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Abstract—A Laguerre Predictive Functional Control (LPFC) is
a simple input shaping method, which can improve the prediction
consistency and closed-loop performance of the conventional
approach (PFC). However, it is well-known that an input shaping
method, in general, will affect the loop sensitivity of a system.
Hence, this paper presents a formal sensitivity analysis of LPFC
by considering the effect of noise, unmeasured disturbance and
parameter uncertainty. Sensitivity plots from bode diagrams
and closed-loop simulation are used to illustrate the controller
robustness and indicate that although LPFC often provides a
better closed-loop tracking response and disturbance rejection,
this may involve some trade-off with the sensitivity to noise and
parameter uncertainty. Finally, to validate the practicality of the
results, the sensitivity of the LPFC control law is illustrated on
real-time laboratory hardware.

Index Terms—Predictive Control, PFC, Sensitivity Analysis,
Laguerre function, Parameter Uncertainty, Noise, Disturbance

I. INTRODUCTION

Model Predictive Control (MPC) is an optimal controller

that employs a control action based on a future output pre-

diction. Typically, MPC utilises a finite horizon prediction in

the optimisation process and can explicitly take into account

different types of constraints in a system [1]. Nevertheless, the

implementation of this controller is often more expensive and

requires higher computational effort and time compared to its

competitors [2]. Hence for low-end applications, it is wiser

to consider a simpler controller such as Proportional Integral

Derivative (PID) or Predictive Functional Control (PFC).

Developed in 1973, PFC is known as a simplified version of

MPC that minimises the output error at a single point instead

of over a whole trajectory [3], [4]. With this simplification,

PFC only needs simple coding and minimal computation.

Although in general, the computed input is not optimal, it still

retains some of the core benefits of an MPC approach such as

systematic handling of constraints and/or systems with delays

[4]. Besides, the use of a target first-order Closed-loop Time

Response (CLTR) as one of its tuning parameters, makes the

design process more transparent. Currently, this controller is

widely used in many industrial applications and has become

a prime competitor with PID regulators [4]–[6].

This work is funded by International Islamic University Malaysia and
Ministry of Higher Education Malaysia.

Despite its attractive attributes, the simple PFC concept is

often unable to provide a consistent prediction [7], accurate

constrained solutions [8] and effective handling of systems

with challenging dynamics [9], [10]. Several works have mod-

ified the traditional PFC framework to tackle these weaknesses

either via cascade structures [4], [11], pole-placement [9],

[12] or input shaping [8], [10]. However, the derivation of

these methods often excludes explicit consideration of uncer-

tainty, and only a few works have systematically discussed or

analysed the robustness of PFC [13], [14]. Hence, the main

objective of this work is to tackle this issue on one of its

alternative structures know as Laguerre PFC (LPFC).

LPFC is defined by shaping the future predicted input trajec-

tory with a first-order Laguerre polynomial [15], [16]. Instead

of the constant input assumption of PFC, the future dynamics

are now forced to converge gradually to the steady-state value.

This modification can improve the prediction consistency

and the significance of CLTR as a tuning parameter [16].

Furthermore, due to the well-posed decision making, satisfying

constraints within a larger validation horizon becomes more

accurate and less conservative [8]. However, this algorithm,

as in common in MPC, is utilising the model parameters

to estimate the steady state input while improving the loop

performance and hence, it is worth investigating its sensitivity

concerning noise, disturbances and parameter uncertainty.

Since the general unconstrained PFC framework provides

a fixed control law, loop sensitivity can be computed and

analysed to assess the controller robustness [3]. The perfor-

mance of LPFC will be benchmarked against a nominal PFC

structure to get some insight into the sort of sensitivity trade-

off that ones should expect. The reader is reminded again that

the scope of this work is only focused on simple and stable

dynamic system; further development of LPFC to deal with

challenging or unstable systems constitutes future work and

in general is non-simple with a PFC approach.

This paper consists of five main sections. Section II dis-

cusses the basic formulation and derivations of sensitivity

functions for PFC and LPFC. Section III presents some

numerical examples. Section IV illustrates the findings are

consistent with those on real-time laboratory hardware and

section V gives the conclusions.



