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Abstract—Tool condition monitoring is critical in ultra-
precision manufacturing in order to optimize the 
performance of the overall process, while maintaining the 
desired part quality. Recently, Deep Learning has been 
successfully applied in numerous classification tasks in 
manufacturing, often to forecast part quality. In this paper, 
a novel Deep Learning data-driven modeling framework is 
presented, which includes fusion of multiple stacked 
sparse autoencoders for tool condition monitoring in 
ultra-precision machining. The proposed computational 
framework consists of two main structures. A training 
model that is designed with the ability to process multiple 
parallel feature spaces to learn the lower-level features; 
and a feature fusion structure that is used to learn the 
higher-level features and associations to tool wear. To 

achieve this learning structure, a modified loss function is 
utilized that enhances the feature extraction and 
classification tasks. A dataset from a real manufacturing 
process is used to demonstrate the performance of the 
proposed framework. Experimental results and 
simulations show that the proposed method successfully 
classifies the ultra-precision machining case study with 
over 96% accuracy, while also outperforms comparable 
methodologies. 

 
Index Terms—Ultra-precision manufacturing process, 

tool condition monitoring, deep learning, feature spaces, 
feature fusion. 

 
NOMENCLATURE 

AE                    Acoustic emission 
ANFIS              Adaptive neuro fuzzy inference system 

ANN                 Artificial neural network 

BPNN               Back propagation neural network 

CNC                 Computer numerical control 

CNN                 Convolutional neural network 

DBN                 Deep belief network 
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DL                    Deep learning 

FD                     Frequency-domain 
FMSSAEs          Fusion of multiple stacked sparse 

autoencoders 

HMM                Hidden Markov model 

NN                    Neural network 

PCA                  Principal Component analysis 

RMS                 Root mean square 

RNN                 Recurrent neural network 

SAE                  Sparse autoencoder 

SSAE                Stacked sparse autoencoder 

SVM                 Support vector machine 

TCM                 Tool condition monitoring 
TD                    Time-domain 

v-SVR              V-support vector regression 

WD                   Wavelet-domain 

I.! INTRODUCTION 

LTRA-PRECISION manufacturing is being widely used 

in numerous industrial applications, such as in micro 

sensors, optical elements, microsatellite components, etc. 

Compared with traditional machining, via ultra-precision 

manufacturing one can achieve higher precision and better 

surface finish for the workpiece [1], mainly due to the 

diamondbased tool. Moreover, micro wear of the cutting tool 

has a significant influence on surface quality, which will 

further have a measurable impact on production efficiency and 

part yield rate. It has been shown that in CNC manufacturing 

processes tool wear significantly affects the quality of parts, 

hence yield rate too; by monitoring the condition of the 

machining tool the overall manufacturing process can be 

improved [2], and potentially optimized to achieve a high 

yield rate. Thus, there is a crucial need for methods that can 

accurately quantify tool condition, and offer autonomous 

decisions on tool life, in ultra-precision manufacturing 

processes. 

In recent decades, many artificial intelligence 

methodologies have been widely used for TCM in traditional 

manufacturing and processing. Generally, two essentials are 

necessary: (1) Man-made (expert knowledge) feature 

extraction and design, such as the identification of statistical 

characteristics, FD index and wavelet coefficients. (2) 

Shallow-layer model development and study, such as NN, 

HMM, SVM, etc. [3]-[6]. Patra [7] proposed an approach 

based on RMS of wavelet packet coefficients captured from 
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AE signals and an ANN model for TCM, and indicated that 

