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ABSTRACT

This paper is concerned with the model selection andmodel averaging problems in system identifi-
cation and data-driven modelling for nonlinear systems. Given a set of data, the objective of model
selection is to evaluate a series of candidatemodels anddeterminewhichonebest presents thedata.
Three commonly used criteria, namely, Akaike information criterion, Bayesian information criterion
and an adjustable prediction error sum of squares (APRESS) are investigated and their performance
in model selection and model averaging is evaluated via a number of case studies using both simu-
lation and real data. The results show that APRESS produces bettermodels in terms of generalization
performance and model complexity.
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1. Introduction

Model selection plays a fundamental role in choosing a

best model from a series of candidate models for data-

driven modelling and system identification problems. In

general, system identification and data-driven modelling

consists of several important steps, including data collec-

tion, data processing, selection of representation func-

tions, model structure selection, model validation and

model refinement (Preacher & Merkle, 2012; Solares, Wei,

& Billings, 2017; Söderström & Stoica, 1989).

Amongvariousmodel selectionmethods, Akaike infor-

mation criterion (AIC) and Bayesian information criterion

(BIC) are twomost popularmeasures. Since AICwas firstly

proposed in 1974 (Akaike, 1974), many variations of AIC

have been developed for model selection. For example,

the second-order Akaike information criterion (AICc) was

developed for small sample size datamodellingproblems

in 1989 (Brockwell & Davis, 1991; Hurvich & Tsai, 1989);

the AIC was designed to approximately estimate the

Kullback–Leiber information of models in 1998 (Akaike,

1998); also, the delta AIC and the Akaike weights were

introduced to measure how much better the best model

is when compared with the other models. In the model

selection process, the AIC, delta AIC and AIC weights are

calculated for each candidate model. Usually, the ‘best’

model is chosen to be the model with the smallest AIC;

the delta AIC calculates the difference between the AIC

of each model and the smallest AIC of the ‘best’ model

CONTACT Hua-Liang Wei w.hualiang@sheffield.ac.uk

(Symonds & Moussalli, 2011); the AIC weight is ranged

from 0 to 1, which is an analogous to the probability that

a candidatemodel is the best choice (Buckland, Burnham,

& Augustin, 1997). Drawn on these theories, some model

averaging approaches were also developed, for exam-

ple, the natural averaging method (Buckland et al., 1997)

and full model averaging method (Lukacs, Burnham, &

Anderson, 2010). Over the past few decades, AIC and its

variations have been used to solve a wide range ofmodel

selection problems including those in ecology (Johnson

& Omland, 2004) and phylogenetics (Posada & Buckley,

2004), among others.

Another commonly used model selection criterion is

BIC, which was proposed by Schwarz in 1978 (Schwarz,

1978). It is also referred to as the Schwarz information

criterion, or the Schwarz BIC. Similar to AIC, BIC is also

calculated for each candidate model and the model with

the smallest BIC is chosen to be the best model (Kass &

Raftery, 1995). The only difference between AIC and BIC

is that BIC uses a larger penalty on the increment of the

model terms. In recent years, BIC has also been increas-

ingly used asmodel selection criterion (Cobos et al., 2014;

Hooten & Hobbs, 2015; Vrieze, 2012; Watanabe, 2013).

Based on the investigation of vast literature on applica-

tions and comparative studies of the two criteria (e.g. see

Aho, Derryberry, & Peterson, 2014; Burnham & Anderson,

2004; Burnham, Anderson, & Huyvaert, 2011; Chaurasia &

Harel, 2013; Claeskens & Hjort, 2008; Johnson & Omland,
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2004; Kuha, 2004; Medel & Salgado, 2013; Posada & Buck-

ley, 2004; Vrieze, 2012), it can be noted that both AIC and

BIC have their own advantages and limitations. It cannot

be guaranteed that one is better than another regard-

less of application scenarios. The reason is that the data,

model type and other aspects of the modelling problems

can be significantly important in determining which of

the criteria is more suitable.

