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EQUIVALENCE OF THE OPEN KDV AND THE OPEN VIRASORO

EQUATIONS FOR THE MODULI SPACE OF RIEMANN SURFACES WITH

BOUNDARY

ALEXANDR BURYAK

Abstract. In a recent paper R. Pandharipande, J. Solomon and R. Tessler initiated a study
of the intersection theory on the moduli space of Riemann surfaces with boundary. The authors
conjectured KdV and Virasoro type equations that completely determine all intersection num-
bers. In this paper we study these equations in detail. In particular, we prove that the KdV
and the Virasoro type equations for the intersection numbers on the moduli space of Riemann
surfaces with boundary are equivalent.

1. Introduction

Denote by Mg,n the moduli space of smooth complex algebraic curves of genus g with n dis-
tinct marked points. In [DM69] P. Deligne and D. Mumford defined a natural compactification
Mg,n ⊂ Mg,n via stable curves (with possible nodal singularities). The moduli space Mg,n is
a nonsingular complex orbifold of dimension 3g − 3 + n.
A new direction in the study of the moduli space Mg,n was opened by E. Witten [Wit91].

The class ψi ∈ H2(Mg,n;C) is defined as the first Chern class of the line bundle over Mg,n

formed by the cotangent lines at the i-th marked point. Intersection numbers 〈τk1τk2 . . . τkn〉
c

g

are defined as follows:

〈τk1τk2 . . . τkn〉
c

g :=

∫

Mg,n

ψk1
1 ψ

k2
2 . . . ψkn

n .

The superscript c here signals integration over the moduli of closed Riemann surfaces. Let us
introduce variables u, t0, t1, t2, . . . and consider the generating series

F c(t0, t1, . . . ; u) :=
∑

g≥0,n≥1
2g−2+n>0

u2g−2

n!

∑

k1,...,kn≥0

〈τk1τk2 . . . τkn〉
c

g tk1tk2 . . . tkn .

E. Witten ([Wit91]) proved that the generating series F c satisfies the so-called string equation

and conjectured that the second derivative ∂2F c

∂t20
is a solution of the KdV hierarchy. Witten’s

conjecture was proved by M. Kontsevich ([Kon92]).
There is a reformulation of Witten’s conjecture due to R. Dijkgraaf, E. Verlinde and H. Ver-

linde ([DVV91]) in terms of the Virasoro algebra. They defined certain quadratic differential
operators Ln, n ≥ −1, and proved that Witten’s conjecture is equivalent to the equations

Ln exp(F
c) = 0,(1.1)

that are called the Virasoro equations. The operators Ln satisfy the relation [Ln, Lm] = (n −
m)Ln+m.

In [PST14] the authors initiated a study of the intersection theory on the moduli space of
Riemann surfaces with boundary. They introduced intersection numbers on this moduli space
and completely described them in genus 0. In higher genera the authors conjectured that the
generating series of the intersection numbers satisfies certain partial differential equations that
are analagous to the string, the KdV and the Virasoro equations. In [PST14] these equations
were called the open string, the open KdV and the open Virasoro equations.
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The open KdV equations and the open Virasoro equations provide two different ways to
describe the intersection numbers on the moduli space of Riemann surfaces with boundary. It
is absolutely non-obvious that these two descriptions are equivalent and it was left in [PST14]
as a conjecture. The main purpose of this paper is to prove this conjecture. We show that the
system of the open KdV equations has a unique solution specified by a certain initial condition
that corresponds to the simplest intersection numbers in genus 0. The main result of the paper
is the proof of the fact that this solution satisfies the open Virasoro equations. This proves that
the open KdV and the open Virasoro equations give equivalent descriptions of the intersection
numbers on the moduli space of Riemann surfaces with boundary.

1.1. Witten’s conjecture and the Virasoro equations. In this section we review Witten’s
conjecture and its reformulation due to R. Dijkgraaf, E. Verlinde and H. Verlinde.
One of the basic properties of the generating series F c is the so-called string equation ([Wit91]):

∂F c

∂t0
=
∑

n≥0

tn+1
∂F c

∂tn
+

t20
2u2

.(1.2)

1.1.1. KdV equations. E. Witten conjectured ([Wit91]) that the generating series F c is the
logarithm of a tau-function of the KdV hierarchy. In particular, it means that it satisfies the
following system:

u−22n+ 1

2

∂3F c

∂t20∂tn
=
∂2F c

∂t20

∂3F c

∂t20∂tn−1

+
1

2

∂3F c

∂t30

∂2F c

∂t0∂tn−1

+
1

8

∂5F c

∂t40∂tn−1

, n ≥ 1.(1.3)

Moreover, E. Witten showed ([Wit91]) that the KdV equations (1.3) together with the string
equation (1.2) and the initial condition F c|t∗=0 = 0 uniquely determine the power series F c.

1.1.2. Virasoro equations. The Virasoro operators Ln, n ≥ −1, are defined as follows:

Ln :=
∑

i≥0

(2i+ 2n+ 1)!!

2n+1(2i− 1)!!
(ti − δi,1)

∂

∂ti+n

+
u2

2

n−1∑

i=0

(2i+ 1)!!(2n− 2i− 1)!!

2n+1

∂2

∂ti∂tn−1−i

+ δn,−1
t20
2u2

+ δn,0
1

16
.

They satisfy the commutation relation

[Ln, Lm] = (n−m)Ln+m.(1.4)

The Virasoro equations say that

Ln exp(F
c) = 0, n ≥ −1.(1.5)

For n = −1, this equation is equivalent to the string equation (1.2).
R. Dijkgraaf, E. Verlinde and H. Verlinde ([DVV91]) proved that Witten’s conjecture is

equivalent to the Virasoro equations. To be precise, they proved the following. Suppose a
power series F satisfies the string equation (1.2) and the KdV equations (1.3). Then F satisfies
the Virasoro equations (1.5). We review the proof of this fact in Appendix A.

1.2. Moduli of Riemann surfaces with boundary. Here we briefly recall the basic defi-
nitions concerning the moduli space of Riemann surfaces with boundary. We refer the reader
to [PST14] for details.

Let ∆ ∈ C be the open unit disk, and let ∆ be its closure. An extendable embedding of the
open disk ∆ in a closed Riemann surface f : ∆ → C is a holomorphic map which extends to
a holomorphic embedding of an open neighbourhood of ∆. Two extendable embeddings are
disjoint, if the images of ∆ are disjoint.