RMS values of the wavelet coefficients show positive 

correlation to increasing drill wear. RMS and ratio of power 

statistics selected from AE spectra were studied by Martins et 

al. [5] and an ANN model was utilized in classifying tool wear 
states; it was shown that the features of specific frequency 

bands of the signal are effective at characterizing the wear 

condition of the tool. Ku et al. [8] researched the mapping 

relationship between wavelet features extracted from vibration 

signals and three predefined tool wear conditions based on 

BPNN. Statistical features in the TD and FD extracted from 

vibration and power signals via wavelet packet decomposition 

were also discussed by Niaki et al. [9] and a RNN was used 

for tool wear estimation; the authors studied the application of 

sensor information fusion in order to increase the estimation 

performance of the NN and the results showed that only a 

maximum of 13% relative error in estimating tool wear. 
Massol et al. [10] studied the relationship between tool 

condition and several features extracted from force and AE 

signal, and trained an ANFIS to monitor wear state. The 

authors developed an eXtended Takagi Sugeno (eXTS) to 

correlate sensory signals with several cutter health conditions, 

however, the accuracy of the model on unknown tool 

parameters is still low. Multiple AE signal features are 

developed by Ren et al. [11] to reveal tool condition, and an 

ANFIS is constructed as the wear states classifier. Meanwhile, 

type-2 Fuzzy Logic-based tool life estimation can evaluate the 

tool life along the cutting process, and also predicts the 
uncertainty in the tool life estimation. Qiu et al. [12] 

developed a hybrid approach based on HMM and RMS of 

wavelet packets that are used to estimate wear state in TCM. 

Shi et al. [13] combined principal component analysis used for 

feature extraction from multiple sensory signals with a least 

square support vector machine (LS-SVM) model to predict 

tool state in a broaching operation. Results showed that PCA 

is very efficient at capturing the underlying features and 

combined with LS-SVM it is possible to avoid local optima 

and yield good generalization properties. Fourteen TD features 

sensitive to tool wear were calculated by Li et al. [3] and 

correlation analysis was utilized for feature selection and 
v-SVR for tool wear condition monitoring. The authors 

demonstrated that the model has a good accuracy up to 

96.76%, however, it was indicated that the model is only 

suitable for cases with small sample size. It is evident in the 

literature that the workflow of feature extraction followed by 

Machine Learning data-driven modeling has been successfully 

applied in TCM. However, such methodologies are only used 

and demonstrated in the laboratory, rather than a real 

manufacturing environment; which implies controlled 

conditions and low susceptibility to noise, uncertainty etc. In 

addition, it appears that the model’s accuracy on tool 
condition identification and prognosis highly depends on the 

sensitivity of the extracted features [14] , which is often 

performed systematically, but not autonomously (via expert 

knowledge).  

A number of significant challenges will need to be 

addressed if the already developed methods for TCM in 

traditional/standard machining processes are to be used 

effectively in ultra-precision manufacturing process too: (1) 

Using specific feature extraction and selection methods for 

systematically designing and selecting suitable features 

require priori domain knowledge and expert input [15], [16]. 

In addition, ultra-precision manufacturing has the 

characteristics of small cutting allowance, less vibration and 

weak signal features. In ultra-precision manufacturing there is 
very little research in expert-based feature selection and 

extraction. Even if there were a significant body of literature, 

relying on expert knowledge (human expert) would limit the 

potential use of the system. Autonomous feature extraction 

and selection would be preferred in this case. (2) In 

ultra-precision manufacturing it is found that even when the 

cutting tool exhibits small wear rate the impact on part quality 

can be significant. In addition, the tool wear process is highly 

complex and non-linear, thus challenging to identify via 

methods not developed specifically for ultra-precision 

machining i.e. methods originally developed for 

traditional/classical machining [17]-[19]. 
Compared to traditional Machine Learning and intelligent 

systems methods, Deep Learning has the most notable 

advantage of powerful complex non-linear learning ability. 

The conspicuous difference between DL and shallow learning 

neural-based methods is that the former can adaptively learn 

valuable features from original data [20], [24], [25]; 

autonomous feature extraction and selection is also possible as 

part of the overall data-driven modelling process. 