Both AIC and BIC have been widely applied on model

selection problems. However, there still exists large room

for improvement. For example, it lacks evidence that

the two criteria can also work well for complex nonlin-

ear system identification problems. Although AIC and

BIC can usually produce good model selection result

based on the assumption that the ‘true’ model is among

the candidate models, they may fail to select the best

model when the system is very complex and neither

of the candidate models can sufficiently represent the

data. These situations often occur when the model

structure or some prior information is unknown. To

solve the model selection problem of nonlinear system

identification, the cross-validation (CV) based criterion

(Stone, 1974) and its two variations, the Leave-One-Out

(LOO), also called Predicted Residuals Sum of Squares

(PRESS) (Allen, 1974; Chen, Hong, Harris, & Sharkey, 2004;

Hong, Sharkey, & Warwick, 2003), and generalized cross-

validation (GCV) (Golub, Heath, & Wahba, 1979), were

developed. Most recently, a modified GCV criterion, also

known as adjusted predicted sum of squares (APRESS),

was also proposed for nonlinear systems identification

(Billings & Wei, 2008).

Based on above considerations, it is essential to inves-

tigate AIC, BIC and APRESS, to figure out which oneworks

better for model selection of nonlinear system identifica-

tion and data-driven modelling problems. In this study,

case studies using simulation and real data were car-

ried out and the three criteria were used to select a

best model from a set of candidate models. The predic-

tion performances of the models which are selected by

the three criteria were evaluated and compared, to find

out which method gives better model selection result.

In addition, a model averaging approach is developed

basedon the fullmodel averagingmethod to improve the

model robustness.

The paper is organized as follows. The nonlinear

autoregressive moving average with exogenous input

(NARMAX) model and orthogonal forward regression

(OFR) algorithm are briefly reviewed in Section 2. Section

3 introduces the model selection and averaging meth-

ods using AIC, BIC and APRESS. In Section 4, case studies

are given to illustrate theperformances of thesemethods.

The paper is concluded in Section 5.

2. NARMAXmodel and OFR algorithm

In this study, the candidate models are chosen to be

the NARMAXmodel structure, which can be described as

(Chen & Billings, 1989):

y(t) = F[y(k − 1), . . . , y(k − ny), u(k − 1), . . . ,

× u(k − nu), e(k − 1), . . . , e(k − ne)], (1)

where y(k) and u(k) are systems output and input signals;

e(k) is a noise component with zero mean and finite vari-

ance; the noise can be assumed to be white Gaussian in

many applications. ny , nu and ne are the maximum lags

for the system output, input and noise. F[·] is some non-

linear function. A polynomial NARXmodel can be written

as the following linear-in-the-parameters form:

y(k) =
M∑

m=1

θmϕm(k) + e(k), (2)

where ϕm(k) = ϕm(ϑ(k)) are the model terms generated

from the regressor vector ϑ(k) = [y(k − 1), . . . , y(k −
ny), u(k − 1), . . . , u(k − nu)]

T , θm are the unknown para-

meters andM is the number of candidate model terms.

The NARMAX structure can be identified by an OFR

algorithm (Chen, Billings, & Luo, 1989), which can be used

to select significant model terms according to an error

reduction ratio index (ERR), and estimate model param-

eters simultaneously (Chen et al., 1989; Wei, Billings, &

Liu, 2004). The NARMAX model and the OFR algorithm

have been successfully applied to solve a wide range

of real-world problems in various fields including engi-

neering (Zhang, Zhu, & Gu, 2017), ecological (Marshall

et al., 2016), environmental (Bigg et al., 2014), geophysi-

cal (Balikhin et al., 2011; Boynton, Balikhin, Billings, Wei,

& Ganushkina, 2011), medical (Billings, Wei, Thomas, Lin-

nane, & Hope-Gill, 2013), and neurophysiological (Li, Wei,

Billings, & Sarrigiannis, 2016) sciences.

