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DOUBLE RAMIFICATION CYCLES AND INTEGRABLE HIERARCHIES

A. BURYAK

Abstract. It this paper we present a new construction of a hamiltonian hierarchy associated
to a cohomological field theory. We conjecture that in the semisimple case our hierarchy is
related to the Dubrovin-Zhang hierarchy by a Miura transformation and check it in several
examples.

1. Introduction

In the last two decades there was a great progress in understanding relations between the
topology of the moduli space of stable curves and integrable hierarchies of partial differential
equations. The first result in this direction was the famous Witten’s conjecture ([Wit91])
proved by Kontsevich ([Kon92]). It says that the generating series of the intersection numbers
on the moduli space of stable curves is a solution of the KdV hierarchy. After that it has been
expected that the Gromov-Witten invariants of any target space (or, more generally, correlators
of any cohomological field theory) should be governed by an integrable hierarchy. We refer
the reader to [OP06, CDZ04, DZ04, MT08, CvdL13, MST14] for different results concerning
the Gromov-Witten invariants of P

1 and orbifold P
1. The Hodge integrals on the moduli

space of stable curves can be described by integrable hierarchies in two different ways ([Kaz09,
Bur13]). Witten’s original conjecture can be generalized to the moduli space of r-spin curves
and its generalizations ([Wit93, FSZ10, FJR13]). An integrable hierarchy corresponding to the
Gromov-Witten theory of the resolved conifold is discussed in [BCR12, BCRR14]. A hierarchy
that governs the degree zero Gromov-Witten invariants was constructed in [Dub13]. KdV type
equations for the intersection numbers on the moduli space of Riemann surfaces with boundary
were introduced in [PST14] and further studied in [Bur14a, Bur14b].

In [DZ05] B. Dubrovin and Y. Zhang suggested a very general approach to the problem.
The Gromov-Witten invariants of any target space (or, more generally, the correlators of any
cohomological field theory) are packed in a generating series that is called the potential. If the
potential is conformal and semisimple, then B. Dubrovin and Y. Zhang gave a construction of
a bihamiltonian hierarchy of PDEs such that the potential is the logarithm of a tau-function of
this hierarchy. Their construction was generalized to the non-conformal case in [BPS12a] (see
also [BPS12b]).

In this paper we give a new construction of a hamiltonian hierarchy associated to a potential
of Gromov-Witten type. We must immediately say that, in general, our hierarchy is different
from the Dubrovin-Zhang hierarchy. Our construction is motivated by Symplectic Field Theory
(see [EGH00]) and is based on the integration over the double ramification cycles. That is why
we call our hierarchy the DR hierarchy. Our construction is quite different from Dubrovin and
Zhang’s construction and also from the construction in [BPS12a]. First of all, we don’t need
the assumption of the semisimplicity. Second, the equations of the DR hierarchy are differential
polynomials immediately by the construction, while the polynomiality of the equations of the
Dubrovin-Zhang hierarchy is completely non-obvious (see [BPS12a]). Finally, the hamiltonian
structures are in general very different. In the DR hierarchy it is given by the operator η∂x,
where η is the matrix of the scalar product in a cohomological field theory. In the Dubrovin-
Zhang hierarchy the hamiltonian structure can be much more complicated.

We conjecture that, if a cohomological field theory is semisimple, then the DR hierarchy is
related to the Dubrovin-Zhang hierarchy by a Miura transformation. We check it in the case of
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2 A. BURYAK

the trivial cohomological field theory and in the case of the cohomological field theory formed
by the Hodge classes: 1 + ελ1 + ε2λ2 + . . .+ εgλg ∈ H

∗(Mg,n;C).

1.1. Organization of the paper. Section 2 contains the necessary algebraic formalism in the
theory of formal partial differential equations that is needed for our constructions.
In Section 3 we recall the main geometric notions: the definition of a cohomological field

theory and the definition of the double ramification cycles.
Section 4 contains the main result of the paper: the construction of the DR hierarchy. The

main statement here is Theorem 4.1 that says that the constructed Hamiltonians commute
with each other. We also formulate several general properties of the DR hierarchy, compute
the hierarchy explicitly in two examples and check our conjecture in these cases.

Section 5 is devoted to the proof of Theorem 4.1.
Appendix A contains some technical algebraic results.

1.2. Acknowledgments. We thank B. Dubrovin, S. Shadrin, R. Pandharipande and D. Zvonk-
ine for discussions related to the work presented here.

We would like to thank the anonymous referee for valuable remarks and suggestions that
allowed us to improve the exposition of this paper.