During the last few years, DL-based models have been 

developed and applied in intelligent fault diagnosis, especially 

the gear and bearing fault diagnosis. However, it is known that 
the performance of deep models largely depends on the 

original input data (quantity and quality). Thus, choosing TD 

data [18], [21] or FD data [22], [23] as inputs into DL models 

for fault diagnosis will have the following challenges: (1) 

Signals will have different properties in different feature 

spaces [14]. In fact, the influence of specific input types in 

different spaces on the performance of DL models is still not 

clear. (2) Ultra-precision manufacturing processes have the 

characteristics of very strict cutting tolerance and in general a 

less pronounced vibration signature. Features extracted from a 

single feature space in ultra-precision machining may have the 

limitations of being scarce, which can’t meet the requirement 
for tool condition identification. Thus, it is important to 

develop a new framework for TCM and create a bespoke Deep 

Learning model to address multiple feature sets, autonomous 

feature selection capability, and robust performance suitable 

for real manufacturing environments. 

In this research work it is proposed a multiple feature 

spaces-based, and bespoke, deep learning-based framework 

for TCM in ultra-precision manufacturing process. In this 

study, all the data have been collected from a real 

manufacturing plant, relevant to shell machining for consumer 

electronics. The datasets include measurements of vibration 
and have been preprocessed by FFT and WT to create a 

preliminary signal set. First, a new ‘parallel training model’ is 

designed suitable for three kinds of feature spaces (TD data, 

FD data and WD data) to learn the low-layer features of the 

DL structure (feature selection/extraction). Then, a feature 

fusion model is employed to learn to correlate the high-layer 

features to tool condition. To achieve the proposed DL 

structure, and parallel learning, a modified loss function and 

training framework are used to improve the performance of 



 

the designed DL structure. The contribution of this paper is 

that via the proposed new DL modeling framework we take 

advantage of the implicit feature learning ability of deep layer 

models as well as the characteristics of different feature 

spaces. Thus, avoiding the dependence on human-assisted 
feature identification and over-reliance on expert knowledge. 

Results show that the proposed modeling framework 

outperforms existing Machine Learning model-based methods 

for TCM, as well as standard deep learning methods in terms 

of both accuracy and robustness. In addition, the influence of 

the input in different feature spaces on the performance of 

deep models as well as other established ML methods is 

discussed to further exemplify the effectiveness of the 

proposed modeling framework. 

The rest of this paper is organized as follows: After 

introducing the required background on ultra-precision 

manufacturing as well as the application of ML on machining, 
background theory on SAE is presented in Section II. In 

Section III, the proposed modeling framework is detailed, as 

well as its application for TCM in ultra-precision 

manufacturing. The experimental validation setup, including 

the data acquisition, are detailed in Section IV. In Section V, 

the experimental results are discussed which includes 

comparative analysis and discussion. Finally, the conclusion 

and future work are summarized in Section VI. 

II.! DEEP LEARNING FRAMEWORK 

A.! The dimension reduction principle based on sparse 
auto-encoder (SAE) 

Schölkopf et al. [26] proposed an unsupervised feature 

learning theory based on sparse representations. Given an 

input, it uses an encoder and decoder preceded by a 

non-linearity that transforms a code vector into a sparse output 

vector, with both vectors being as similar as possible to the 

input. 

The SAE theory is based on two main components: 

1) The encoder: Given a signal data , it uses a 

random matrix W and all ones bias vector b to obtain a 

sparse-compressed representation via 

nonlinear sigmoid function. 

2) The decoder: the sparse representation Y is transformed 

back to a reconstruction vector via the sigmoid 

function. 

The target is to find the optimal parameters W and b to 
minimize the distance between the reconstruction vector Z and 

the input vector X. Full details on the SAE model can be found 

in [27]. 

B.! Stacked SAE 

A stacked sparse autoencoder (SSAE) is constructed with 

the input layer and the hidden layer of several sparse 

autoencoders, which can extract deeper and more implicit 
features than a single auto-encoder. The description of the 

training structure follows: 

                          (1) 

                                     (2) 

where , , , are weight matrix, bias vector, the 

input and the sparse representation of the k-th sparse 

autoencoder in the encoding procedure. 

The loss function of the standard SSAE model is defined as 

follows [28] 

             (3) 

             (4) 

              (5) 

where x is the original input and y the corresponding label; m 

is the number of samples and n is the number of the layers; ,

and are the regularization constant, divergence constant 

and sparseness constant, respectively; is the mean activation 

value. 