A Riemann surface with boundary (X, ∂X) is obtained by removing a finite positive number
of disjoint extendable open disks from a connected compact Riemann surface. A compact
Riemann surface is not viewed here as Riemann surface with boundary.
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Given a Riemann surface with boundary (X, ∂X), we can canonically construct the double
via the Schwartz reflection through the boundary. The double D(X, ∂X) of (X, ∂X) is a closed
Riemann surface. The doubled genus of (X, ∂X) is defined to be the usual genus of D(X, ∂X).
On a Riemann surface with boundary (X, ∂X), we consider two types of marked points.

The markings of interior type are points of X\∂X. The markings of boundary type are points
of ∂X. Let Mg,k,l denote the moduli space of Riemann surfaces with boundary of doubled
genus g with k distinct boundary markings and l distinct interior markings. The moduli
space Mg,k,l is defined to be empty unless the stability condition 2g−2+k+2l > 0 is satisfied.
The moduli space Mg,k,l is a real orbifold of real dimension 3g − 3 + k + 2l.

The psi-classes ψi ∈ H2(Mg,k,l;C) are defined as the first Chern classes of the cotangent line
bundles for the interior markings. The authors of [PST14] do not consider the cotangent lines
at boundary points. Naively, open intersection numbers are defined by

〈
τa1τa2 . . . τalσ

k
〉o
g
:=

∫

Mg,k,l

ψa1
1 ψ

a2
2 . . . ψ

al
l .(1.6)

To rigorously define the right-hand side of (1.6), at least three significant steps must be taken:

• A natural compactification Mg,k,l ⊂ Mg,k,l must be constructed. Candidates for Mg,k,l

are themselves real orbifolds with boundary ∂Mg,k,l.
• For integration over Mg,k,l to be well-defined, boundary conditions of the integrand
along ∂Mg,k,l must be specified.

• Problems with an orientation should be solved, since the moduli space Mg,k,l is in
general non-orientable.

The authors of [PST14] completed all these steps and rigorously defined open intersection
numbers in genus 0. Moreover, they obtained a complete description of them. In higher
genera, even though open intersection numbers are not well-defined, the authors of [PST14]
proposed a beautiful conjectural description of them that we are going to recall in the next
section.

1.3. Open KdV and open Virasoro equations. In this section we review the KdV and the
Virasoro type equations from [PST14] for the open intersection numbers (1.6).
Introduce one more formal variable s and define the generating series F o by

F o(t0, t1, . . . , s; u) :=
∑

g,k,l≥0
2g−2+k+2l>0

ug−1

k!l!

∑

a1,...,al≥0

〈
τa1 . . . τalσ

k
〉o
g
ta1 . . . tans

k.

First of all, the authors of [PST14] conjectured the following analog of the string equation (1.2):

∂F o

∂t0
=
∑

i≥0

ti+1
∂F o

∂ti
+ u−1s.(1.7)

They call it the open string equation. The authors also proved that the following initial condi-
tion holds:

F o|t≥1=0 = u−1

(
s3

6
+ t0s

)
.(1.8)

1.3.1. Open KdV equations. The authors of [PST14] conjectured that the generating series F o

satisfies the following system of equations:

2n+ 1

2

∂F o

∂tn
= u

∂F o

∂s

∂F o

∂tn−1

+ u
∂2F o

∂s∂tn−1

+
u2

2

∂F o

∂t0

∂2F c

∂t0∂tn−1

−
u2

4

∂3F c

∂t20∂tn−1

, n ≥ 1.(1.9)

They call these equations the open KdV equations. It is clear that the open KdV equa-
tions (1.9), the initial condition (1.8) and the potential F c uniquely determine the series F o.
On the other hand, the existence of such a solution is completely non-obvious and we will prove
it in this paper.
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1.3.2. Open Virasoro equations. In [PST14] the authors introduced the following operators:

Ln := Ln +

(
uns

∂n+1

∂sn+1
+

3n+ 3

4
un

∂n

∂sn

)
, n ≥ −1.

These operators satisfy the same commutation relation as the operators Ln:

[Ln,Lm] = (n−m)Ln+m.(1.10)

In [PST14] the authors conjectured the following analog of the Virasoro equations (1.5):

Ln exp(F
o + F c) = 0, n ≥ −1.(1.11)

Clearly, equations (1.11), the initial condition F o|t∗=0 = u−1 s3

6
and the potential F c completely

determine the series F o.

1.4. Main result. Here we formulate two main results of the paper.

Theorem 1.1. 1. The system of the open KdV equations (1.9) has a unique solution that

satisfies the initial condition (1.8).
2. This solution satisfies the following equation:

∂F o

∂s
= u

(
1

2

(
∂F o

∂t0

)2

+
1

2

∂2F o

∂t20
+
∂2F c

∂t20

)
.(1.12)

Theorem 1.2. The series F o determined by Theorem 1.1 satisfies the open Virasoro equa-

tions (1.11).

1.5. Burgers-KdV hierarchy and descendants of s. In Section 3 we will construct a
certain system of evolutionary partial differential equations with one spatial variable. It will be
called the Burgers-KdV hierarchy. We will prove that the series F o determined by Theorem 1.1
satisfies the half of the equations of this hierarchy. The remaining flows of the Burgers-KdV
hierarchy suggest a way to introduce new variables s1, s2, . . . in the open potential F o. These
variables can be viewed as descendants of s. We hope that our idea can help to give a geometrical
construction of descendants of s, at least in genus 0.

1.6. Open KdV equations and the wave function of the KdV hierarchy. In the
work [Bur14], that appeared while this paper was under consideration in the journal, we ob-
served that the open KdV equations are closely related to the equations for the wave function of
the KdV hierarchy. Using this observation our original proof of Theorem 1.1 can be simplified.
We discuss it in Section 3.7.

1.7. Acknowledgements. The author would like to thank R. Pandharipande, J. Solomon and
R. Tessler for very useful discussions.

We would like to thank the anonymous referee for valuable remarks and suggestions that
allowed us to improve the exposition of this paper.

The author was supported by grant ERC-2012-AdG-320368-MCSK in the group of R. Pand-
haripande at ETH Zurich, by Russian Federation Government grant no. 2010-220-01-077 (ag.
no. 11.634.31.0005), the grants RFBR-10-010-00678, NSh-4850.2012.1, the Moebius Contest
Foundation for Young Scientists and ”Dynasty” foundation.

1.8. Organization of the paper. In Section 2 we recall some basic facts about evolutionary
PDEs with one spatial variable and give a slight reformulation of Witten’s conjecture.