II. PFC STRUCTURES AND SENSITIVITY FUNCTIONS

This section presents a brief formulation for both PFC

and LPFC together with the derivation of their sensitivity

functions. More detailed derivations, theory and concepts are

available in these references [3], [4], [6], [7]. Without loss of

generality, this work utilises an autoregressive with exogenous

terms (ARX) model with an independent model (IM) structure.

A. Conventional PFC

1) Target trajectory: PFC is designed to follow a closed-

loop behaviour of the first order system with a delay τ (or h
samples) and a time constant Tr [7]. The z-transform of the

target trajectory, r(z) with steady-state R is:

r(z) =
z−h(1− λ)

1− λz−1
R (1)

The representation of target pole, λ in (1) is equivalent to the

desired closed-loop time response (CLTR) which is normally

used by industrial practitioners [4]. The conversion can be

presented by Tr = CLTR/3, where λ = e
−T

Tr with T the

sampling period.

2) Coincidence point and degree of freedom: The control

objective of PFC is to force the system open-loop prediction,

yp to exactly match the predicted target trajectory of (1) at

a selected coincidence point n samples into the future [4].

Consequently, the control law is formulated to enforce the

equality:

yp,k+n|k = (1− λn)R+ λnyp,k (2)

where yp,k+n|k is the n-step ahead system prediction at

sample time k and yp,k is the current process output

measurement.

3) Independent model: The independent model (IM) struc-

ture is often used in conventional PFC [4], [5] as this is

known to provide good sensitivity properties in general, yet it

is only applicable to open-loop stable systems. The implemen-

tation is equivalent to using a step response model (ignoring

truncation errors [1]). Both the model Gm and process Gp

run in parallel using the same input uk (see Fig.1). The

error (dk = yp,k − ym,k) between process output yp and

model output ym is utilised to handle noise, disturbance and

parameter uncertainty. Using the unbiased model prediction,

the equality (2) is altered to:

(1− λn)R+ λnyp,k = ym,k+n|k + dk

(R− yp,k)(1− λn) = ym,k+n|k − ym,k

(3)

4) Control law: The n-step ahead prediction algebra for

an ARX model is well known in the literature, which can be

represented using Toeplitz/Hankel form (e.g. [1]), hence only

the final form is given here. For input uk and model outputs

ym,k, the n-step ahead linear prediction model is:

ym,k+n|k = Huk
→

+ Puk
←

+Qym,k
←

(4)

Fig. 1: The independent model structure.
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Substituting prediction (4) into equality (3) gives:

Huk
→

+ Puk
←

+Qym,k
←

− ym,k = (R− yp,k)(1− λn) (6)

The constant future input assumption of PFC [3], [4] means

that uk+i|n = uk for i > 0, hence defining h =
∑

(H), the

control law reduces to:

uk =
1

h

[

(1−λn)R−(1−λn)yp,k−Qym,k
←

+ym,k−Puk
←

]

(7)

The control law can be represented in a vector form by

rearranging (7) in terms of parameters Fp, Np, Mp and D̂p

with obvious definitions:

uk = FpR−Np
ym,k
←

−Mpyp,k − D̂p∆uk
←

(8)

Remark 1: Conventional PFC can work well with low

order and simple dynamical systems, especially when the

coincidence point is selected properly [7]. However, with

the restricted degree of freedom (d.o.f) in its future input

dynamics, an inconsistency between open-loop and closed-

loop predictions will occur [7], [16]. Since the current decision

making could then be ill-posed, the accuracy of a constrained

solution might also be affected, especially when the validation

horizon is selected far beyond the coincidence point [8].

B. Laguerre based PFC (LPFC)

1) Future input dynamics: The main difference between

LPFC and PFC is that the future predicted input dynamics

are shaped via a first-order Laguerre polynomial (in effect, a

simple exponential decay function with pole a) so that it will

converge to the expected steady state input uss [15], [16].

Thus, instead of the constant dynamics assumption of PFC,

the future input is modified to

uk
→

= uss + Lη (9)

where L is the vector (L = [1, a, a2, ...an−1]T ) and η is a

degree of freedom. For a general transfer function Gm(z) =
B(z)A(z)−1, the value uss is estimated as:

uss = Gm(z)−1(R− dk) (10)

The inclusion of error term dk in (10) is to ensure an unbiased

estimation.