III.! PROPOSED FMSSAES-BASED METHOD FOR TOOL 

CONDITION MONITORING 

A.! The novel FMSSAEs structure 

1)! Parallel Training Based On Multiple Stacked 
Sparse Autoencoders 

Using a single feature space is popular in the application of 
fault diagnosis, and in particular via the use of deep learning 

methods [18], [23]. However, different feature spaces in the 

vibration signal may have valuable and implicit information; 

existing DL methods do not simultaneously extract 

information from multiple spaces to characterize tool wear in 

machining. Moreover, in ultra-precision machining, signals 

and features are faint and inconspicuous, which could lead to 

poor overall performance of tool condition monitoring. Thus, 

this paper proposes a parallel training model formed by using 

TD data, FD data, and WD data of the original vibration signal 

as the input of three different stacked sparse autoencoders to 
improve the capability of capturing different features in 

different spaces and implicit information. 

Fig. 1 represents the feature learning process of the 

proposed parallel training model based on multiple stacked 

sparse autoencoders. The structures of the three stacked sparse 

autoencoders consist of the same number of network layers as 

well as hidden and output nodes. The input of the visible layer 

consists of the raw TD data , the FD data  

following application of FFT and the WD data

following a wavelet transform. Each hidden layer is divided 

into three groups . Through calculation 

and sparse representation of several stacked sparse 

autoencoders, via the proposed framework three different goal 

representations will be obtained Y1, Y2 and Y3. The learning 

process of any one of three stacked sparse autoencoders is 

independent of the others. 

As it can be seen in the structure presented in Fig. 1 the 

parallel training model makes no use of any labels, which is 

different from most standard deep learning models that use 

labeled data to perform supervised learning. Thus, the loss 
function of the model in this subsection is modified as 
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    (6) 
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               (8) 

where and j are the i-th SSAE and the j-th sparse 

autoencoder accordingly. W, b and , are the weight matrix 

and the bias vector of the encoding and decoding process, 

respectively. X is the input vector. s and t are the number of 

nodes. 

The optimal solution of the weight matrices and the bias 

vectors can be calculated by using (6-8). And the target 

representation , and are obtained after parallel training.  

2)! Study on Feature Fusion Based On the Parallel 
Training Model 

After transforming the representation , and into a new 

feature vector , the vector will be used as the 

input for the next phase of our training framework, which 

consists of another SSAE. The difference between the fusion 

model and the parallel training model is that the fusion model 

makes use of labeled data. 

Fig. 2 represents the learning and back propagation process 

of the fusion model. First, the feature  is used as 

input to the SSAE, and the first hidden representation

can be calculated by the weight matrix

and sigmoid function . Subsequently, the second hidden 

representation can be calculated by the weight 

matrix and . The error between and the 

labels  will also be calculated in this phase. The 

weight matrix will be fine-tuned into based on , and 

then will be updated into based on and . The hidden 

representation are transformed into based on and . 

And then, the output vectors can be calculated by and

. Finally, the error between and input is used into the 

parallel training model for the purpose of the error back 

propagation, as detailed in the next section. 

3)! Training Rules and Error Propagation 
To have better convergence and reconstruction ability as 

well as deeper features, the proposed FMSSAEs framework 

makes use of an enhanced learning regime that involves: twice 

the training and twice the fine-tuning on each learning 

iteration. Thus, the loss function needs to be modified 

accordingly. 

The learning process of the model is demonstrated as 

follows: First, the raw TD data , FD data and WD data

are used as the input vectors to the parallel training model, 

to capture the target representations , and  respectively. 

As a second step, the target representations are transformed 

into a new feature vector , which is 

subsequently used to obtain the hidden representation , via 

another SSAE. On the third step, the first (of the two) 

fine-tuning processes will be carried out in the fusion model 

based on the error between and the labels y and the loss 

function . And finally, the second fine-tuning 

will be carried out in the parallel training model based on the 

error between and and the loss function

.  

The above described training function is summarized as 

follows 
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Fig. 1. The feature learning process of the parallel training model. 