In Section 3 we construct the Burgers-KdV hierarchy and prove that it has a solution for
arbitrary polynomial initial conditions. We also construct a specific solution of the half of the
Burgers-KdV hierarchy that satisfies the open string equation (1.7).
Section 4 contains the proofs of Theorems 1.1 and 3.1.
In Section 5 we prove Theorem 1.2.
In Appendix A we revisit the proof of the equivalence of the KdV and the Virasoro equations

for the intersection numbers on the moduli space of stable curves.
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2. Evolutionary partial differential equations

In this section we recall some basic facts about evolutionary PDEs with one spatial variable.
We also review the construction of the KdV hierarchy and give a slight reformulation of Witten’s
conjecture that will be useful in the subsequent sections. All this material is well-known. We
refer the reader to the book [Olv86] for the details about this subject.

2.1. Ring of differential polynomials. Let us fix an integer N ≥ 1. Consider variables vij,

1 ≤ i ≤ N , j ≥ 0. We will often denote vi0 by vi and use an alternative notation for the
variables vi1, v

i
2, . . .:

vix := vi1, vixx := vi2, . . . .

Denote by Av1,v2,...,vN the ring of polynomials in the variables u, u−1 and vij. The elements
of Av1,...,vN will be called differential polynomials.
An operator ∂x : Av1,...,vN → Av1,...,vN is defined as follows:

∂x :=
N∑

i=1

∑

s≥0

vis+1

∂

∂vis
.

Consider now a sequence of differential polynomials P i
j (v, vx, . . . ; u) ∈ Av1,...,vN , 1 ≤ i ≤ N ,

j ≥ 0. Consider the variables vi as formal power series in x, τ0, τ1, . . . with the coefficients
from C[u, u−1]. A system of evolutionary PDEs with one spatial variable is a system of the
form:

∂vi

∂τj
= P i

j (v, vx, . . . ; u), 1 ≤ i ≤ N, j ≥ 0.(2.1)

2.2. Existence of a solution. Here we give a sufficient condition for system (2.1) to have
a solution. Let P 1, . . . , PN ∈ Av1,...,vN be some differential polynomials. Define an opera-
tor VP 1,...,PN : Av1,...,vN → Av1,...,vN by

VP 1,...,PN :=
N∑

i=1

∑

j≥0

(∂jxP
i)
∂

∂vij
.

Denote the space of all these operators by Ev1,...,vN . It is a Lie algebra: for Q1, Q2, . . . , QN ∈
Av1,...,vN , we have

[VP 1,...,PN , VQ1,...,QN ] = VR1,...,RN , where Ri = VP 1,...,PNQi − VQ1,...,QNP i.

Consider an operator O =
∑

i≥0Oi∂
i
x, Oi ∈ Av1,...,vN . We will use the following notation:

VP1,...,PN ·O :=
∑

i≥0

(
VP 1,...,PNOi

)
∂ix.

Let us again consider system (2.1). The following lemma is well-known (see e.g. [Olv86]).

Lemma 2.1. Suppose that, for any i, j ≥ 0, we have [VP 1
i ,...,P

N
i
, VP 1

j ,...,P
N
j
] = 0. Then, for an

arbitrary initial condition vi|τj=0 = f i(x, u), where f i(x, u) ∈ C[x, u, u−1], system (2.1) has a

unique solution.

2.3. KdV hierarchy. Consider a variable w and the ring Aw. Define differential polynomials
Kn ∈ Aw, n ≥ 0, by the following recursion:

K0 = w,

∂xKn =
2u2

2n+ 1

(
w∂x +

1

2
wx +

1

8
∂3x

)
Kn−1, for n ≥ 1.(2.2)

It is a non-trivial fact that the right-hand side of (2.2) lies in the image of the operator ∂x
(see e.g. [MJD00]). So the recursion (2.2) determines a differential polynomial Kn up to a
polynomial in u, u−1. This ambiguity should be fixed by the condition Kn|wi=0 = 0.
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Consider now the variable w as a power series in variables x, t1, t2, . . . with the coefficients
from C[u, u−1]. The KdV hierarchy is the following system of partial differential equations:

∂w

∂tn
= ∂xKn, n ≥ 1.(2.3)

Another form of Witten’s conjecture says that the second derivative ∂2F c

∂t20
is a solution of

the KdV hierarchy (2.3). Here we identify x with t0. This form of Witten’s conjecture is
equivalent to the form that was stated in Section 1.1 ([Wit91]). Let us formulate it precisely.
Let w(x = t0, t1, t2, . . . ; u) be the solution of the KdV hierarchy (2.3) specified by the initial
condition w|t≥1=0 = u−2x. Let

S :=
∂

∂t0
−
∑

n≥0

tn+1
∂

∂tn
.

It is easy to show that Sw = u−2 and there exists a unique power series F (t0, t1, . . . ; u) such

that w = ∂2F
∂t20

, SF =
t20
2u2 and F |t∗=0 = 0. Moreover, we have ([Wit91])

∂2F

∂t0∂tn
= Kn|wi=

∂i+2F

∂t
i+2
0

and, therefore, F satisfies system (1.3).

3. Burgers-KdV hierarchy

In this section we construct the Burgers-KdV hierarchy and prove that its flows satisfy the
commutation relation from Lemma 2.1. This guarantees that the hierarchy has a solution for
arbitrary polynomial initial conditions. We also construct a specific solution of the half of
the Burgers-KdV hierarchy that satisfies the open string equation (1.7). Finally, we discuss
a relation of the Burgers-KdV hierarchy to the equations for the wave function of the KdV
hierarchy.

3.1. Construction. Consider an extra variable v and the ring Av,w. Define differential poly-
nomials Rn, Qn ∈ Av,w, n ≥ 0, as follows:

R0 = vx,

Rn =
2u2

2n+ 1

[(
1

2
∂2x + vx∂x +

v2x + vxx

2
+ w

)
Rn−1 +

1

2
vxKn−1 +

3

4
∂xKn−1

]
, for n ≥ 1;

Q0 = u

(
v2x + vxx

2
+ w

)
,

Qn =
u2

n+ 1

(
1

2
∂2x + vx∂x +

v2x + vxx

2
+ w

)
Qn−1, for n ≥ 1.

We call the Burgers-KdV hierarchy the following system:

∂v

∂tn
= Rn, n ≥ 1;

∂w

∂tn
= ∂xKn, n ≥ 1;

∂v

∂sn
= Qn, n ≥ 0;

∂w

∂sn
= 0, n ≥ 0.

We see that w is just a solution of the KdV hierarchy. The simplest equation for v is

∂v

∂s0
= u

(
v2x + vxx

2
+ w

)
.

If we put w = 0, then it coincides with the potential Burgers equation (see e.g. [Olv86]). In
this case the whole hierarchy reduces to the Burgers hierarchy (see e.g. [Olv86]). This explains
why we call the constructed hierarchy the Burgers-KdV hierarchy.
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The system

∂v

∂tn
= Rn, n ≥ 1;

∂w

∂tn
= ∂xKn, n ≥ 1;

∂v

∂s
= u

(
v2x + vxx

2
+ w

)
;

∂w

∂s
= 0.

will be called the half of the Burgers-KdV hierarchy.
Another result of the paper is the following theorem.

