, where Φ denotes the cumulative distribu-

tion function of the standard normal distribution and O(
√

1/(tρ)) the approximation

error derived in (27).

We are interested in the event that Yt ≥ 2
√

|s|/ρ, recalling that s < 0 and X t+1 ≥
X t ⇐⇒ Yt+1 ≤ Yt . We made this choice because the event Yt = g(X t ) − g(X0) ≥
2
√

|s|/ρ implies that X t − X0 ≤ s by (15).

To compute the probability of the event Yt ≥ 2
√

|s|/ρ, we choose r = 2
√

|s|/ρ
and get rρ/(|s|

√
α/32) +

√
155/α) ≤ 24/

√
|s|α. We get

P
[

Yt ≥ 2
√

|s|/ρ
]

≥
(

1 − Φ(24/
√

|s|α)

)

− O(
√

1/(tρ)).

By Lemma 21,

1 − Φ(24/
√

|s|α) ≥
(

1

24/
√

|s|α
−

1

(24/
√

|s|α)3

)

1
√

2π
e−288/(|s|α) =: p(α, s),

which means that distance s is bridged (in negative direction) before or at time t =
α(s/ρ)2 with probability at least p(α, s)−O(

√
1/(tρ)) = p(α, s)−O(

√
ρ/(|s|

√
α)).

⊓⊔

The following lemma shows that a marginal probability of less than ρ is unlikely

to be increased again.

Lemma 17 In the setting of Lemma 16, if min{p0, 1 − p0} ≤ ρ, the marginal prob-

ability will reach the closer border from {1/n, 1 − 1/n} in O((log n)/ρ) steps with

probability at least e−2/(1−e). This even holds if each step is a b-step.
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Proof We consider only the case X0 ≤ ρ as the other case is symmetrical. The idea is

to consider O(log n) phases and prove that the X t -value only decreases throughout all

phases with the stated probability. Phase i , where i ≥ 0, starts at the first time where

X t ≤ ρe−i . Clearly, as ρ ≤ 1, at the latest in phase ln n the border 1/n has been

reached. We note that phase i ends after 1/ρ steps if all these these steps decrease the

value; here we use that each step decreases by a relative amount of 1 − ρ and that

(1 − ρ)1/ρ ≤ e−1.

The probability of decreasing the X t -value in a step of phase i is at least (1 −
ρe−i )2 ≥ 1 − 2e−iρ even if the step is a b-step. Hence, the probability of all steps of

phase i being decreasing is at least (1 − 2e−iρ)1/ρ ≥ e−2e−i
. For all phases together,

the probability of only having decreasing steps is still at least

ln n
∏

i=0

e−2e−i

≥ e−2
∑∞

i=0 e−i

= e−2/(1−e)

as suggested. ⊓⊔

We have now collected all tools to prove the lower bound for 2-MMASib.

Proof of Theorem 9 This follows mostly the same structure as the proof of Theorem 8.

Every occurrence of the update strength 1/K should be replaced by ρ.

There is a minor change in the analysis of rw-steps. The two applications of

Lemma 10 are replaced with Lemma 16, followed by an additional application of

Lemma 17. The slightly different constants in the statement of Lemma 10 do not

affect the asymptotic bound Ω(n−β) obtained. Neither does the additional applica-

tion of Lemma 17, which gives a constant probability. We do not care about the time

O((log n)/ρ) stated in Lemma 17, since we are only interested in a lower bound on

the hitting time.

There is a difference in how b-steps are being handled. While Lemma 10 only

considers the accumulated effect of rw-steps (leaving the consideration of b-steps to

the proof of Theorem 8), Lemma 16 also includes the effect of b-steps, assuming

bounds on the probability of b-steps and on the number of b-steps, respectively. We

still have to verify that these assumptions are met.

Lemma 16 requires in its first statement that the probability of a b-step is at most

ρ/(4α). Recall that such a step has probability O(1/
√

n). We argue that ρ/(4α) ≥
c/

√
n for any constant c > 0 if κ is small enough. To see this, we simply recall that

α = κ
√

nρ/(3s2) by definition and |s| = Ω(1).

Finally, the second statement of Lemma 16 restricts the number of b-steps until time

α(s/ρ)2 to at most s/(2αρ). Reusing that ρ = O(α/(κ
√

n)), this holds by Chernoff

bounds with high probability if κ is a sufficiently small constant. Hence, the application

of the lemma is possible. ⊓⊔

6 Conclusions

We have performed a runtime analysis of two probabilistic model-building Genetic

Algorithms, namely cGA and 2-MMASib, on OneMax. The expected runtime
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of these algorithms was analyzed in dependency of the so-called update strength

S = 1/K and S = ρ, respectively, resulting in the upper bound O(
√

n/S) for

S = O(1/
√

n log n) and Ω(
√

n/S + n log n). Hence, S ∼ 1/
√

n log n was identi-

fied as the choice for the update strength leading to asymptotically smallest expected

runtime Θ(n log n).

Our analyses of update strength reveal a general trade-off between the speed of

learning and genetic drift. High update strengths imply globally a fast adaptation of

the probabilistic model but impact the overall correctness of the model negatively,

resulting in increased risk of adapting to samples that are locally incorrect. We think

that this constitutes a universal limitation of the algorithms that extends to more

general classes of functions. As even on the simple OneMax the update strength

should not be bigger than 1/(
√

n log n), we propose this setting as a general rule of

thumb.

Our analyses have developed a quite technical machinery for the analysis of genetic

drift. These techniques are not necessarily limited to cGA and 2-MMASib on One-

Max. Very recently, they have been used in [19] to analyze the so-called UMDA,

which is a more complicated EDA. We also believe that the techniques will lead to

improved results for classical Genetic Algorithms such as the simple Genetic Algo-

rithm [27], where currently only quite restricted lower bounds on the runtime are

available.