The OFR algorithm is briefly introduced as follows

(Chen et al., 1989). Let y = [y(1), . . . , y(N)]T be a vec-

tor of measure outputs at N time instances anϕm =
[ϕm(1), . . . ,ϕm(N)]T be the vector formed by the m-th

model term (m = 1, 2, . . . ,M). LetD = {δj : 1 ≤ j ≤ M}be
themodel termdictionary, the objective ofOFR algorithm

is to find a subset Dn = {δl1 , . . . , δln} so that y can be

explained:

y =
n∑

i=1

θ liδli + e. (3)

For the full dictionary D, the ERR index of each candi-

date model term can be calculated by:

ERR(1)[i] = (rT0δi)
2

(rT0r0)(δ
T
i δi)

, (4)



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 321

where i = 1, 2, . . . ,M. The first selected model term can

then be identified as:

l1 = arg max
1≤i≤M

{ERR(1)[i]}. (5)

Then the first significant model term of the subset can

be selected as ϕl1 , and the first associated orthogonal

variable can be defined as q1 = δl1 . Let r0 = y, set:

‖ r1‖2 =‖ r0‖2 − (rT0q1)
2

qT1q1
. (6)

After removal ϕl1 from D, the dictionary D is then

reduced to a sub-dictionary DM−1, consisting of M − 1

model candidates. At step s(s ≥ 2), the M − s + 1 bases

are first transformed into new group of orthogonalized

base [q
(s)
1 ,q

(s)
2 , . . . ,q

(s)
M−s+1]with orthogonalization trans-

formation.

q
(s)
j = δj −

s−1∑

r=1

δTj qr

qTr qr
qr , (7)

whereqr(r = 1, 2, . . . , s − 1)areorthogonal vectors,δj(j=
1, 2, . . . ,M − s + 1) are the basis of unselected model

terms of subset DM−s+1and q
(s)
j (j = 1, 2, . . . ,M − s + 1)

are the new orthogonalized bases. The rest of the model

terms can then be identified step by step using the ERR

index of orthogonalized subsets DM−s+1:

ERR(s)[j] =
(yTq

(s)
j )

2

(yTy)(q
(s)T

j q
(s)
j )

, (8)

ls = arg max
1≤j≤M−s+1

{ERR(1)[j]}. (9)

The s-th significant model term of the subset can be

selected as ϕls , and the s-th associated orthogonal vari-

able can be defined as qs = q
(s)
ls
. Then:

‖ rs‖2 =‖ rs−1‖2 −
(rTs−1qs)

2

qTs qs
. (10)

Recursively, the significant model terms of the subset

{δl1 , . . . , δln} can be identified step by step. By summing

(10) for s from 1 to n, yields:

‖ rn‖2 =‖ y‖2 −
n∑

s=1

(rTs−1qs)
2

qTs qs
. (11)

The ‖ rn‖2 is called residual sum of squares, or sum

squared error. The mean square error (MSE) of the model

can be calculated as ‖ rn‖2/n, which can be used to form

model selection criteria such as AIC, BIC and APRESS.

3. Model selection andmodel averaging

methods for nonlinear modelling

This section introduces model selection and averaging

approaches based on AIC, BIC and APRESS.

3.1. Model selection with AIC, BIC and APRESS

AIC and BIC can be calculated as (Akaike, 1974; Schwarz,

1978):

AIC(k) = −2 ln(L) + 2k, (12)

BIC(k) = −2 ln(L) + k ln(N), (13)

where k is the number of fitted parameters in themodel, L

is the maximum likelihood estimate for the model and N

is the sample size. As mentioned earlier, for least square

based regression analysis, AIC and BIC can be directly

calculated by using MSE, as (Hurvich & Tsai, 1989):

AIC(k) = N ln(MSE(k)) + 2k, (14)