Theorem 3.1. Let F o be the power series determined by Theorem 1.1. Then the pair v =
F o, w = ∂2F c

∂t20
satisfies the half of the Burgers-KdV hierarchy.

Here we again identify x with t0.

3.2. Commutativity of the flows. We are going to prove the following proposition.

Proposition 3.2. All operators VRi,∂xKi
and VQi,0 commute with each other.

The proof of the proposition will occupy Sections 3.3-3.5. The plan is the following. First,

we consider the differential polynomials R̃i := Ri|wj=0 , Q̃i := Qi|wj=0 ∈ Av and show that

the operators VR̃i
, VQ̃i

∈ Ev pairwise commute. We do it in Section 3.3. Then in Section 3.4
we prove that the operators VRi,∂xKi

and VQi,0 commute with VQ0,0. Finally, in Section 3.5 we
deduce that all operators VRi,∂xKi

and VQi,0 commute with each other.

3.3. Burgers hierarchy. Define an operator B by B := ∂x + vx. It is easy to see that

1

2
B2 =

1

2
∂2x + vx∂x +

v2x + vxx

2
.

Therefore, we have

R̃i =
u2i

(2i+ 1)!!
B2ivx, Q̃i =

u2i+1

2i(i+ 1)!
B2i v

2
x + vxx

2
.

We can easily recognize here the differential polynomials that describe the flows of the Burgers
hierarchy (see e.g. [Olv86]), up to multiplication by a constant. The fact that the opera-
tors VR̃i

, VQ̃i
∈ Ev commute with each other is well-known (see e.g. [Olv86]).

3.4. Commutators [VQ0,0, VRn,∂xKn
] and [VQ0,0, VQn,0]. Let

P :=
v2x + vxx

2
, P∗ :=

∑ ∂P

∂vi
∂ix =

1

2
∂2x + vx∂x.

The following formulas will be very useful for us:

VQ0,0 · B = u[P∗, B] + uwx,
1

2
B2 = P∗ + P.

Let us prove that [VQ0,0, VQn,0] = 0 or, equivalently, VQ0,0Qn − VQn,0Q0 = 0. We have

(n+ 1)u−2 (VQ0,0Qn − VQn,0Q0) = VQ0,0

((
1

2
B2 + w

)
Qn−1

)
− uP∗

((
1

2
B2 + w

)
Qn−1

)
=

=
u

2
[P∗, B

2]Qn−1 +
u

2
(wxB +B ◦ wx)Qn−1 +

(
1

2
B2 + w

)
(VQ0,0Qn−1)

−
u

2
(P∗ ◦B

2)Qn−1 − u (P∗w)Qn−1 − uwx∂xQn−1 − uwP∗Qn−1 =

=

(
1

2
B2 + w

)(
VQ0,0Qn−1 − VQn−1,0Q0

)
.

Continuing in the same way we get

VQ0,0Qn − VQn,0Q0 =
u2n

(n+ 1)!

(
1

2
B2 + w

)n

(VQ0,0Q0 − VQ0,0Q0) = 0.
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Let us prove that [VQ0,0, VRn,∂xKn
] = 0. Since Kn doesn’t depend on vi, we have VQ0,0∂xKn =

0. Thus, it remains to prove that VQ0,0Rn − VRn,∂xKn
Q0 = 0. We proceed by induction on n.

So assume that VQ0,0Rn−1 − VRn−1,∂xKn−1Q0 = 0.
We have

u−32n+ 1

2
VQ0,0Rn =u−1VQ0,0

[(
1

2
B2 + w

)
Rn−1 +

1

2
vxKn−1 +

3

4
∂xKn−1

]

=
1

2

(
[P∗, B

2] + wxB +B ◦ wx

)
Rn−1 + u−1

(
1

2
B2 + w

)
(VQ0,0Rn−1)

+
1

2
(∂xP + wx)Kn−1 =

=
1

2
[P∗, B

2]Rn−1 + wxBRn−1 +
1

2
wxxRn−1

+

(
1

2
B2 + w

)
(P∗Rn−1 + ∂xKn−1) +

1

2
(∂xP + wx)Kn−1 =

=P∗

((
1

2
B2 + w

)
Rn−1

)
+

1

2
B2 (∂xKn−1) + w∂xKn−1 +

1

2
(∂xP + wx)Kn−1.

On the other hand, we have

u−32n+ 1

2
VRn,∂xKn

Q0 = P∗

[(
1

2
B2 + w

)
Rn−1 +

1

2
vxKn−1 +

3

4
∂xKn−1

]
+

2n+ 1

2
u−2∂xKn.

Therefore, we get

u−32n+ 1

2
VQ0,0Rn − u−32n+ 1

2
VRn,∂xKn

Q0 =

= w∂xKn−1 +
1

2
wxKn−1 +

1

8
∂3xKn−1 −

2n+ 1

2
u−2∂xKn = 0.

This completes our proof.

3.5. All commutators. Let V1 and V2 be any two operators from the set {VRi,∂xKi
}i≥1 ∪

{VQi,0}i≥0. We have to prove that [V1, V2] = 0. We begin with the following lemma.

Lemma 3.3. Let [V1, V2] = VT1,T2. Then T2 = 0 and T1|w∗=0 = 0.

Proof. Let us prove that T2 = 0. Clearly, we have to do it, only if V1, V2 ∈ {VRi,∂xKi
}i≥1. Let

V1 = VRi,∂xKi
and V2 = VRj ,∂xKj

. Since the differential polynomials Kl don’t depend on v∗, we
have

T2 = VRi,∂xKi
∂xKj − VRj ,∂xKj

∂xKi = V∂xKi
∂xKj − V∂xKj

∂xKi.

Here we consider the operators V∂xKi
and V∂xKj

as elements of the space Ew. The last expres-
sion is equal to 0, because the differential polynomials ∂xKl describe the flows of the KdV
hierarchy (see e.g. [Olv86]).

Let us prove that T1|w∗=0 = 0. Let R̃i := Ri|w∗=0 and Q̃i := Qi|w∗=0. We consider the
operators VR̃i

and VQ̃i
as elements of Ev. Obvioulsy, we have

(VQi,0Rj)|w∗=0 = VQ̃i
R̃j and (VQi,0Qj)|w∗=0 = VQ̃i

Q̃j.

Since ∂xKi|w∗=0 = 0, we get

(VRi,∂xKi
Rj)|w∗=0 = VR̃i

R̃j and (VRi,∂xKi
Qj)|w∗=0 = VR̃i

Q̃j.