Remark 2: For a first-order system, a should be equal to

λ to ensure consistent dynamics with the target trajectory

[16]. Although for higher-order systems, the value of a can

be tuned for faster convergence [15], this work will only use

a = λ to keep the sensitivity analysis transparent.

2) LPFC control law: The output prediction of (4) is

modified with the new input dynamics of (9) to give:

ym,k+n|k = H(uss + Lη) + Puk
←

+Qym,k
←

(11)

The equality of (6) now becomes:

HLη+huss+Puk
←
+Qym,k

←
−ym,k = (r−yp,k)(1−λn) (12)

and the control law is computed by solving for η as:

η =
1

HL

[

(1−λn)r−(1−λn)yp,k−huss−Qym,k
←

+ym,k−Puk
←

]

(13)

Due to the receding horizon principle [3] and the definition of

L(z), the current input is defined as:

uk = uss + η (14)

Noting the structure of uss in (10) and η in (13), the

manipulated input uk in (14) can be altered into vector form

simply by rearranging the algebra and grouping the common

terms into parameters Fl, Nl, Ml and D̂l so that:

uk = Flr −Nl
ym,k
←

−Mlyp,k − D̂l∆uk
←

(15)

Remark 3: It has been shown in [16] that LPFC law of (15)

manages to improve the prediction consistency and the efficacy

of λ as tuning parameter compared to the conventional PFC

law of (8). In addition, the constrained solution becomes more

accurate and less conservative [8].

C. General Sensitivity function for IM structure

From the previous subsections, it is clear that both PFC and

LPFC can be represented by a fixed control law as in (8) and

(15). These are used in the derivation of sensitivity functions

presented next to analyse their respective robustness [1].

First consider a generic formulation of the control law

within an IM structure:

uk = Fr −Nym,k
←

−Myp,k − D̂∆uk
←

(16)

This can be represented in a transfer function form, where the

vectors of
N = [N0, N1, N2, ..., Nn]

D̂ = [D̂0, D̂1, D̂2, ..., D̂n]
(17)

are defined in the z domain as:

N(z) = N0 +N1z
−1, N2z

−2 + ...+Nnz
−n

D̂(z) = D̂0 + D̂1z
−1, D̂2z

−2 + ...+ D̂nz
−n

D(z) = 1 + z−1D̂(z)

(18)

Noting the definitions of uk
←

and ym,k
←

in (5), the sensitivity

functions are derived based on a closed-loop form of:

D(z)uk = F (z)r −N(z)ym,k −M(z)yp,k (19)

alongside the model/plant equations (e.g. ym,k =
B(z)A(z)−1uk) and hence equation (19) can be replaced by:

[D(z) +N(z)B(z)A(z)−1]
︸ ︷︷ ︸

Di(z)

uk = F (z)r −M(z)yp,k (20)

Fig. 2: PFCI control loop.

Fig. 2 indicates the equivalent block diagram with the

addition of measurement noise nk and output disturbance

dk. From the structure, the effective control law can be

simplified to K(z) = M(z)[Di(z)∆]−1. Assuming sys-

tem G(z) = B(z)A(z)−1, the closed-loop pole polynomial

Pi(z) = 1 +K(z)G(z) is represented as:

Pi(z) = Di(z)A(z) +M(z)B(z) (21)

The sensitivity of the input to noise is derived by finding

the transference from n(z) to u(z) (refer to Fig. 2):

Sun = K(z)[1 +K(z)G(z)]−1 = M(z)Pi(z)
−1A(z) (22)

Similarly, the sensitivity of output to disturbance is obtained

by solving the transference from d(z) to y(z):

Syd = [1 +K(z)G(z)]−1 = A(z)Pi(z)
−1Di(z) (23)

Finally, the multiplicative uncertainty is modelled as G(z) →
(1 + δ)G(z), for δ a scalar (possibly frequency dependent).

Thus the closed-loop pole sensitivity to multiplicative uncer-

tainty becomes:

Pc = [1 +G(1 + δ)K] = 0

Sg = GK[1 +K(z)G(z)]−1 = M(z)Pi(z)
−1B(z)

(24)

D. Summary of Control Laws

Table I summarises some of the sensitivity functions for

PFC and LPFC. It is noted that the structures of all the

sensitivity functions are same, but obviously with different

parameters and hence, different sensitivity responses should

be expected.