Fig. 2. The learning and back propagation process of the feature 

fusion model. 
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number of the fusion model and the parallel training model 

respectively. N is the number of nodes.  

B.! Algorithmic procedure for proposed methodology 

To apply the proposed FMSSAE modeling framework to 

the case study of ultra-precision machining the following data 

processing and algorithmic process is followed: 

1)! First, the vibration signal of the tool in ultra-precision 

machining is collected from the manufacturing facility. 

Next, the TD data X1, FD data X2 and WD data X3 are 

captured by pre-processing the signal via FFT and WT. 

Subsequently, all the data are divided into the training 

and testing samples based on the labels which have been 
recorded by measuring the surface quality of the finished 

workpieces. This is for the purpose of model validation. 

2)! The target representations Y1, Y2 and Y3 of the training 

samples are extracted via the unsupervised parallel 

training model and converted to a feature vector XF. 

3)! Construct the fusion model based on the inputs/features 

out of the parallel training model. The fusion model is 

used for feature learning of the feature vector. The 

learned deep features H2 are fed into a BP algorithm for 

fine-tuning the parameters W and b of the fusion model 

based on the labels y in a supervised learning fashion. 

4)! The parameters Wi and bi of the parallel training model 
are updated based on step 3) that the parameters of the 

fusion model have been updated. 

5)! In the FMSSAEs modeling framework steps 3) and 4) 

will be repeated iteratively to train the overall model 

until the framework reaches the intended iterative steps. 

And finally using the testing samples to validate the 

performance of the proposed model, in addition, verify 

the generalization of the proposed method. 

IV.! EXPERIMENT SETUP AND DATA SET ACQUISITION 

A.! Experiment setup 

In this research study, vibration data are collected 

continuously from a JDLVM550T_A13S CNC machine tool 

that is used to machine the external shell of a portable 

electronic device in a production line, i.e. a real manufacturing 

environment. Fig.3 depicts the cutting tools experimental 

setup for ultra-precision machining and the data acquisition 

system. The machine tool is used to process and shape the 

external shell. The accelerometer with sensitivity of 100.9 

mv/g is mounted on the spindle seat of the machine tool for 

measuring the x-direction vibration signals. The vibration 
signals were collected at a sampling frequency of 10 kHz, and 

the overall sampling time is 20 seconds. The feed rate is set at 

800 mm/min, and the spindle speed at 5500 rpm. Based on the 

parameters and the spindle speed (vs), the characteristic 

frequency (f = vs / 60) of the cutting tool can be calculated.  

B.! Data acquisition 

The data acquisition is described in the following points: 

Firstly. All the data acquisition is performed at the 

manufacturing environment, not the laboratory. 

Secondly. For consistency, all the workpieces are machined 

under the same cutting parameters. In order to indirectly 

evaluate the tool condition (for the purpose of sample labeling 

and supervised learning), the surface quality of each finished 

workpiece is measured under an Olympus microscope STM6 

at a magnification of . 

Thirdly. Three cutting tools were assessed for this study 

(tool A, B and C) for the purpose of experiment validation and 

generalization verification. The parameters for the cutting 

tools are listed in Table I. There’s a slight difference in the 
tool setup parameters, which represents how the tools are used 

in a real manufacturing environment. These differences are to 

account for various uncertainties in the manufacturing process, 

and yield a different number of parts processed by each tool. 

While the manufacturing cell continuously records data, some 

samples are randomly selected for training, and the remaining 

for testing the proposed modeling framework. 

In the experimental process, four different surface quality 

states have been defined on the finished workpieces, 

corresponding to four kinds of gradual tool wear conditions: 

Initial wear, Normal wear, Rapid degradation and Severe 

degradation. This categorization also matches expert 
knowledge on the particular mechanisms of tool wear for the 

process under investigation. Fig. 4 depicts the four surface 

quality states and the tool wear conditions under the 

microscope magnifying and , respectively. 