BIC(k) = N ln(MSE(k)) + k ln(N), (15)

where MSE(k) is the MSE of the candidate model. Equa-

tions (14) and (15) are and their variants have been

applied for nonlinear andgeneralized linearmodel identi-

fication (see, for example, Blake & Kapetanios, 2003; Egri-

oglu, Aladag, & Gunay, 2008; Liu, Lin, & Ghosh, 2007; Wei,

Zhu, Billings, & Balikhin, 2007). The APRESS can be easily

calculated in each term selection step in OFR algorithm. It

is defined as (Billings & Wei, 2008; Wei & Billings, 2008):

APRESS(k) = p(k)MSE(k)

=
(

1

1 − ((C(k,α))/N)

)2

MSE(k), (16)

where p(k) is a penalty function defined in terms of the

cost function C(k,α) = k × α with α being an tuning

parameter.

It can be noted that each of the three criteria contains

two components: the first component measures the pre-

diction error, which indicates how well the model fits the

data. The second component is the cost function,which is

used to penalize themodel whenmoremodel terms (also

called parameters in statistics) are added to the model.

Therefore, there is a trade-off between the better fit and

the model complexity. In general, the value of the crite-

rion decreases when a first fewmodel terms are included

in themodel, because of the reductionof prediction error.

When an enough number of model terms are included,

the penalty component becomes significant, leading to

increased value. Thus, themodel with aminimumvalue is

then treated as an optimal choice with both good predic-

tion performance as well as parsimonious representation
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Table 1. The advantage and disadvantage of AIC, BIC and APRESS.

Criterion Advantage Limitation

AIC • AIC minimizes useful risk function when true model is not a
candidate and the model is complex

• AIC-based model performs not well for out-of-sample data
• AIC-based model is often more complicated

BIC • BIC is consistent in selecting true model when model is a candidate • BIC is not consistent when the model is too complex or the
uncertainty is too strong• BIC-based model has better out-of-sample performance

APRESS • APRESS is easy to implement in the OFR algorithm for nonlinear
dynamic modelling

• APRESS has a tuning parameter so that it needs a figure to
determine the optimal turning point

• APRESS have been applied for nonlinear model selection of many
applications

of the system. From the investigation of the literature, a

summary of the reported advantages and limitations of

the AIC/BIC/APRESS is given in Table 1 (Aho et al., 2014;

Billings & Wei, 2008; Hooten & Hobbs, 2015; Johnson &

Omland, 2004; Medel & Salgado, 2013; Posada & Buck-

ley, 2004; Vrieze, 2012; Wei & Billings, 2008; Wei, Billings,

& Balikhin, 2006).

3.2. Model averagingwith AIC, BIC and APRESS

Model averaging is a widely applied method to deal with

model uncertainty and reduce or eliminate the risk of

using only a single model. Model averaging approaches

such asAIC- andBIC-basedaveragingmethodshavebeen

used in many applications (Asatryan & Feld, 2015; Cade,

2015; Kontis et al., 2017; Moral-Benito, 2015). The model

averaging approachwithAIC involves the computationof

the delta AIC and theAkaikeweights. The delta AIC canbe

calculated as (Symonds & Moussalli, 2011):

�AICci = AICci − AICcmin , (17)

where AICci is the AIC value for the i-th candidate model,

AICcmin is the minimum AIC of all the M candidate mod-

els, and i = 1, 2, . . . ,M. The Akaike weight indicates the

probability that an individual candidatemodel is the best

model. The Akaikeweight for i-th candidatemode is com-

puted as (Buckland et al., 1997):

ωi =
exp(−0.5�AICci)∑M
j=1 exp(−0.5�AICcj)

, (18)

whereωi is theAkaikeweight for the i-th candidatemodel

and i = 1, 2, . . . ,M. Then, the averaged parameter esti-

mate of ‘full model averaging’ is calculated as follows:

̂̄β =
M∑

i=1

ωiβ̂i. (19)