This work was supported by grant ERC-2012-AdG-320368-MCSK in the group of R. Pand-
haripande at ETH Zurich, by the Russian Federation Government grant no. 2010-220-01-077
(ag. no. 11.634.31.0005), the grants RFFI 13-01-00755 and NSh-4850.2012.1.

2. Algebraic preliminaries: formal approach to partial differential

equations

In this section we introduce the language and the formalism in the theory of formal partial
differential equations that will be necessary in our construction of the DR hierarchy. The
material comes almost entirely from [DZ05] and [Ros10].

In Section 2.1 we introduce the algebra of differential polynomials and the space of local
functionals. In Section 2.2 we describe a certain class of Poisson structures on the space of
local functionals. In Section 2.3 we introduce a Poisson algebra BN and discuss its relation
with the space of local functionals. In Section 2.4 we define certain extensions of the ring of
differential polynomials, the space of local functionals and the Poisson algebra BN .

2.1. Differential polynomials and local functionals. Here we recall the definitions of the
ring of differential polynomials and the space of local functionals.

2.1.1. Differential polynomials. Let us fix an integer N ≥ 1. Consider variables uαj , 1 ≤ α ≤ N ,
j ≥ 0. We will often denote uα0 by uα and use an alternative notation for the variables uα1 , u

α
2 , . . .:

uαx := uα1 , uαxx := uα2 , . . . .

Denote by AN the ring of polynomials in the variables uαj , j ≥ 1,

f(u; ux, uxx, . . .) =
∑

m≥0

∑

1≤α1,...,αm≤N
j1,...,jm≥1

f j1,j2,...,jm
α1,α2,...,αm

(u)uα1

j1
uα2

j2
. . . uαm

jm

with the coefficients f j1,j2,...,jm
α1,α2,...,αm

(u) being power series in u1, . . . , uN . Elements of the ring AN

will be called differential polynomials.
Let us introduce a gradation degdif on the ring AN of differential polynomials putting

degdif u
α
k = k, k ≥ 1; degdif f(u) = 0.

This gradation will be called differential degree.
The operator ∂x : AN → AN is defined as follows:

∂x :=
N∑

α=1

∑

s≥0

uαs+1

∂

∂uαs
.
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2.1.2. Local functionals. Let ΛN := AN/ im(∂x). There is the projection π : AN → AN/ im(∂x)
and we will use the following notation:

∫
hdx := π(h),

for any h ∈ AN . Elements of the space ΛN will be called local functionals.

For a local functional h =
∫
hdx ∈ ΛN , the variational derivative δh

δuα ∈ AN is defined as
follows:

δh

δuα
:=
∑

i≥0

(−∂x)
i ∂h

∂uαi
.

It is clear that the gradation degdif on AN induces a gradation on the space ΛN that will be
also called differential degree.

Clearly, the derivative ∂
∂uα : AN → AN commutes with the operator ∂x. Therefore, the

derivative ∂
∂uα is correctly defined on the space of local functionals ΛN .

2.2. Poisson structure on ΛN and hamiltonian systems of PDEs. In this section we
introduce a certain class of Poisson structures on the space of local functionals and review the
notion of a hamiltonian system of partial differential equations.

2.2.1. Poisson structure on ΛN . Let K = (Kα,β)1≤α,β≤N be a matrix of operators

Kα,β =
∑

j≥0

fα,β
j ∂jx,(2.1)

where fα,β
j ∈ AN and the sum is finite. Let us define the bracket {·, ·}K : ΛN × ΛN → ΛN by

{g, h}K :=

∫ ∑

α,β

δg

δuα
Kα,β δh

δuβ
dx.

The operator K is called hamiltonian, if the bracket {·, ·}K is antisymmetric and satisfies the
Jacobi identity. It is well known that, for any symmetric matrix η = (ηα,β) ∈ MatN,N(C), the
operator η∂x is hamiltonian (see e.g. [DZ05]).

2.2.2. Hamiltonian systems of PDEs. A system of partial differential equations

∂uα

∂τi
= fα

i (u; ux, . . .), 1 ≤ α ≤ N, i ≥ 1,(2.2)

where fα
i ∈ AN , is called hamiltonian, if there exists a hamiltonian operator K = (Kα,β) and

a sequence of local functionals hi ∈ ΛN , i ≥ 1, such that

fα
i =

∑

β

Kα,β δhi
δuβ

,

{hi, hj}K = 0, for i, j ≥ 1.

The local functionals hi are called the Hamiltonians of the system (2.2).