1000×

1000× 700×

Fig. 3. The cutting tools experimental setup for ultra-precision 

machining. 
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TABLE II 

DESCRIPTION OF THE CUTTING TOOLS WEAR CONDITIONS 

Wear conditions of 

the cutting tools 

Size of samples Label of 

conditions Tool A Tool B Tool C Total 

Initial wear 64 54 43 161 1 

Normal wear 307 306 204 817 2 

Rapid degradation 138 132 105 375 3 

Severe degradation 87 101 84 272 4 

 

TABLE I 

PARAMETERS OF THE CUTTING TOOLS 

Work 

material 

Tool 

material 

Tool 

number 

Relief 

angle 

Flank 

width 

Maximum 

workpiece 

number 

Cutting 

allowance 

Aluminium 

alloy 
Diamond 

A 3.1° 69.8mm 596 

0.01mm B 3.4° 71.8mm 593 

C 4.7° 91.8mm 436 

 

Fig.4. The four surface quality states and the tool wear conditions 

under the microscope magnifying and . 

Initial wear Normal wear

Rapid degradation Severe degradation

Workpieces

Microscope Olympus STM6

Magnifying x1000
Magnifying x700

1000× 700×



 

Table II shows the size of sample sets and the label of 

conditions. Each condition contains 161, 817, 375, and 272 

samples, respectively. Each sample is a raw vibration signal 

containing 20 thousand data points following some filtering to 

remove noise. Meanwhile, FFT and WT are applied to each 
sample signal in order to obtain FD and WD data. Therefore, 

the raw data, FD data and WD data contains 20000, 16285 and 

20000 data points, respectively. Because of the strict cutting 

tolerances and less overall vibration in ultra-precision 

machining (compared to normal machining), the amplitude of 

the raw vibration signal of the four health conditions is quite 

similar, on first inspection, as shown in Fig. 5.  

V.! EXPERIMENT RESULTS 

A.! Comparison to established ML methods 

BPNN and SVM are widely used for tool condition 

monitoring and fault diagnosis, as discussed in the 

introduction section. However, these Machine Learning, or 

intelligent systems, methods often rely on engineering 

experience and expert knowledge to artificially design and 

extract features, which are not trivial tasks in the whole 

modeling workflow. In this section a comparison is made 

between BPNN with a shallow layer structure and an SVM 

structure against the proposed method. 

Different feature spaces in the original signal may have 

different properties each, hence will pose a different challenge 

to any data-driven modeling framework. For comparison 

purposes the performance of BPNN and SVM will be 

discussed based on the TD feature space, and also the FD 
feature space, as well as the fusion/combination of the two. A 

number of statistical features from time domain (Mean, 

Standard deviation, Skewness factor, etc.) and frequency 

domain (Variance, Kurtosis factor, etc.) are extracted, more 

details can be found in [3], [30]. Table III shows the model 

parameters for the BPNN and SVM model structures. The 

average identification accuracy and the standard deviation 

comparison of the different methods and features using 10 

experiments are listed in Table IV, and the detailed modeling 

results are shown in Fig. 6. 

In Table IV results show that, among the different methods, 

the proposed method has the best performance (average 
accuracy: 96.63%, standard deviation: 0.007242), which is 

superior to the traditional ML methods (best result: 91.97%, 

0.008259). In terms of the different methods based on 

different spaces, SVM with the fusion features exhibits the 

better performance (average accuracy: 91.91%) compared to 

Fig.5. Amplitudes of the raw vibration signal of the four wear 

conditions. (a) Initial wear. (b) Normal wear. (c) Rapid degradation. 

(d) Severe degradation. 
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TABLE V 

THE NETWORK PARAMETERS OF DIFFERENT DEEP LEARNING METHODS 

Deep learning methods Structure Input Layers Nodes number Learning rate Iteration 

The proposed method 
Parallel learning model 

TD data 4 20000-1870-187-41 0.8 700 

FD data 4 16385-1870-187-41 0.8 700 

WD data 4 20000-1870-187-41 0.8 700 

Fusion model The fusion features 3 123-20-4 0.8 700 

Standard SAE 

- TD data 4 20000-1870-187-41 0.8 700 

- FD data 4 16385-1870-187-41 0.8 700 

- WD data 4 20000-1870-187-41 0.8 700 

 