To produce averagedmodel based on BIC andAPRESS,

a simple approach is to replaced AIC by BIC and APRESS,

to calculate the BIC and APRESSweights of model param-

eters of all candidate models. The averaged parameters

can then be computed using formula (19). This method is

simple to implement.More importantly, it is easy todeter-

mine which of the three criteria gives the best-averaged

model. The advantage of the averaged model is that it is,

ingeneral,more robust than the single ‘best’model deter-

mined by the model selection criterion. This is because a

singlemodel only contains a limit number ofmodel terms

suggested by model selection criterion. If a model selec-

tion criterion fails to detect the correct number of model

terms, themodel terms of the single model may be insuf-

ficient to well represent the system. On the contrary, the

averagedmodel uses the information of all the candidate

models and each candidate model gives its contribution

according to their weights based on the model selection

criterion. Therefore, when the single model selected by

the model selection criterion is not the best, the perfor-

mance of the averaged model is usually better than that

of the singlemodel. However, it should also be noted that

a model with more terms is not necessarily always bet-

ter than a model with less terms, because some terms

may be redundant and may deteriorate the model pre-

diction performance. Therefore, it is not always true that

the averagedmodel is better than a singlemodel, but the

averagedmodel is oftenmore robust in case where there

is large uncertainty in the data collection,model structure

and model parameter, etc.

4. Case studies

In this section, case studies are carried out to evaluate

the performances of the proposed model selection and

model averaging methods.

4.1. A simulation example

Consider a nonlinear system described by the model

below:

y(t) = −u(t − 1)
√

|y(t − 1)| + 0.5u2(t − 1)

+ u2(t − 2) + y(t − 2)u(t − 1) + ξ(t), (20)

where the input u(t) was assumed to be uniformly dis-

tributed on [−1, 1], and the noise ξ(t) is the white noise

with zero mean and finite variance. The signal to noise
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ratio (SNR) of the data is about 10 dB. A total number of

500 input-output data points were generated. The first

250 points were used for model estimation and selection

and the second 250 points were used for performance

test. A regression vector can be defined as:

ϕ(t) = [y(t − 1), y(t − 2), u(t − 1), u(t − 2)]T (21)

with the maximum time lags of ny = nu = 2. The ini-

tial full model was chosen to be a polynomial form with

nonlinear degree of l = 2. The full dictionary contains a

total number of 15 model terms: {y(t − 1), y(t − 2), u(t −
1), u(t − 2), y(t − 1) × y(t − 1), y(t − 1) × y(t − 2),

y(t − 1) × u(t − 1), y(t − 1) × u(t − 2), y(t − 2) ×
y(t − 2), y(t − 2) × u(t − 1), y(t − 2) × u(t − 2), u(t − 1)

× u(t − 1), u(t − 1) × u(t − 2), u(t − 2) × u(t − 2),

constant}. Note that the true model term
√

|y(t − 1)| in
(20) is not included in any of the specified candidate

model sets. Therefore, all candidate models can only pro-

vide an approximation of the true system behaviour,

which is accurate to some degree but can never perfectly

reconstruct the true system model structure. This is true

for most real-world data-driven modelling tasks, where

the true system model structure is unknown. The OFR

algorithmwas used to selectmodel terms from thedictio-

nary andestimate themodel, and theAIC, BIC andAPRESS

were used to evaluate all the candidate models. The first

15 model terms are shown in Table 2 and ranked by the

ERR index. It can be seen that the most important terms

are selected in the first few steps including the true sys-

tem model u(t − 1) × y(t − 2). The candidate model is

the model with associated number of model terms, for

example, the second candidatemodel is defined tobe the

model with two terms, u(t − 1) × y(t − 2) and u(t − 2) ×
u(t − 2), so on and so forth.