2.3. Poisson algebra BN . Consider formal variables pαn, where 1 ≤ α ≤ N and n ∈ Z 6=0. Let
BN ⊂ C[[pαn]] be the subalgebra that consists of power series of the form

f =
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk 6=0

n1+...+nk=0

fn1,...,nk
α1,...,αk

pα1

n1
pα2

n2
. . . pαk

nk
,

where fn1,...,nk
α1,...,αk

are complex coefficients.
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Let η = (ηα,β)1≤α,β≤N ∈ MatN,N(C) be a symmetric matrix. We endow the algebra BN with
the following Poisson structure:

{pαm, p
β
n}η := imηα,βδm+n,0.(2.3)

Let us define an important map T0 : ΛN → BN . Consider an arbitrary differential polynomial
f ∈ AN . We want to consider the variable uα as a formal function of x that has a Fourier
expansion with coefficients pαn. Formally, we make the substitution uαk =

∑
n 6=0(in)

kpαne
inx.

Then we have

f |uα
k
=
∑

n 6=0(in)
kpαne

inx =
∑

m∈Z

Pme
imx,

where Pm ∈ C[[pαn]]. Denote the right-hand side by T (f). Clearly, P0 ∈ BN . Let T0(f) := P0.
Obviously, we have T0|im ∂x

= 0. Therefore, the map T0 induces a map ΛN = AN/(im ∂x)→ BN ,
that we will also denote by T0.
Denote by Bpol

N ⊂ BN the subspace that consists of power series of the form

f =
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk 6=0

n1+...+nk=0

Pα1,...,αk
(n1, . . . , nk)p

α1

n1
pα2

n2
. . . pαk

nk
,

where Pα1,...,αk
(z1, . . . , zk) ∈ C[z1, . . . , zk] are some polynomials and the degrees of them in the

power series f are bounded from above. It is easy to see that im(T0) ⊂ B
pol
N . Let us formulate

two important properties of the map T0.

Lemma 2.1. The map T0 : ΛN → B
pol
N is surjective. The kernel of it is N-dimensional and is

spanned by the local functionals
∫
uαdx, 1 ≤ α ≤ N .

From this lemma it follows, that for any power series f ∈ Bpol
N there exists a unique local

functional h ∈ ΛN such that T0(h) = f and h has the form
∫
hdx, where ∂h

∂uα

∣∣
u∗
∗=0

= 0. The

local functional h will be denoted by Q(f), so we have obtained a map Q : Bpol
N → ΛN .

Lemma 2.2. The pullback of the bracket {·, ·}η under the map T0 is the bracket {·, ·}η∂x.

These lemmas are well-known (see e.g. [EGH00, Sections 2.2.3 and 2.9.2] and [Ros10]), but
we don’t know a good reference with proofs. So we decided to give short proofs in Appendix A.

2.4. Extended spaces. Introduce a formal indeterminate ~ of degree deg ~ = −2. Let ÂN :=

AN⊗C[[~]] and Â
[k]
N ⊂ ÂN be the subspace of elements of the total degree k ≥ 0. The space Â

[k]
N

consists of elements of the form

f(u; ux, uxx, . . . ; ~) =
∑

i≥0

~
ifi(u; ux, . . .), fi ∈ AN , degdif fi = 2i+ k.

The elements of the space Â
[k]
N will be also called differential polynomials.

Let Λ̂N := ΛN ⊗ C[[~]] and Λ̂
[k]
N be the subspace of elements of the total degree k. The

space Λ̂
[k]
N consists of integrals of the form

f =

∫
f(u; ux, uxx, . . . ; ~)dx, f ∈ Â

[k]
N .

They will also be called local functionals.
Let K = (Kα,β)1≤α,β≤N be a matrix of differential operators

Kα,β =
∑

i,j≥0

fα,β
i,j ~

i∂jx,(2.4)
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where fα,β
i,j ∈ AN are homogeneous differential polynomials of the differential degree degdif f

α,β
i,j =

2i− j + 1. The bracket {·, ·}K : Λ̂
[k]
N × Λ̂

[l]
N → Λ̂

[k+l+1]
N is defined by

{g, h}K :=

∫ ∑

α,β

δg

δuα
Kα,β δh

δuβ
dx.

The operator K is called hamiltonian, if the bracket {·, ·}K is antisymmetric and satisfies the
Jacobi identity.

A hamiltonian system of partial differential equations is a system of the form

∂uα

∂τi
=
∑

β

Kα,β δhi
δuβ

, 1 ≤ α ≤ N, i ≥ 1,

where K = (Kα,β) is a hamiltonian operator and hi ∈ Λ̂
[0]
N are local functionals such that

{hi, hj}K = 0, for i, j ≥ 1.