TABLE I: Sensitivity functions for PFC and LPFC.

Algorithm PFC LPFC

Sun Mp(z)Pi,p(z)
−1A(z) Ml(z)Pi,l(z)

−1A(z)
Syd A(z)Pi,p(z)

−1Di,p(z) A(z)Pi,l(z)
−1Di,l(z)

Sg Mp(z)P
−1

i,p B(z) Ml(z)P
−1

i,l
B(z)

The polynomials M(z), D(z), Pi(z) used a subscript p for

PFC, while for LPFC the subscript is l.



III. NUMERICAL EXAMPLES

This section presents the sensitivity analysis of uncon-

strained second order over-damped process (25) as constraint

handling would imply non-linear control. In fact, if the loop

structure has low sensitivity in the nominal case, it is likely

to carry over for the constrained case. For the first example,

both PFC and LPFC are tuned using a faster λ compared to the

slowest open-loop pole. The second example demonstrates the

effect of loop sensitivity when the controllers are tuned to have

almost similar closed-loop poles. The outcome of this analysis

is then validated with the closed-loop simulation using Matlab.

G1 =
0.1z−1 + 0.4z−2

(1− 0.5z−1)(1− 0.9z−1)
(25)

A. First example
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Sensitivity to
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Fig. 3: Sensitivity plot for process G1 with λ = 0.7 and n = 7.

In this example, the system (25) is considered to track a

unit set point. The desired pole is set to λ = 0.7, while the

coincidence point is tuned at n = 7 using conjecture presented

in [7], that is corresponding to 40% to 80% rise of the step

response to the steady-state value.

To analyse the trade-off between performance and robust-

ness of PFC and LPFC, the Bode plots of each sensitivity

function are plotted together with their closed-loop bandwidth

(see Fig. 3). It can be observed that:

• for this particular selection of tuning parameters, LPFC

(red dotted line) has a higher bandwidth compared to

PFC (blue dashed line). Since LPFC has a faster dynam-

ics, it becomes less sensitive in rejecting low-frequency

disturbance..

• However, higher bandwidth requires more aggressive

input activity, and thus LPFC becomes more sensitive to

measurement noise and modelling uncertainty compared

to conventional PFC.

One could argue that PFC has failed to deliver the desired

bandwidth and if LPFC were to be tuned to give an equivalent

lower bandwidth, in all likelihood, the sensitivities would be

similar.
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Fig. 4: Closed-loop response of process G1 with λ = 0.7 and

n = 7 in the presence of disturbance, noise, and uncertainty.

To validate this analysis, a closed-loop control (see Fig. 4)

is simulated with three different conditions:

1) A step output disturbance (d = 1) is added to the 30th

sample.

2) The output measurement is corrupted by Gaussian ran-

dom white noise with variance of 0.1.

3) System G1,m (26) is used to predict the future dynamics

instead of G1 to demonstrate the effect of uncertainty.

G1,m =
0.12z−1 + 0.37z−2

1− 1.37z−1 + 0.4z−2
(26)

The simulation outcomes reflect the previous sensitivity anal-

ysis whereby:

• LPFC converges approximately 2 samples faster in track-

ing the target and rejecting the output disturbance with

almost similar overshoot (ymax = 2) compared to PFC.

• On the other hands, LPFC reacts more to the noise in the

input compared to conventional PFC.

• For parameter uncertainty, both controllers manage to

converge towards the steady-state value but with apparent

differences in their closed-loop response.

In this example, it is clear that LPFC is slightly less robust

than PFC in handling noise and uncertainty, yet better in re-

jecting disturbance and tracking the target, but that observation

is most likely linked to the difference in implied closed-loop



poles with LPFC delivering the desired pole and PFC not

doing so.
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Fig. 5: Sensitivity plot for process G1 with λ = 0.92 and

n = 9.

B. Second example

The next example looks at the effect of sensitivity when the

process (25) is tuned using slower λ = 0.92 (almost similar

with the slowest open-loop pole). Based on the same procedure

[7], the coincidence point n = 9 is selected to track a unit set

point. It can be observed that (see Fig. 5):

• With the selected tuning parameters, LPFC and PFC have

almost a similar bandwidth.