In Section 3.3 we showed that the operators VR̃i
and VQ̃j

pairwise commute. Thus, T1|w∗=0 = 0.

The lemma is proved. �

From the Jacobi identity it follows that [VQ0,0, [V1, V2]] = 0. We have proved that [V1, V2] =
VT1,0, where T1|w∗=0. The following lemma obviously completes the proof of Proposition 3.2.
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Lemma 3.4. Suppose T ∈ Av,w is an arbitrary differential polynomial such that T |w∗=0 = 0
and [VQ0,0, VT,0] = 0. Then T = 0.

Proof. Before proving the lemma let us introduce several notations. A partition λ is a sequence
of non-negative integers λ1, . . . , λr such that λ1 ≥ λ2 ≥ . . . ≥ λr. Note that our terminology is
slightly non-standard, because we allow zeroes in λ. Let l(λ) := r and |λ| :=

∑r

i=1 λi. The set

of all partitions will be denoted by P . For a partition λ let vλ :=
∏l(λ)

i=1 vλi
and wλ :=

∏l(λ)
i=1 wλi

.
Consider any differential polynomial Q ∈ Av,w. Let Q =

∑
λ,µ∈P dλ,µvλwµ, where dλ,µ ∈

C[u, u−1]. Let

GriQ :=
∑

l(µ)=i

dλ,µvλwµ, Gr
j
iQ :=

∑

l(µ)=i
|µ|=j

dλ,µvλwµ.

The equation [VQ0,0, VT,0] = 0 means that VQ0,0T − VT,0Q0 = 0. Let T =
∑

λ,µ∈P
l(µ)≥1

cλ,µvλwµ,

where cλ,µ ∈ C[u, u−1]. We have

VT,0Q0 = u

(
vx∂xT +

1

2
∂2xT

)
,(3.1)

VQ0,0T = u
∑

λ,µ∈P
l(µ)≥1

∑

i≥0

cλ,µ
∂vλ

∂vi
(∂ixP + wi)wµ.(3.2)

Suppose T 6= 0. Let i0 be the minimal i such that GriT 6= 0. From the condition T |w∗=0 = 0
it follows that i0 ≥ 1. Let j0 be the maximal j such that Grji0T 6= 0. From (3.1) it is easy to
see that

Gr
j0+2
i0

(VT,0Q0) =
u

2

∑

λ,µ∈P
l(µ)=i0,|µ|=j0

cλ,µvλ∂
2
x(wµ) 6= 0.

On the other hand, from (3.2) it obviously follows that Grj0+2
i0

(VQ0,0T ) = 0. This contradiction
proves the lemma.

�

3.6. String solution. In this section we construct a specific solution of the half of the Burgers-
KdV hierarchy that satisfies the open string equation.

Proposition 3.5. Consider the half of the Burgers-KdV hierarchy. Let us specify the following

initial data for the hierarchy:

v|t≥1=0,s=0 = 0 and w|t≥1=0,s=0 = u−2x.(3.3)

Then the solution of the hierarchy satisfies the open string equation

∂v

∂t0
=
∑

n≥0

tn+1
∂v

∂tn
+ u−1s.

We remind the reader that we identify x with t0.

Proof. Recall that S := ∂
∂t0

−
∑

n≥0 tn+1
∂

∂tn
. We have to prove that Sv = u−1s. We have

Sw = u−2, w = ∂2F
∂t20

and Kn = ∂2F
∂t0∂tn

(see Section 2.3), therefore, SKn = Kn−1, for n ≥ 1. Let

us put K−1 := u−2, so the last equation is also valid for n = 0.

It is easy to see that v|t≥1=0 = u−1 s3

6
+ u−1t0s. Hence,

(Sv)|t≥1=0 = u−1s.(3.4)
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For n ≥ 1, we have

∂

∂tn
(Sv) =S

∂v

∂tn
−

∂v

∂tn−1

=

=
2u2

2n+ 1

[(
(Sv)x∂x + (Sv)xvx +

1

2
(Sv)xx + u−2

)
∂v

∂tn−1

+

(
1

2
B2 + w

)
S

∂v

∂tn−1

+

+
1

2
(Sv)xKn−1 +

1

2
vxKn−2 +

3

4
∂xKn−2

]
−

∂v

∂tn−1

=

=
2u2

2n+ 1

[(
(Sv)x∂x + (Sv)xvx +

1

2
(Sv)xx

)
∂v

∂tn−1

+

+

(
1

2
B2 + w

)
∂

∂tn−1

(Sv) +
1

2
(Sv)xKn−1

]
.

This system together with the initial condition (3.4) uniquely determines the power series Sv.
It is easy to see that Sv = u−1s satisfies the system. Proposition 3.5 is proved. �

3.7. Relation to the wave function of the KdV hierarchy. Consider the operator

L := ∂2x + 2w.

Recall that the KdV hierarchy can be written in the so-called Lax form:

∂

∂tn
L =

u2n

(2n+ 1)!!

[
(Ln+ 1

2 )+, L
]
, n ≥ 1.

Here we use the language of pseudo-differential operators. We briefly review it in [Bur14] and
we refer the reader to the book [Dic03] for a detailed introduction to this subject. Introduce
variables tn with n ∈ 1

2
+Z≥0 and let t 1

2
+k = sk, k ∈ Z≥0. In [Bur14] we prove that the Burgers-

KdV hierarchy is equivalent to the following system of evolutionary PDEs for the functions w
and φ = ev:

∂

∂tn
L =

u2n

(2n+ 1)!!

[
(Ln+ 1

2 )+, L
]
, n ∈

1

2
Z≥1;(3.5)

∂

∂tn
φ =

u2n

(2n+ 1)!!
(Ln+ 1

2 )+φ, n ∈
1

2
Z≥1.(3.6)

Equations (3.6) coincide with the equations for the wave function of the KdV hierarchy (see
e.g. [Dic03]). The commutativity of the flows of the system (3.5)-(3.6) is actually well-known
(see e.g. [Dic03]) and the proof is simple. Let us recall it. Consider the ring Aφ,w. Let

Tn := u2n

(2n+1)!!
(Ln+ 1

2 )+φ ∈ Aφ,w. We have to check that the operators

VTn,∂xKn
∈ Eφ,w, n ∈

1

2
Z≥1,

pairwise commute. Here we, by definition, put Kn = 0, for n ∈ 1
2
+ Z≥0. Let m,n ∈ 1

2
Z≥1 and

[VTm,∂xKm
, VTn,∂xKn

] = VP1,P2 .