Let Bpol;d
N ⊂ Bpol

N be the subspace that consists of power series of the form

f =
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk 6=0

n1+...+nk=0

Pα1,...,αk
(n1, . . . , nk)p

α1

n1
pα2

n2
. . . pαk

nk
,

where Pα1,...,αk
(z1, . . . , zk) ∈ C[z1, . . . , zk] are homogeneous polynomials of degree d.

Consider the Poisson algebra B̂N := BN⊗C[[~]]. Let B̂pol
N ⊂ B̂N be the subspace that consists

of power series of the form

f =
∑

i≥0

~
ifi, fi ∈ B

pol;2i
N .

Repeating the definitions from Section 2.3, we obtain a map Λ̂
[0]
N → B̂

pol
N that we denote by T̂0.

Lemmas 2.1 and 2.2 remain true for this map. Thus, we have a map B̂pol
N → Λ̂

[0]
N that we denote

by Q̂.

3. Geometric preliminaries: cohomological field theories and the double

ramification cycles

In this section we recall the definitions of cohomological field theories and the double ram-
ification cycles. We also discuss the polynomiality property of the double ramification cycles
that is crucial in our construction of the DR hierarchy.

3.1. Cohomological field theory. The notion of cohomological field theory was introduced
by M. Kontsevich and Yu. Manin in [KM94]. Let V be a finite dimensional vector space
over C, it will be called the phase space. Let us fix a non-degenerate symmetric bilinear form
(a scalar product) (·, ·) in V and a vector 11 ∈ V , that will be called the unit. Let us denote by
H∗

even(Mg,n;C) the even part in the cohomology H∗(Mg,n;C). A cohomological field theory is
a collection of linear homomorphisms cg,n : V ⊗n → H∗

even(Mg,n;C) defined for all g and n and
satisfying the following properties (axioms):

• cg,n is Sn-equivariant, where the group Sn acts on V ⊗n by permutation of the factors,
and where its action on H∗(Mg,n;C) is induced by the mappingsMg,n →Mg,n defined
by permutation of the marked points.
• We have (a, b) = c0,3(11⊗ a⊗ b) ∈ H

∗(M0,3;C), for all a, b ∈ V .
• If π :Mg,n+1 →Mg,n is the forgetful map that forgets the last marked point, then

π∗cg,n(a1 ⊗ . . .⊗ an) = cg,n+1(a1 ⊗ . . .⊗ an ⊗ 11).(3.1)
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• Let {ei} be a basis in V and ηi,j := (ei, ej).
a) If gl :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

is the gluing map, then

(3.2) gl∗cg1+g2,n1+n2
(a1 ⊗ . . .⊗ an) =

=
∑

i,j

cg1,n1+1(a1 ⊗ . . .⊗ an1
⊗ ei) · cg2,n2+1(an1+1 ⊗ . . .⊗ an1+n2

⊗ ej)η
i,j.

b) If gl :Mg−1,n+2 →Mg,n is the gluing map, then

gl∗cg,n(a1 ⊗ . . .⊗ an) =
∑

i,j

cg−1,n+2(a1 ⊗ . . .⊗ an ⊗ ei ⊗ ej)η
i,j.

The correlators of the cohomological field theory are defined as follows. The class ψi ∈
H2(Mg,n;C) is defined as the first Chern class of the line bundle over Mg,n formed by the
cotangent lines at the i-th marked point (see e.g. [ACG11] for a rigorous definition). For
arbitrary vectors v1, v2, . . . , vn ∈ V and any nonnegative integers d1, d2, . . . , dn, let

〈τd1(v1)τd2(v2) . . . τdn(vn)〉g :=

∫

Mg,n

cg,n(v1 ⊗ . . .⊗ vn)
n∏

i=1

ψdi
i .

Let us choose a basis e1, . . . , eN in the phase space V . Introduce variables tαd , where 1 ≤ α ≤
N and d ≥ 0. Define the potential F of the cohomological field theory by

F :=
∑

g≥0

~
gFg, where

Fg :=
∑

n≥0
2g−2+n>0

1

n!

∑

1≤α1,...,αn≤N
d1,...,dn≥0

〈τd1(eα1
)τd2(eα2

) . . . τdn(eαn
)〉g

n∏

i=1

tαi

di
.

Assume that e1 is the unit 11. Recall the string equation:

∂F

∂t10
=

∑

1≤α≤N
p≥0

tαp+1

∂F

∂tαp
+

1

2

∑

α,β

ηα,βt
α
0 t

β
0 + ~ 〈τ0(e1)〉1 .(3.3)

It is a simple consequence of (3.1) and the formula for the pull-back of ψi under the forgetful
map π :Mg,n+1 →Mg,n (see e.g. [ACG11]).