Acknowledgements This research was initiated at Dagstuhl seminar 15211 “Theory of Evolutionary Algo-

rithms” and also benefitted from Dagstuhl seminars 16011 “Evolution and Computing” and 17191 “Theory

of Randomized Optimization Heuristics”. The authors thank the organisers and participants of all three

seminars. The research leading to these results has received funding from the European Union Seventh

Framework Programme (FP7/2007-2013) under Grant Agreement No. 618091 (SAGE) and from the Dan-

ish Research Council (DFF-FNU) under Grant 4002-00542. This article is based upon work from COST

Action CA15140 ‘Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice

(ImAppNIO)’ supported by COST (European Cooperation in Science and Technology).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

A General Tools

A.1 Drift Theorems

The term variable drift analysis was coined by Johannsen [17] to describe a stochastic

process on non-negative real values where the expected change towards an absorbing

target state 0 can be bounded by a positive and monotone increasing function h. His

variable drift theorem was subsequently refined and generalized (see also [28] for a

broader class of functions h). The following variant is due to Lehre and Witt [22], who

allow variable drift for continuous spaces.
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Theorem 18 (Variable drift, upper bound; Theorem 16 in [22]). Let (X t )t∈N0 , be a

stochastic process over some state space S ⊆ {0}∪[xmin, xmax], adapted to a filtration

(Ft )t∈N0 , where xmin > 0. Let h(x) : [xmin, xmax] → R
+ be a monotone increasing

function such that 1/h(x) is integrable on [xmin, xmax] and E(X t − X t+1 | Ft ) ≥
h(X t ) if X t ≥ xmin. Then it holds for the first hitting time T := min{t | X t = 0} that

E(T | X0) ≤
xmin

h(xmin)
+
∫ X0

xmin

1

h(x)
dx .

The next theorem gives tail bounds on variable drift bounds.

Theorem 19 (Tail bounds for variable drift [21], see also Th. 4 in [22]). Let (X t )t∈N0 ,

be a stochastic process, adapted to a filtration (Ft )t∈N0 , over some state space S ⊆
{0} ∪ [xmin, xmax], where xmin ≥ 0. Let h : [xmin, xmax] → R

+ be a function such

that 1/h(x) is integrable on [xmin, xmax]. Suppose there exist a random variable Z

and some λ > 0 such that |
∫ X t

X t+1
1/h(max{x, xmin}) dx | ≺ Z for X t ≥ xmin and

E(eλZ ) = D for some D > 0. Then the following two statements hold for the first

hitting time T := min{t | X t = 0}.

(i) If E(X t − X t+1 | Ft ; X t ≥ xmin) ≥ h(X t ) then for any δ > 0, and η :=
min{λ, δλ2/(D − 1 − λ)} and t > 0 it holds that

P[T > t | X0] ≤ exp

(

η

(

xmin

h(xmin)
+
∫ X0

xmin

1

h(x)
dx − (1 − δ)t

))

.

(ii) If E(X t − X t+1 | Ft ; X t ≥ xmin) ≤ h(X t ) then for any δ > 0, η :=
min{λ, δλ2/(D − 1 − λ)} and t > 0 it holds

P[T < t | X0]

≤ exp

(

η

(

(1 + δ)t −
xmin

h(xmin)
−
∫ X0

xmin

1

h(x)
dx

))

1

η(1 + δ)
.

If state 0 is absorbing then

P[T < t | X0] ≤ exp

(

η

(

(1 + δ)t −
xmin

h(xmin)
−
∫ X0

xmin

1

h(x)
dx

))

.

Finally, we will need the following theorem concerned with drift away from the

target. It is taken from [27].

Theorem 20 (Negative Drift with Scaling (Theorem 2 in [27])). Let (X t )t∈N0 , be a

stochastic process, adapted to a filtration (Ft )t∈N0 , over some state space S ⊆ R
+
0 .

Suppose there exist an interval [a, b] ⊆ R and, possibly depending on ℓ := b − a, a

drift bound ε := ε(ℓ) > 0 as well as a scaling factor r := r(ℓ) such that for all t ≥ 0

the following three conditions hold:

1. E(X t+1 − X t | Ft ; a < X t < b) ≥ ε,
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2. P
[

|X t+1 − X t | ≥ jr | Ft ; a < X t

]

≤ e− j for all j ∈ N0,

3. 1 ≤ r2 ≤ εℓ/(132 log(r/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0 : X t ≤ a | X0 ≥ b} it holds that

P
[

T ∗ ≤ eεℓ/(132r2)
]

= O(e−εℓ/(132r2)).

A.2 Bounds on the Cumulative Distribution Function of the Standard Normal

Distribution

To prove Lemmas 10 and 16, we need the following estimates for Φ(x). More precise

formulas are available (and can be found by searching for bounds on the so-called

error function), but are not required for our analysis.

Lemma 21 ([9], p. 175). For any x > 0

(

1

x
−

1

x3

)

1
√

2π
e−x2/2 ≤ 1 − Φ(x) ≤

1

x

1
√

2π
e−x2/2,

and for x < 0

(

−1

x
−

−1

x3

)

1
√

2π
e−x2/2 ≤ Φ(x) ≤

−1

x

1
√

2π
e−x2/2.

A.3 A Bound for Poisson Binomial Distributions

Theorem 22 (Adapted from Theorem 2.1 in [1]). Let Sn = X1 + · · · + Xn denote a

sum of independent Bernoulli trials where P[X i = 1] = pi . Then for every 0 ≤ j ≤ n

P[Sn = j] ≤
1

2

√

∑n
i=1 pi (1 − pi )

.
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