TheAIC, BIC andAPRESS of all the 15 candidatemodels

were calculated and shown in Figure 1 and some statisti-

cal evaluations of the models suggested by AIC, BIC and

APRESS are shown in Table 3. The performances of all the

candidate models are shown in Figure 2. Compared with

AIC and BIC, the APRESS suggests a choice of threemodel

terms, which is much smaller than that suggested by AIC

and BIC. Also, the model suggested by APRESS, although

with fewer number of model terms, possesses slightly

Figure 1. AIC, BIC andAPRESS statistics (alpha: adjustableparam-
eter α).

better predicative capability. Due to the fact that the pre-

diction performances can be affected by the uncertainty

brought by the noise, it is normal that any of the models

can achieve slightly better statistics of correlation, pre-

diction efficiency and error, as long as they include the

main components of the true model. However, it is also

crucially important to achieve a parsimonious represen-

tation for complex nonlinear systems inmany application

situations, because amodelwith less variables can largely

reduce theworkofdata collectionandbenefit theprocess

of understanding the systems. In general, all the three

model selection criteria are capable for model selection

for this example. It is possibly because that although the

model term
√

|y(t − 1)| is not in the candidate term set, it

can be approximated using the model term y(t − 1)with

some polynomial format.

The averaged parameters were calculated based on 15

candidate models using formula (19). Note that all the

three averagedmodels were calculated from the same 15

candidatemodels and the only difference is that the aver-

aged parameter was computed using different weights

based on AIC, BIC and APRESS, respectively. A compari-

son of the performances of the three averaged models is

also shown in Table 1. It can be observed that the perfor-

mances of the averaged models are slightly better than

Table 2. The first eight terms ranked by the ERR index.

No. Term ERR (100%) No. Term ERR (100%)

1 u(t − 1) × y(t − 2) 20.4649 9 u(t − 2) × y(t − 2) 0.1816
2 u(t − 2) × u(t − 2) 13.8597 10 y(t − 2) 0.0669
3 u(t − 1) 13.8593 11 y(t − 1) × y(t − 1) 0.0188
4 u(t − 1) × u(t − 1) 1.7763 12 y(t − 1) 0.0017
5 y(t − 2) × y(t − 2) 2.3674 13 u(t − 2) × y(t − 1) 0.0006
6 u(t − 1) × u(t − 2) 1.3316 14 y(t − 1) × y(t − 2) 0.0001
7 u(t − 1) × y(t − 1) 0.3493 15 constant 0.0001
8 u1(t−2) 0.2199
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Table 3. Evaluation of single and averaged models by AIC, BIC and APRESS on train and test datasets.

Correlation coefficient
Normalised root mean
square error (NRMSE)

Method Model type
Number of
model terms Training data Test data Training data Test data

AIC Single 6 0.7006 0.6405 0.1109 0.1477
Averaged 15 0.7047 0.6471 0.1102 0.1465

BIC Single 6 0.7006 0.6405 0.1109 0.1477
Averaged 15 0.7004 0.6503 0.1109 0.1461

APRESS Single 3 0.6571 0.6498 0.1172 0.1475
Averaged 15 0.7024 0.6529 0.1109 0.1460

Note: Correlation coefficient is defined to be the correlation between model predictions and corresponding observations.

Figure 2. Performances of all the candidate models on test
dataset.

the associated single models, but this is achieved at the

price of increasing the model complexity. As mentioned

earlier, the true model term
√

|y(t − 1)| in (20) is not

included in the specified candidatemodel terms, as a con-

sequence, all the ‘best’ single models suggested by the

three criteria just simply achieve a best balance or trade-

off between the model representation performance on

the test data and the model complexity. For real appli-

cations, there would always exist a risk if we only trust

a single model to make important decisions or carry out

important analyses. The model averaging process, how-

ever, is extremely useful to improve the robustness, espe-

cially when the true model structure is not included in

the specified candidate model set or the model selection

method fails to choose the best model.

4.2. A real-world application: Dst index forecast

The magnetosphere can be considered as a complex sys-

tem. In order to understand the magnetosphere system,

Dst index is often used to measure the magnetic distur-

bances (Wei et al., 2006, 2007; Wei, Billings, & Balikhin,

2004). In this study, the process of Dst is treated to be

an unknown nonlinear system, where the system inputs

Table 4. Dst index and solar wind variables.