3.1.1. Examples. Let us give two simple examples of a cohomological field theory. Let V be of
dimension 1 with a basis vector e. Define a scalar product by (e, e) = 1 and let e be a unit 11.
The trivial cohomological field theory is given by the formula

ctrivg,n (e⊗ . . .⊗ e) := 1 ∈ H∗(Mg,n;C).

We will also consider the cohomological field theory formed by the Hodge classes:

cHodge
g,n (e⊗ . . .⊗ e) := 1 + ελ1 + . . .+ εgλg ∈ H

∗(Mg,n;C),

where λj ∈ H
2j(Mg,n;C) is the j-th Chern class of the rank g Hodge vector bundle overMg,n

whose fibers are the spaces of holomorphic one-forms. The fact, that the classes 1+ ελ1+ . . .+
εgλg form a cohomological field theory, was first noticed in [Mum83].
For these two cohomological field theories we will explicitly compute the DR hierarchy and

compare it with the Dubrovin-Zhang hierarchy.

3.2. Double ramification cycles. In this section we recall the definition of the double rami-
fication cycles and formulate the polynomiality property that is crucial in our construction of
the DR hierarchy.
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3.2.1. Definition. Let a1, . . . , an be a list of integers satisfying
∑
ai = 0 and assume that not

all of them are equal to zero. To such a list we assign a space of “rubber” stable maps to P
1

relative to 0 and ∞ in the following way.
Denote by n+ the number of positive integers among the ai’s. They form a partition ν =

(ν1, . . . , νn+
). Similarly, denote by n− the number of negative integers among the ai’s. After a

change of sign they form another partition µ = (µ1, . . . , µn−). Both µ and ν are partitions of
the same integer d := 1

2

∑n

i=1 |ai|. Finally, let n0 be the number of vanishing ai’s.
To the list a1, . . . , an we assign the space

Mg;a1,...,an :=Mg,n0;µ,ν(P
1, 0,∞)

of degree d “rubber” stable maps to P
1 relative to 0 and ∞ with the ramification profiles µ

and ν respectively (see e.g. [GV05]). Here “rubber” means that we factor the space by the
C

∗-action in the target P1. We consider the pre-images of 0 and∞ as marked points and there
are n0 more additional marked points.

Thus, in the source curve there are n numbered marked points with labels a1, . . . , an. The
relative stable map sends the points with positive labels to ∞, those with negative labels to 0,
while those with zero labels do not have a fixed image.

We have the forgetful map st :Mg;a1,...,an →Mg,n. The space spaceMg;a1,...,an has the virtual
fundamental class [Mg;a1,...,an ]

virt ∈ H2(2g−3+n)(Mg;a1,...,an ;C).

Definition 3.1. The push-forward st∗[Mg;a1,...,an ]
virt ∈ H2(2g−3+n)(Mg,n;C) of the virtual fun-

damental class under the forgetful map st is called the double ramification cycle or the DR-cycle
and is denoted by DRg(a1, . . . , an).

These classes were introduced by T. Graber and R. Vakil in [GV05]. It is known (see [FP05])
that the Poincaré dual cohomology class of DRg(a1, . . . , an) lies in the tautological ring ofMg,n.

Let π : Mg,n+1 → Mg,n be the forgetful map that forgets the last marked point. As an
immediate consequence of the definition, we get the following property:

π∗DRg(a1, . . . , an) = DRg(a1, . . . , an, 0).

In genus 0 the double ramification cycle coincides with the fundamental class of the moduli
space of curves (see e.g. [GJV11]):

DR0(a1, . . . , an) = [M0,n].

3.2.2. Polynomiality. There is another version of the double ramification cycles defined us-
ing the universal Jacobian over the moduli space Mct

g,n of stable curves of compact type.

This is a class in the Borel-Moore homology HBM
2(2g−3+n)(M

ct
g,n;C) and we will denote it by

DRJac
g (a1, . . . , an). R. Hain [Hain13] obtained an explicit formula for this class that we are

going to recall here (see also [GZ12] for a different proof).
Let δJh be the class of the divisor whose generic point is a reducible curve consisting of

a smooth component of genus h containing the marked points indexed by J and a smooth
component of genus g − h with the remaining points, joined at a node. Denote by ψ†

i the
ψ-class that is pulled back fromMct

g,1.
Now we can state Hain’s result:

DRJac
g (a1, . . . , an) =

1

g!




n∑

j=1

a2jψ
†
j

2
−

∑

J⊂{1,...,n}
|J |≥2

(
∑

i,j∈J,i<j

aiaj

)
δJ0 −

1

4

∑

J⊂{1,...,n}

g−1∑

h=1

a2Jδ
J
h




g

,

(3.4)

where aJ :=
∑

j∈J aj.