The fact that P2 = 0 follows from the commutativity of the flows of the KdV hierarchy. For P1

we have

P1 =VTm,∂xKm
Tn − VTn,∂xKn

Tm =

=
u2m+2n

(2m+ 1)!!(2n+ 1)!!
×

×

([
(Lm+ 1

2 )+, L
n+ 1

2

]
+
+ (Ln+ 1

2 )+(L
m+ 1

2 )+ −
[
(Ln+ 1

2 )+, L
m+ 1

2

]
+
− (Lm+ 1

2 )+(L
n+ 1

2 )+

)
φ =

=
u2m+2n

(2m+ 1)!!(2n+ 1)!!

([
(Lm+ 1

2 )+, (L
n+ 1

2 )−

]
+
−
[
(Ln+ 1

2 )+, L
m+ 1

2

]
+

)
φ.
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Since [
(Ln+ 1

2 )+, L
m+ 1

2

]
+
= −

[
(Ln+ 1

2 )−, L
m+ 1

2

]
+
= −

[
(Ln+ 1

2 )−, (L
m+ 1

2 )+

]
+
,

we conclude that P1 = 0. The commutativity of the flows of the Burgers-KdV hierarchy is
proved.

4. Proofs of Theorems 1.1 and 3.1

The proof of Theorems 1.1 and 3.1 goes as follows. Let a pair (v, w) be the solution of the
half of the Burgers-KdV hierarchy with the initial condition (3.3). Let us show that the series
F o = v is a solution of the open KdV equations (1.9). Indeed, we have

2n+ 1

2

∂v

∂tn
=u2

[(
1

2
∂2x + vx∂x +

v2x + vxx

2
+ w

)
∂v

∂tn−1

+
1

2
vxKn−1 +

3

4
∂xKn−1

]
=

=u2
(
v2x + vxx

2
+ w

)
∂v

∂tn−1

+ u2
∂

∂tn−1

(
v2x + vxx

2
+ w

)
+
u2

2
vxKn−1 −

u2

4
∂xKn−1 =

=u
∂v

∂s

∂v

∂tn−1

+ u
∂2v

∂s∂tn−1

+
u2

2
vxKn−1 −

u2

4
∂xKn−1.

It remains to note that Kn = ∂2F c

∂t0∂tn
and we see that Theorems 1.1 and 3.1 are proved.

5. Proof of Theorem 1.2

Denote by ai,j the number (2i+1)!!(2j+1)!!
2i+j+2 . Let τ := exp(F o + F c) and τ o := exp(F o). In order

to save some space we will use the subscript n for the partial derivative by tn and the subscript s
for the partial derivative by s. The proof of the theorem is based on the following lemma.

Lemma 5.1. We have

1. L0τ
τ

− (uF o
s + u∂s)

L−1τ

τ
= 0.

2. If n ≥ 0, then

Ln+1τ

τ
− (uF o

s + u∂s)
Lnτ

τ
=
u2

4

(2n+ 1)!!

2n
F c
0,n +

u4

4

n−1∑

0

ai,n−1−iF
c
0,iF

c
0,n−1−i

(5.1)

+
u2

2

(2n+ 1)!!

2n+2
F o
nF

o
0 +

u2

2

n−1∑

0

ai,n−1−iF
o
i

(
u2

2
F o
0 ∂x −

u2

4
∂2x

)
F c
n−1−i

+
u2

2

(2n+ 1)!!

2n+2
F o
0,n +

u4

4

n−1∑

0

ai,n−1−iF
o
0,iF

c
0,n−1−i

−
un+1

4

∂n+1
s τ o

τ o
.

Proof. Let us prove point 1. From the usual Virasoro equations (1.5) it follows that

L−1τ

τ
= −

∂F o

∂t0
+
∑

n≥0

tn+1
∂F o

∂tn
+ u−1s,

L0τ

τ
= −

3

2

∂F o

∂t1
+
∑

n≥0

2n+ 1

2
tn
∂F o

∂tn
+ s

∂F o

∂s
+

3

4
.

Using the open KdV equations (1.9) we get

L0τ

τ
− (uF o

s + u∂s)
L−1τ

τ
=

= −
u2

2
F o
0F

c
0,0+

u2

4
F c
0,0,0+

1

2
t0F

o
0+
∑

n≥0

tn+1

(
u2

2
F o
0F

c
0,n −

u2

4
F c
0,0,n

)
+sF o

s +
3

4
−(uF o

s +u∂s)u
−1s.
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By the string equation (1.2), the last expression is equal to zero.
Let us prove point 2. Let

L(1)
n :=

∑

i≥0

(2i+ 2n+ 1)!!

2n+1(2i− 1)!!
(ti − δi,1)

∂

∂ti+n

,

L(2)
n :=

u2

2

n−1∑

i=0

ai,n−1−i

∂2

∂ti∂tn−1−i

,

L(3)
n := uns

∂n+1

∂sn+1
+

3n+ 3

4
un

∂n

∂sn
.

Using the Virasoro equations (1.5) we get

Ln+1τ

τ
− (uF o

s + u∂s)
Lnτ

τ
=

=
L
(1)
n+1τ

o

τ o
− (uF o

s + u∂s)
L
(1)
n τ o

τ o
(A)

+
L
(2)
n+1τ

o

τ o
− (uF o

s + u∂s)
L
(2)
n τ o

τ o
(B)

+ u2
n∑

0

ai,n−iF
c
i F

o
n−i − u2(uF o

s + u∂s)
n−1∑

0

ai,n−1−iF
c
i F

o
n−1−i(C)

+
L
(3)
n+1τ

o

τ o
− (uF o

s + u∂s)
L
(3)
n τ o

τ o
.(D)

Using the open KdV equations (1.9) and the Virasoro equations (1.5) we can compute that

(A) =
∞∑

0

(2i+ 2n+ 1)!!

2n+1(2i− 1)!!
(ti − δi,1)

(
u2

2
F o
0 ∂x −

u2

4
∂2x

)
F c
n+i =

=−
u2

2

(2n+ 1)!!

2n+1
F o
0F

c
n

︸ ︷︷ ︸
∗

−
u4

4

n−1∑

0

ai,n−1−iF
o
0 (F

c
0,i,n−1−i︸ ︷︷ ︸

∗∗

+2F c
0,iF

c
n−1−i︸ ︷︷ ︸

∗∗∗

)

+
u2

4

(2n+ 1)!!

2n
F c
0,n +

u4

8

n−1∑

0

ai,n−1−i(F
c
0,0,i,n−1−i︸ ︷︷ ︸

••

+2F c
0,iF

c
0,n−1−i +2F c

0,0,iF
c
n−1−i︸ ︷︷ ︸

•

).

For expression (B) we have

(B) =
u2

2

n∑

0

ai,n−i(F
o
i,n−i + F o

i F
o
n−i)−

u2

2
(uF o

s + u∂s)
n−1∑

0

ai,n−1−i(F
o
i,n−1−i + F o

i F
o
n−1−i) =

=
u2

2

(2n+ 1)!!