Name Description

Dst Dst index
V solar wind speed/velocity (flow speed) [km/s]
Bs Southward interplanetary magnetic field
p solar wind pressure (flow pressure) [nPa]
VBs V × Bs/1000;

are solar wind variables and the system output is the Dst

index. The description of the inputs and output is given

in Table 4. All the variables were sampled every 1 hour. It

should be noted that VBs is a multiplied input which was

suggested to be included in the model inputs (Gonzalez

et al., 1994).

The Dst data used in this example is sampled from

1998. There are a total number of 1460 input–output data

points. The first half data was used for model estimation

and the second half data was used for validation. Similar

to the previous discussed simulation example, the OFR

algorithm was used to select model terms and estimate

themodel parameters, and the AIC, BIC and APRESS were

used for model selection. The time lag of inputs was cho-

sen to be 4 and the nonlinear degree was 2 so that the

model is input-alone (Volterra model), meaning that no

autoregressive model terms were included in the inputs.

Figure 3. AIC, BIC andAPRESS statistics (alpha: adjustableparam-
eter α).
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Table 5. Evaluation of single and averaged models by AIC, BIC and APRESS on train and test datasets.

Correlation coefficient NRMSE

Method Model type Number of model terms Training data Test data Training data Test data

AIC Single 38 0.8180 0.5894 0.0657 0.1363
Averaged 40 0.8183 0.6031 0.0657 0.1323

BIC Single 8 0.7868 0.7541 0.0705 0.1046
Averaged 40 0.7886 0.7549 0.0702 0.1047

APRESS Single 7 0.7843 0.6498 0.0709 0.1475
Averaged 40 0.7889 0.7577 0.07702 0.1038

Note: Correlation coefficient is defined to be the correlation between model predictions and corresponding observations.

In total, 40 candidate models were estimated to predict

Dst index 1 hour ahead.

The AIC, BIC and APRESS of all the candidate mod-

els are shown in Figure 3. The number of model terms

suggested by AIC, BIC and APRESS are 38, 8 and 7, respec-

tively. The evaluation of the prediction performances of

the three models are shown in Table 5 and the perfor-

mances of all the 40 estimated models are shown in

Figure 4. It is clear that AIC fails to select the ‘best’ candi-

date model. The model with 38 terms performs poorly in

forecasting Dst index 1 hour ahead. On the contrary, the

models chosen by BIC and APRESS are quite similar and

achieve very similar performances. Comparing theperfor-

mancesof the two selectedmodelswith thatproducedby

all the candidate models, it can be seen that the BIC and

APRESS selected nearly the ‘best’ model. Additionally, the

model suggested by APRESS involves a relatively smaller

number of model terms. Clearly, for this real data exam-

ple, both BIC and APRESS are capable for themodel selec-

tion task. If a parsimonious representation is required,

the APRESS statistic is superior to the other two model

selection criteria.

The averaged parameters were calculated for the can-

didatemodels basedonAIC, BIC andAPRESSweights. The

result of the three averaged models is shown in Table 3

and a comparison of predicted and observed Dst index is

Figure 4. Performances of candidate models on test datasets.

Figure 5. Observed and predicted Dst index by averagedmodels
on test dataset.

shown in Figure 5. It can be seen that the performances

of the averaged models are also similar to the associated

single models. Following the discussion above, it can be

concluded that the model averaging approaches is con-

sistent with themodel selection results. The performance

of the averagedmodel is mainly affected by the ‘best’ sin-

gle model chosen by AIC, BIC or APRESS, while the other

candidate models make smaller contribution to the aver-

aged model according to the relevant averaged models.

4.3. A real-world application: estimation of energy

performance of residential building

The energy performance of residential building is related

tomany aspects, for example, surface area, wall area, roof

Table 6. Variable descriptions.