Happily, in [MW13] it is proved thatDRg(a1, . . . , an)|Mct
g,n

= DRJac
g (a1, . . . , an). Since the

class λg vanishes onMg,n\M
ct
g,n, we get the following lemma that is crucial in our construction.
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Lemma 3.2. For any cohomology class α ∈ H∗(Mg,n;C) the integral
∫
DRg(a1,...,an)

λgα is a

homogeneous polynomial in a1, . . . , an of degree 2g.

4. Main construction

In this section we give the construction of the DR hierarchy. We discuss its main properties
and explicitly compute it in two examples.

Consider an arbitrary cohomological field theory cg,n : V
⊗n → H∗

even(Mg,n;C). Let V be the
phase space and dimV = N . Let e1, e2, . . . , eN be a basis of V such that e1 is the unit. Denote
by η = (ηα,β), ηα,β := (eα, eβ), the matrix of the scalar product.

4.1. Hamiltonians. For any 1 ≤ α ≤ N and d ≥ 0, define the power series gα,d ∈ B̂N by

gα,d =
∑

g≥0

∑

n≥2

(−~)g

n!

∑

a1,...,an 6=0
a1+...+an=0
1≤α1,...,αn≤N

(∫

DRg(0,a1,...,an)

λgψ
d
1cg,n+1(eα ⊗ eα1

⊗ . . .⊗ eαn
)

)
n∏

i=1

pαi
ai
.

(4.1)

From Lemma 3.2 it follows that gα,d ∈ B̂
pol
N . Define the local functional gα,d ∈ Λ̂

[0]
N by

gα,d := Q̂(gα,d).

The following theorem is the main result of the paper.

Theorem 4.1. For any 1 ≤ α1, α2 ≤ N and d1, d2 ≥ 0, we have

{gα1,d1
, gα2,d2

}η∂x = 0.

We prove the theorem in Section 5. The hamiltonian hierarchy of PDEs corresponding to
the operator η∂x and the local functionals gα,d is called the DR hierarchy:

∂uβ

∂tαd
=
∑

µ

ηβ,µ∂x
δgα,d
δuµ

.(4.2)

Remark 4.2. Our construction of the DR hierarchy is very similar to the construction of the
quantum hierarchy in Symplectic Field Theory [EGH00]. The crucial difference is the presence
of the class λg in the integrand on the right-hand side of (4.1). This allows us to construct a
classical hierarchy instead of the quantum hierarchy from SFT.

4.2. Main properties. In this section we list several properties of the DR hierarchy.

4.2.1. Hamiltonian g1,0.

Lemma 4.3. We have g1,0 =
1
2

∫ (∑
α,β ηα,βu

αuβ
)
dx.

Therefore, the first equation of the DR hierarchy is

∂uα

∂t10
= uαx .

Proof of Lemma 4.3. Suppose 2g − 2 + n > 0 and let π :Mg,n+1 →Mg,n be the forgetful map
that forgets the first marked point. We have

DRg(0, a1, . . . , an) = π∗DRg(a1, . . . , an),

cg,n+1(e1 ⊗ eα1
⊗ . . .⊗ eαn

) = π∗cg,n(eα1
⊗ . . .⊗ eαn

).

Hence,
∫
DRg(0,a1,...,an)

λgcg,n+1(e1 ⊗ eα1
⊗ . . .⊗ eαn

) = 0.
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In the case g = 0 and n = 2 we have
∫

DR0(0,a,−a)

c0,3(e1 ⊗ eα ⊗ eβ) = ηα,β, therefore,

g1,0 =
1

2

∑

α,β

∑

a 6=0

ηα,βp
α
ap

β
−a =

1

2
T̂0

(∫ ∑

α,β

ηα,βu
αuβdx

)
.

This completes the proof of the lemma. �

4.2.2. Genus 0 part. Here we compute the genus 0 part of the DR hierarchy and compare it

with the genus 0 part of the Dubrovin-Zhang hierarchy. Let g
[0]
α,d := gα,d

∣∣
~=0

and

Ω
[0]
α,p;β,q(u) :=

∂2F0

∂tαp∂t
β
q

∣∣∣∣∣t∗≥1
=0

t
µ
0=uµ

.

Lemma 4.4. We have g
[0]
α,d =

∫
Ω

[0]
α,d+1;1,0dx.

Proof. We have

g
[0]
α,d =

∑

n≥2

1

n!

∑

a1,...,an 6=0
a1+...+an=0
1≤α1,...,αn≤N

(∫

DR0(0,a1,...,an)

ψd
1c0,n+1(eα ⊗ eα1

⊗ . . .⊗ eαn
)

) n∏

i=1

pαi
ai

=

=
∑

n≥2

1

n!