TABLE III 

DESCRIPTION OF THE PARAMETERS OF THE TRADITIONAL METHODS 

Description Parameters 

The traditional methods BPNN SVM 

Transfer function logsig - 

Kernel function - linear 

Penalty parameters - 0.25 

Learning rate 0.8 - 

Momentum constant 0.9 - 

Epochs 700 700 

 

TABLE IV 

IDENTIFICATION RESULTS OF DIFFERENT METHODS 

Methods Average testing accuracy Standard deviation 

The proposed method 96.63% (3503/3625) 0.007242 

BPNN with raw TD data 58.51% (2118/3625) 0.011796 

BPNN with TD features 79.34% (2878/3625) 0.019776 

BPNN with FD features 83.77% (3038/3625) 0.008259 

BPNN with the fusion features 84.70% (3069/3625) 0.009812 

SVM with raw TD data 57.76% (2088/3625) 0.014111 

SVM with TD features 78.39% (2835/3625) 0.014092 

SVM with FD features 84.45% (3061/3625) 0.009059 

SVM with the fusion features 91.97% (3333/3625) 0.008334 

 

Fig. 6. Identification results of the 10 trials using different methods. 
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BPNN (average accuracy: 84.70%). This is still inferior to the 

proposed method of parallel processing the feature spaces. 

In Fig. 6 results show that, from the first trial to the last 

trial, with the increase of the training samples, the accuracy of 

the proposed method keeps growing, which is typical of 
continuous learning in DL networks. 

Another interesting observation is that following the same 

use of features BPNN and SVM have similar performance 

such as when using raw data and TD features, especially in 

terms of the average accuracy. 

These results indicate that: (1) Compared with established 

ML methods (BPNN and SVM), the proposed method shows 

great advantages, which includes the ability to separately 

extract features autonomously despite the complexity and 

dimensionality of the feature space set, due to its deep layer 

structure and non-linear mapping ability. (2) The traditional 

methods depend on human-assisted feature extraction. From 
Table IV it can be seen that if the selected feature set is 

uncorrelated to the labels, the model will show poor accuracy 

in classifying tool wear. (3) From the first trial to the last trial, 

the accuracy of BPNN and SVM keeps fluctuating, as 

expected, due to the batch training process. The DL 

framework takes advantage of inherent sequential training to 

improve its overall prediction accuracy. 

B.! Results in different features spaces 

In recent years, due to advances and access to significant 

computational power, DL methods have been applied to gear 

and bearing fault diagnosis. However, the influence of 

different feature spaces on DL methods is still unclear in fault 

detection. In order to further scrutinize the performance of the 

proposed FMSSAEs model, the effectiveness of the model and 

the different feature spaces on comparable DL methods will be 

studied and surveyed via several experimental trials. Table V 

describes the structure of the studied DL methods for features 

extraction. In this section, results will be discussed for the 
following three different feature sets: the TD data, FD data 

and WD data. 

The average identification accuracy and the standard 

deviation of the different feature spaces on DL methods are 

listed in Table VI, and the detailed results with 10 

experiments in each trial are shown in Fig. 7. It can be 

concluded that the identification accuracy of separate feature 

spaces on deep learning methods vary considerably. Among 

them, the proposed method with data fusion has the best 

performance (average accuracy: 96.63%, standard deviation: 

0.007242), which is superior to standard DL methods with 

single feature space (best result: 90.04%, 0.010881).  

The reconstruction error curves of the SAE model based on 

the different inputs and the proposed method are shown in Fig. 

9. Although the proposed DL model needs more training time 
(above 4 minutes) due to the increase of units and network 

layers, the reconstruction error is smaller following 

convergence. Meanwhile, the variability of the weight update 

can be reflected on the reconstruction curve, which is an 

indicator of efficient training. 

Fig. 8 represents the details identification accuracy of all 

the methods based on different training samples. The results 

indicate that the more the training sample sizes the better the 

performance of all DL methods (which is expected), while the 

traditional methods have no such characteristic.  