Name Description

y Heating load
x1 Relative compactness
x2 Surface area
x3 Wall area
x4 Roof area
x5 Overall height
x6 Orientation
x7 Glazing area
x8 Glazing area distribution
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area, overall height, orientation, glazing area, and glazing

area distribution (Tsanas & Xifara, 2012). In this example,

models are built to represent the relationship between

heating load and these factors. The descriptions of these

variables (factors) are shown in Table 6 (Tsanas & Xifara,

2012). There are 768 input–output data points and the

first and secondhalf data areused for training and testing,

respectively. The nonlinear degree is set to be 3. Similar

Figure 6. AIC, BIC andAPRESS statistics (alpha: adjustableparam-
eter α).

Figure 7. Performance of candidate models on test datasets.

to the process described in Sections 4.1 and 4.2, AIC, BIC

and APRESS are used to evaluate a total of 20 candidate

models and select the model that can best describe the

system.

Theplots of AIC, BIC andAPRESSof the candidatemod-

els are shown in Figure 6. Both AIC and BIC suggest the

model with 12 model terms. As for APRESS statistics, by

setting the adjustable parameter α to be 0, 1, . . . , 10,

three apparent turning points are observed at horizon 3,

14 and 17. From Figure 7, themodel with three terms pro-

vides better performances. It can be noted that another

advantage of APRESS is that it uses an adjustable param-

eter α to calculate the cost function, so that the optimal

model length can be determined by the turning points,

rather than the smallest value. In this example, if α is

set to be any of the single values that is less than 6, it

would be difficult to find the optimal point. Thus, the

adjustable parametermakes the APRESSmore sensible to

the optimal solution.

It can be seen from Table 7 that the averaged model

provided by APRESS outperforms those provided by AIC

andBIC. This is not surprising, as the singlemodel selected

by theAPRESS ismuchbetter than themodels selectedby

AICandBIC.Again, it canbeconclude thatAPRESS is supe-

rior to AIC and BIC for model selection andmodel averag-

ing for quantifying the energy performance of residential

buildings.

5. Conclusion

Investigations have been carried out on model selec-

tion and model averaging with three information crite-

ria, namely, AIC, BIC and APRESS. Three case studies on

system identification and date-driven modelling using

both simulation and real datasets are presented, and the

associated comparative analysis shows that APRESS is

superior to AIC and BIC with several advantages. First,

the model produced by APRESS can achieve parsimo-

nious representation with good or better prediction per-

formance. Second, APRESS is simple to compute incor-

porate in the implementation procedure of the OFR

algorithm. Third, APRESS is more sensible to the optimal

Table 7. Evaluation of selected and averaged models by AIC, BIC and APRESS on train and test datasets.

Correlation coefficient NRMSE

Method Model type Number of model terms Training data Test data Training data Test data

AIC Single 17 0.9917 0.9024 0.0354 0.2071
Averaged 20 0.9917 0.9022 0.0353 0.2072

BIC Single 17 0.9917 0.9022 0.0354 0.2072
Averaged 20 0.9917 0.9022 0.0354 0.2072

APRESS Single 3 0.9534 0.9639 0.0832 0.1259
Averaged 20 0.9904 0.9120 0.0381 0.1917

Note: Correlation coefficient is defined to be the correlation between model predictions and corresponding observations.
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solution for real data modelling problems. With these

benefits, APRESS is recommended for model selection

in nonlinear system identification and data-driven mod-

elling, especially for real data based modelling problems

where the true systemmodel structure is unknown.More-

over, a model averaging approach has been introduced

and evaluated via the three case studies. The associated

results indicate that the averagedmodel can improve the

model robustness and thus it is recommended to use

model selection and averaging method together for real

data modelling problems of nonlinear systems. The rea-

son that APRESS outperforms AIC and BIC in the three

case studies is not theoretically justified in the present

work. Our future work would include theoretical analysis

of the performance of these methods.
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