∑

a1,...,an 6=0
a1+...+an=0
1≤α1,...,αn≤N

〈τd(eα)τ0(eα1
) . . . τ0(eαn

)〉0

n∏

i=1

pαi
ai

= T̂0

(∫
Ω

[0]
α,d(u)dx

)
,

where Ω
[0]
α,d(u) := ∂F0

∂tα
d

∣∣∣t∗≥1
=0

t
µ
0=uµ

. From the string equation (3.3) it follows that Ω
[0]
α,d = Ω

[0]
α,d+1;1,0.

The lemma is proved. �

Suppose our cohomological field theory is semisimple. Let h
DZ

α,d and KDZ = (KDZ;α,β) be the
local functionals and the hamiltonian operator of the corresponding Dubrovin-Zhang hierarchy.

We have h
DZ

α,d =
∫ (

Ω
[0]
α,d+1;1,0 +O(~)

)
dx and KDZ = η∂x + O(~) (see [BPS12a]). We see that

the genus 0 parts of the Dubrovin-Zhang and the DR hierarchies coincide. This agrees with
our conjecture from the introduction.

Remark 4.5. In genus 0 the DR hierarchy coincides with the quantum hierarchy from Sym-
plectic Field Theory. The fact, that the genus 0 part of the quantum hierarchy coincides with
the genus 0 part of the Dubrovin-Zhang hierarchy, was first noticed in F. Bourgeois’s thesis and
then mentioned in [EGH00].

4.2.3. String equation for the DR hierarchy.

Lemma 4.6. We have

∂gα,d
∂u1

=

{
gα,d−1, if d ≥ 1,∫ ∑

µ ηα,µu
µdx, if d = 0.

This equation is analogous to the string equation for the quantum hierarchy in Symplectic
Field Theory, that was proved in [FR11].

Proof. We are going to use the material from Section A.1. The spaces B′
N , B

′pol
N and the map

Z : Bpol
N → B

′pol
N have obvious analogs B̂′

N , B̂
′
pol

N and Ẑ : B̂pol
N → B̂

′
pol

N . An analog of Lemma A.2
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is clearly true for any local functional h ∈ Λ̂
[0]
N . So, we have

T̂0

(
∂gα,d
∂u1

)
=
∂Ẑ(T̂0(gα,d))

∂p10

∣∣∣∣∣
p∗0=0

=
∂Ẑ(gα,d)

∂p10

∣∣∣∣∣
p∗0=0

.

We obviously have

Ẑ(gα,d) =
∑

g≥0

∑

n≥2

(−~)g

n!

∑

a1,...,an∈Z
a1+...+an=0
1≤α1,...,αn≤N

(∫

DRg(0,a1,...,an)

λgψ
d
1cg,n+1(eα ⊗ eα1

⊗ . . .⊗ eαn
)

)
n∏

i=1

pαi
ai
.

Therefore,

∂Ẑ(gα,d)

∂p10

∣∣∣∣∣
p∗0=0

=
∑

g≥0

∑

n≥2

(−~)g

n!
×

×
∑

a1,...,an 6=0
a1+...+an=0
1≤α1,...,αn≤N

(∫

DRg(0,0,a1,...,an)

λgψ
d
1cg,n+2(eα ⊗ e1 ⊗ eα1

⊗ . . .⊗ eαn
)

)
n∏

i=1

pαi
ai
.(4.3)

Let π2 :Mg,n+2 → Mg,n+1 be the forgetful map that forgets the second marked point. Since
(π2)∗ψ

d
1 = ψd−1

1 , if d ≥ 1, and (π2)∗ψ
0
1 = 0, we get

∫

DRg(0,0,a1,...,an)

λgψ
d
1cg,n+2(eα ⊗ e1 ⊗ eα1

⊗ . . .⊗ eαn
) =

=

{∫
DRg(0,a1,...,an)

λgψ
d−1
1 cg,n+1(eα ⊗ e1 ⊗ . . .⊗ eαn

), if d ≥ 1,

0, if d = 0.

We obtain

T̂0

(
∂gα,d
∂u1

)
=

{
T̂0
(
gα,d−1

)
, if d ≥ 0,

0, if d = 0.

Suppose d ≥ 1. From Lemma 2.1 it follows that
∂gα,d

∂u1 − gα,d−1 is a linear combination of the

local functionals
∫
uβdx. Since

∫
DR0(0,a,−a)

ψd
1c0,3(eα⊗ eα1

⊗ eα2
) = 0, we get

∂gα,d

∂u1 − gα,d−1 = 0.