2n+2
F o
0,n +

u4

4

n−1∑

0

ai,n−1−iF
o
0,iF

c
0,n−1−i +

u2

2

n−1∑

0

ai,n−1−i



u2

2
F o
0 ∂x

︸ ︷︷ ︸
∗∗

−
u2

4
∂2x

︸ ︷︷ ︸
••


F c

i,n−1−i

+
u2

2

(2n+ 1)!!

2n+2
F o
nF

o
0 +

u2

2

n−1∑

0

ai,n−1−iF
o
i

(
u2

2
F o
0 ∂x −

u2

4
∂2x

)
F c
n−1−i.

Computing (C) in a similar way we get

(C) = u2
(2n+ 1)!!

2n+2
F c
nF

o
0

︸ ︷︷ ︸
∗

+u2
n−1∑

0

ai,n−1−iF
c
i



u2

2
F o
0 ∂x

︸ ︷︷ ︸
∗∗∗

−
u2

4
∂2x

︸ ︷︷ ︸
•


F c

n−1−i.



EQUIVALENCE OF THE OPEN KDV AND THE OPEN VIRASORO 13

It is easy to compute that

(D) = −
un+1

4

∂n+1
s τ o

τ o
.

We have marked the terms that cancel each other in the total sum (A)+(B)+(C)+(D). Col-
lecting the remaining terms we get (5.1). �

From the commutation relation (1.10) it follows that Ln = (−1)n−2

(n−2)!
adn−2

L1
L2, for n ≥ 3. Thus,

it is sufficient to prove the open Virasoro equations (1.11) only for n = −1, 0, 1, 2.
By Theorem 3.1 and Proposition 3.5, the series F o satisfies the open string equation (1.7).

Thus, L−1τ = 0. By Lemma 5.1, L0τ = τ(uF o
s + u∂s)

L−1τ

τ
= 0.

Substituting n = 0 in (5.1) we get

L1τ

τ
− (uF o

s + u∂s)
L0τ

τ
=
u

4

[
u

(
F c
0,0 +

1

2
(F o

0 )
2 +

1

2
F o
0,0

)
− F o

s

]
by Theorem 1.1

= 0.

Therefore, L1τ = 0.
Finally, let us write equation (5.1) for n = 1. We get

L2τ

τ
− (uF o

s + u∂s)
L1τ

τ
=
3u2

8
F c
0,1 +

u4

16
F c
0,0F

c
0,0 +

3u2

16
F o
1F

o
0 +

u2

8
F o
0

(
u2

2
F o
0 ∂x −

u2

4
∂2x

)
F c
0

(5.2)

+
3u2

16
F o
0,1 +

u4

16
F o
0,0F

c
0,0 −

u2

4

(
(F o

s )
2 + F o

s,s

)
.

Denote ∂2F c

∂t20
by w and F o by v. We have F c

0,1 = K1 = w2

2
+ 1

12
wxx. By the open KdV

equations (1.9), we have

F o
1 = u2

(
v3x
3

+ vxvxx +
vxxx

3
+ vxw +

wx

2

)
.

By Theorem 1.1, F o
s = u

(
v2x+vxx

2
+ w

)
. Substituting these expressions in the right-hand side

of (5.2), after somewhat lengthy computations, we get zero. Hence, L2τ = 0. The theorem is
proved.

Appendix A. Virasoro equations for the moduli of closed Riemann surfaces

In this section we revisit the proof of the equivalence of the usual KdV and the Virasoro
equations for the moduli space of stable curves. There is a reason to do it. In all papers,
that we found, the proof is presented in a way more suitable for physicists. So we decided to
rewrite it in a more mathematical style and also to make it more elementary. We follow the
idea from [DVV91].

Let F be a power series in the variables t0, t1, t2, . . . with the coefficients from C[u, u−1].
Suppose F satisfies the string equation (1.2), the condition F |t∗=0 = 0 and the second deriv-

ative ∂2F
∂t20

is a solution of the KdV hierarchy (2.3). Let us prove that F satisfies the Virasoro

equations (1.5).

Let D := F0,0∂x+
1
2
F0,0,0+

1
8
∂3x and w = ∂2F

∂t20
. We can rewrite the KdV equations (1.3) in the

following way:

u2DF0,n−1 =
2n+ 1

2
∂xF0,n.(A.1)

Let τ := exp (F ).

Lemma A.1. For any n ≥ −1, we have

u2D∂x
Lnτ

τ
= ∂2x

Ln+1τ

τ
.
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Proof. Suppose n = −1. We have

L−1τ

τ
= −F0 +

∑

n≥0

tn+1Fn +
t20
2u2

,

L0τ

τ
= −

3

2
F1 +

∑

n≥0

2n+ 1

2
tnFn +

1

16
.

From the KdV equations (A.1) it follows that

u2D∂x
L−1τ

τ
− ∂2x

L0τ

τ
=

1

2
D∂x(t

2
0)−

1

2
∂2x(t0F0) = 0.

Suppose n ≥ 0. The operators L
(1)
n and L

(2)
n were defined in Section 5. Using the KdV

equations (A.1) we get

u2D∂x
L
(1)
n τ

τ
− ∂2x

L
(1)
n+1τ

τ
=

=
(2n+ 1)!!

2n+1

(
2u2F0,0F0,n +

u2

2
F0,0,0,n − (2n+ 3)F0,n+1

)
+

(2n+ 1)!!

2n+2
u2F0,0,0Fn.

Now let us compute u2D∂x
L
(2)
n τ
τ

− ∂2x
L
(2)
n+1τ

τ
. Recall that ai,j :=

(2i+1)!!(2j+1)!!
2i+j+2 . We have

L
(2)
n τ

τ
=
u2

2

n−1∑

i=0

ai,n−i−1(Fi,n−1−i + FiFn−1−i).

Using the KdV equations (A.1) it is easy to compute that

u2

2

[
u2

n−1∑

i=0

ai,n−i−1D∂xFi,n−1−i −

n∑

i=0

ai,n−i∂
2
xFi,n−i

]
=

= −
u4

2

n−1∑

i=0

ai,n−i−1(F0,0,iF0,0,n−1−i +
1

2
F0,0,0,iF0,n−1−i)−

u2

2

(2n+ 1)!!

2n+2
F0,0,0,n.