• As a consequence, both controllers are giving a close

sensitivity outcome with respect to disturbance, noise and

modelling uncertainty.

Again to validate the sensitivity analysis, the closed-loop

simulation is run to track a unity set point for three different

cases (similar as previous example). The outcomes in Fig. 6

demonstrates that:

• PFC and LPFC converge at the same rate and very close

to the target trajectory while rejecting the disturabce with

overshoot approximately around ymax = 1.8.

• Similar observation can be seen with the presence of

noise and modelling uncertainty where both controllers

performance are almost same.

C. Summary

In summary, for the two cases given, the controller sensi-

tivity is related to the achieved closed-loop bandwidth. LPFC

is better at delivering the target λ whereas PFC often gives

a slower response than desired when large n is required. In

consequence, for the same λ, LPFC is usually more highly

tuned and thus more sensitive to noise and modelling un-

certainty. However, where the two control laws give similar

closed-loop poles (perhaps by deploying different λ), their
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Fig. 6: Closed-loop response of process G1 with λ = 0.92 and

n = 9 in the presence of disturbance, noise and uncertainty.

Fig. 7: Quanser SRV02 servo based unit.

sensitivities are similar. Therefore, LPFC is a better base on

which to explore the trade-offs in the sensitivity, as there

is a stronger connection between the tuning parameters and

the achieved closed-loop performance [16] in addition to a

better constraint handling due to its well-posed decision and

prediction consistency as discussed in [8].

IV. REAL TIME SYSTEM IMPLEMENTATION

This section demonstrates the practicality of LPFC to con-

trol a real system, that is a Quanser SRV02 servo based

unit [17]. The servo is powered by a Quanser VoltPAQ-

X1 amplifier that comes with National Instrument ELVIS

II+ multifunctional data acquisition device. The controller
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Fig. 8: Step response and LPFC closed-loop behaviour for

process G2.

is run by National Instrument LabVIEW software via USB

connection (see Fig. 7). The objective is to track the desired

servo angular speed, θ̇(t) by regulating the supplied voltage,

V (t). The mathematical model is given as [17]:

0.0254θ̈(t) = 1.53V (t)− θ̇(t) (27)

where θ̈(t) is the servo angular acceleration. Converting the

model (27) to discrete form with sampling time 0.02s, the

transfer function of angular speed to voltage input becomes:

G2 =
0.8338

1− 0.455z−1
(28)

The upper Fig. 6 shows the modelling uncertainty between the

process yp and model ym subjected to a step input u. To track

the angular speed at 1 rad/s, LPFC is tuned with n = 1 (often

a sensible choice for a first-order system [7]) with desired

CLTR at 0.5s (equivalent to λ = 0.89). It is noted that at 3s,

there is a step output disturbance (d = 2) entering the system

while the measurement is corrupted by Gaussian white noise

with variance of 0.5. The closed-loop response (see lower Fig.

8) shows that:

• LPFC manages to reduce some noise transmission to

the input with approximate 0.2 variance from 0.5, while

rejecting the output disturbance.

• Although there is modelling uncertainty, the selected

CLTR is still achieved at 0.5s with minimum offset error.

V. CONCLUSIONS

This work provides a formal sensitivity analysis of LPFC in

the presence of noise, disturbance and modelling uncertainty.

The performance is then compared with the conventional PFC

control law. Indeed it is clear that when using LPFC, a user

need to pay a small trade-off by having a more sensitive

controller to noise and uncertainty since it is highly tuned

with a larger bandwidth than conventional PFC. However, both

controllers may typically have similar sensitivities if giving

similar closed-loop poles which would indicate a preference

for LPFC in general due to easier tuning and other advantages

as discussed in Remark 3.

Future work will consider the analysis of different PFC

structures that deal with more challenging dynamics and

unstable systems as PFC is currently has a number of ad-hoc

constructive methods to improve its closed-loop behaviour. In

addition, a core issue that also needs to be considered is the

impact of modelling assumptions on sensitivity. This paper

assumes an IM model of Fig. 1, so it would be interesting

to consider how sensitivity might change with alternative

prediction models such as T-filter [14].
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