The above results imply that: (1) Feature selection and 

extraction. The traditional ML methods depend on artificial 
feature extraction via expert knowledge while DL methods 

have the advantages of autonomous selection of implicit 

representation through non-liner mapping. There may be 

equally good combinations of selecting the feature set 

(compared to the autonomous method) for the traditional ML 

methods, but this would require tedious and laborious 

processes to find out. (2) Generalization ability. The 

performance of DL methods can get better accuracy with the 

Fig. 8. The details results of all the methods based on different training samples. 
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Fig. 7. Identification results of the 10 trials using different feature 

spaces on DL methods. 
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TABLE VI 

THE INFLUENCE OF DIFFERENT FEATURE SPACES ON DL METHODS 

Deep learning methods Input Average testing accuracy Standard deviation 

The proposed method Data fusion 96.63% (3503/3625) 0.007242 

Standard SAE 

TD data 72.86% (2641/3625) 0.011826 

FD data 85.32% (3093/3625) 0.014646 

WD data 90.04% (3264/3625) 0.010881 

 



 

increase of the training samples while the traditional methods 

do not have this property. This shows that the DL methods can 

get better results if there are sufficient samples, which is 

somewhat expected due to the complexity of the DL structure. 

(3) Model performance. The proposed method is superior to 

the established popular ML methods, often used in tool wear 

prediction, as well as compared to DL methods due to the 

modified loss function and enhanced training algorithm that 
takes advantage of separate feature spaces to extract features, 

but combines them to link them to the labeled outcomes (tool 

wear).  

C.! Generalization verification 

In this section, the data sets of tool A, B and C are used to 

further scrutinize (beyond using testing data from the same 

tool) the generalization ability of the proposed modeling 
framework. The acquired data samples are separated into two 

parts: the training sets (tool A and B) used for model training 

and the testing sets (tool C) for assessing generalization.  

Fig. 10. (b) represents the RMS of the vibration signal of 

tool C (During the 1st workpiece to the 436th workpiece) and 

the four kinds of tool operation conditions, which are initial 

wear stages, normal wear stages, rapid degradation and severe 

degradation. Table VII shows the training sets, testing sets 

and the input features of the three methods. 

Fig. 10 (a) shows the prediction performance of the testing 

sets. It can be observed that the proposed method shows very 

good generalization properties for TCM in ultra-precision 
machining. In addition, Table VII reveals that the proposed 

methodology outperforms standard SAE DL as well as and 

traditional SVM method in terms of identification accuracy. 

These positive results demonstrate that the proposed 

methodology can potentially be used in a real manufacturing 

environment, to accurately identify tool wear states for TCM 
in ultra-precision manufacturing.  

VI.! CONCLUSION AND FUTURE WORK 

In this paper, a novel multiple feature spaces-based deep 

learning model (FMSSAEs) is proposed for tool condition 

identification in ultra-precision manufacturing. Firstly, a new 

parallel training model structure is designed to learn the 

low-layer features in terms of feature extraction and selection. 

Then, a fusion model is employed to learn the deep features 

and fine-tune the parallel training model to further adjust the 
network’s parameters. To achieve this structure, the proposed 

method makes use of a modified loss function and an 

improved overall training framework. 

The proposed method is applied to real manufacturing data, 

consisting of cutting tool vibration signals captured during an 

ultra-precision machining process. Results show that the 

proposed method is more effective compared to established 

and popular ML methods for tool wear prediction, as well as 

standard deep learning methods used for tool condition 

monitoring. Generalization properties appear to be good on the 

new proposed methodology, however, there are certain 

limitations when a different tool is used because of the 
variability in setup tool parameters of the different cutting 

tools, such as relief angle, flank width, etc. Further research 

work is needed in this area, to perhaps focus the model 

training regime on creating uncertainty tolerant features, rather 

than aim for ultimate overall prediction accuracy. 

With the rapid development of hardware technology and 

computational power, deep learning structures can find 

application in more industrial field, however modification and 

enhancement of the DL framework to suit a particular 

application, including efficient error propagation and heuristic 

training regime, are not trivial tasks. 
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