By the KdV equations (A.1), we have

u2

2

[
u2D∂x

n−1∑

i=0

ai,n−1−iFiFn−1−i − ∂2x

n∑

i=0

ai,n−iFiFn−i

]
=

=
u4

2

n−1∑

i=0

ai,n−i−1(2F0,0F0,iF0,n−1−i + F0,iF0,0,0,n−1−i +
3

4
F0,0,iF0,0,n−1−i)

− u2
n∑

i=0

ai,n−iF0,iF0,n−i − u2
(2n+ 1)!!

2n+2
F0,0,0Fn.
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Collecting all the terms we get

u2D∂x
Lnτ

τ
− ∂2x

Ln+1τ

τ
=
(2n+ 1)!!

2n+1

(
2u2F0,0F0,n +

u2

2
F0,0,0,n − (2n+ 3)F0,n+1

)

−
u4

2

n−1∑

i=0

ai,n−i−1(F0,0,iF0,0,n−1−i +
1

2
F0,0,0,iF0,n−1−i)−

u2

2

(2n+ 1)!!

2n+2
F0,0,0,n

+
u4

2

n−1∑

i=0

ai,n−i−1(2F0,0F0,iF0,n−1−i + F0,iF0,0,0,n−1−i +
3

4
F0,0,iF0,0,n−1−i)

− u2
n∑

i=0

ai,n−iF0,iF0,n−i =

=
(2n+ 1)!!

2n

(
u2F0,0F0,n +

u2

8
F0,0,0,n −

2n+ 3

2
F0,n+1

)

+ u4
n−1∑

i=0

ai,n−i−1

(
−
1

8
F0,0,iF0,0,n−1−i + F0,0F0,iF0,n−1−i +

1

4
F0,iF0,0,0,n−1−i

)

− u2
n∑

i=0

ai,n−iF0,iF0,n−i =: Q.

Since Ki =
∂2F
∂t0∂ti

, the series Q can be expressed as a differential polynomial in w,wx, wxx, . . ..

From the condition Ki|w∗=0 = 0 it follows that this polynomial doesn’t have a constant term.
Using (2.2) it is easy to compute that ∂xQ = 0. Thus, Q = 0. The lemma is proved. �

From the commutation relation (1.4) it follows that Ln = (−1)n−2

(n−2)!
adn−2

L1
L2, for n ≥ 3. Thus,

it is sufficient to prove the Virasoro equations (1.1) only for n = −1, 0, 1, 2. Let us do it by
induction on n.

The case n = −1 follows from the string equation. Suppose n ≥ 0. Recall that S :=
∂
∂t0

−
∑

i≥0 ti+1
∂
∂ti

. Using the induction hypothesis we get

S
Lnτ

τ
=
S(Lnτ)

τ
−

(Sτ)Lnτ

τ 2
= −

L−1(Lnτ)

τ
= (n+ 1)

Ln−1τ

τ
−
Ln(L−1τ)

τ
= 0.

Therefore, S∂x
Lnτ
τ

= 0. By Lemma A.1 and the induction assumption, we have ∂2x
Lnτ
τ

= 0,

hence,
(∑

i≥0 ti+1
∂
∂ti

)
∂x

Lnτ
τ

= 0. Therefore, ∂x
Lnτ
τ

∈ C[u, u−1]. Since S Lnτ
τ

= 0, we have
(∑

i≥0 ti+1
∂
∂ti

)
Lnτ
τ

∈ C[u, u−1]. From this we conclude that Lnτ
τ

∈ C[u, u−1]. Let 〈τa1 . . . τak〉 :=

∂kF
∂ta1 ...∂tak

∣∣∣
t∗=0

. We have

L0τ

τ

∣∣∣∣
t∗=0

= −
3

2
〈τ1〉+

1

16
,

L1τ

τ

∣∣∣∣
t∗=0

= −
15

4
〈τ2〉+

u2

8
(
〈
τ 20
〉
+ 〈τ0〉

2),

L2τ

τ

∣∣∣∣
t∗=0

= −
105

8
〈τ3〉+

3u2

8
(〈τ0τ1〉+ 〈τ0〉 〈τ1〉).

It is easy to check that all these expressions are equal to zero. The Virasoro equations are
proved.
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mathématiques de l’I.H.É.S. 36 (1969), 75-109.
[Dic03] L. A. Dickey. Soliton equations and Hamiltonian systems. Second edition. Advanced Series in Math-

ematical Physics, 26. World Scientific Publishing Co., Inc., River Edge, NJ, 2003. xii+408 pp.
[DVV91] R. Dijkgraaf, H. Verlinde, E. Verlinde. Loop equations and Virasoro constraints in non-perturbative

two-dimensional quantum gravity. Nuclear Physics B 348 (1991), no. 3, 435-456.
[Kon92] M. Kontsevich. Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function.

Communications in Mathematical Physics 147 (1992), 1-23.
[MJD00] T. Miwa, M. Jimbo, E. Date. Solitons. Differential equations, symmetries and infinite-dimensional

algebras. Translated from the 1993 Japanese original by Miles Reid. Cambridge Tracts in Mathemat-
ics, 135. Cambridge University Press, Cambridge, 2000. x+108 pp.

[Olv86] P. J. Olver. Applications of Lie groups to differential equations. Graduate Texts in Mathematics, 107.
Springer-Verlag, New York, 1986. xxvi+497 pp.

[PST14] R. Pandharipande, J. P. Solomon, R. J. Tessler. Intersection theory on moduli of disks, open KdV
and Virasoro. arXiv:1409.2191.

[Wit91] E. Witten. Two dimensional gravity and intersection theory on moduli space. Surveys in Differential

Geometry 1 (1991), 243-310.

Alexandr Buryak:

Department of Mathematics, ETH Zurich,

Ramistrasse 101 8092, HG G27.1, Zurich, Switzerland.

E-mail address: buryaksh@gmail.com


	1. Introduction
	1.1. Witten's conjecture and the Virasoro equations
	1.2. Moduli of Riemann surfaces with boundary
	1.3. Open KdV and open Virasoro equations
	1.4. Main result
	1.5. Burgers-KdV hierarchy and descendants of s
	1.6. Open KdV equations and the wave function of the KdV hierarchy
	1.7. Acknowledgements
	1.8. Organization of the paper

	2. Evolutionary partial differential equations
	2.1. Ring of differential polynomials
	2.2. Existence of a solution
	2.3. KdV hierarchy

	3. Burgers-KdV hierarchy
	3.1. Construction
	3.2. Commutativity of the flows
	3.3. Burgers hierarchy
	3.4. Commutators [VQ0,0,VRn,x Kn] and [VQ0,0,VQn,0]
	3.5. All commutators
	3.6. String solution
	3.7. Relation to the wave function of the KdV hierarchy

	4. Proofs of Theorems 1.1 and 3.1
	5. Proof of Theorem 1.2
	Appendix A. Virasoro equations for the moduli of closed Riemann surfaces
	References