Suppose d = 0. By Lemma 2.1,
∂gα,0

∂u1 is a linear combination of the local functionals
∫
uβdx.

Denote c0,3(eα ⊗ eβ ⊗ eγ) by cα,β,γ. We have

1

2

∑

a 6=0
1≤α1,α2≤N

(∫

DR0(0,a,−a)

c0,3(eα ⊗ eα1
⊗ eα2

)

)
pα1

a p
α2

−a = T0

(
1

2

∫ ∑

µ,ν

cα,µ,νu
µuνdx

)
.

Since c1,α,β = ηα,β, we get
∂gα,0

∂u1 =
∫ ∑

µ ηα,µu
µdx. The lemma is proved. �

4.2.4. String solution of the DR hierarchy. In this section we show that the DR hierarchy has
a special solution that satisfies the string equation.

Let ustr(x; t∗∗; ~) be the solution of the DR hierarchy (4.2) specified by the initial condition
(ustr)α|t∗∗=0 = δα,1x.

Lemma 4.7. We have
∂(ustr)α

∂t10
=
∑

1≤µ≤N
d≥0

tµd+1

∂(ustr)α

∂tµd
+ δα,1.
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Proof. Define an operator L by L := ∂
∂t10
−
∑

µ,d t
µ
d+1

∂
∂t

µ
d

. Let fα
β,q :=

∑
µ η

α,µ∂x
δgβ,q
δuµ . We have

∂

∂tβq

(
L(ustr)α

)
= L

∂(ustr)α

∂tβq
−
∂(ustr)α

∂tβq−1

= Lfα
β,q − f

α
β,q−1 =

∑

γ,n

∂fα
β,q

∂uγn
∂nx (Lu

γ)− fα
β,q−1.

Here we, by definition, put ∂

∂t
β
−1

:= 0 and fα
β,−1 := 0. We get the system

∂

∂tβq

(
L(ustr)α

)
=
∑

γ,n

∂fα
β,q

∂uγn
∂nx (Lu

γ)− fα
β,q−1, 1 ≤ α, β ≤ N, q ≥ 0.

This system, together with the initial condition L(ustr)α|t∗∗=0 = δα,1, uniquely determines L(ustr)α.

By Lemma 4.6,
∂fα

β,q

∂u1 = fα
β,q−1 and, therefore, L(u

str)α = δα,1 satisfies the system. This concludes
the proof of the lemma. �

4.2.5. Local functional g. Introduce the local functional g ∈ Λ̂
[0]
N by g := Q̂(g), where

g :=
∑

g≥0

∑

n≥2
2g−2+n>0

(−~)g

n!

∑

a1,...,an 6=0
a1+...+an=0
1≤α1,...,αn≤N

(∫

DRg(a1,...,an)

λgcg,n(eα1
⊗ . . .⊗ eαn

)

)
n∏

i=1

pαi
ai
.

The local functional g can be easily related to g1,1 as follows. Define a differential opera-

tor O on the space of differential polynomials Â
[0]
N by O := 2~ ∂

∂~
− 2 +

∑
γ,n u

γ
n

∂
∂u

γ
n
. Since the

operator
∑

γ,n u
γ
n

∂
∂u

γ
n
commutes with ∂x, the operator O is well defined on the space of local

functionals Λ̂
[0]
N . We claim that

g1,1 = Og.(4.4)

This equation can be regarded as analogous to the dilaton equation for the quantum hierarchy
in Symplectic Field Theory, that was proved in [FR11]. Formula (4.4) easily follows from the
equation
∫

DRg(0,a1,...,an)

λgψ1cg,n+1(e1 ⊗ eα1
⊗ . . .⊗ eαn

) =

=

{
(2g − 2 + n)

∫
DRg(a1,...,an)

λgcg,n(eα1
⊗ . . .⊗ eαn

), if 2g − 2 + n > 0,

0, otherwise.

Lemma 4.8. We have gα,0 =
∂g

∂uα .

Proof. The proof goes in the same way as the proof of Lemma 4.6. We have

T̂0

(
∂g

∂uα

)
by Lemma A.2

=
∂Ẑ(T̂0(g))

∂pα0

∣∣∣∣∣
p∗0=0

=
∂Ẑ(g)

∂pα0

∣∣∣∣∣
p∗0=0

=

=
∂

∂pα0




∑

g≥0

∑

n≥2
2g−2+n>0

(−~)g

n!

∑

a1,...,an∈Z
a1+...+an=0
1≤α1,...,αn≤N

(∫

DRg(a1,...,an)

λgcg,n(eα1
⊗ . . .⊗ eαn

)

)
n∏

i=1

pαi
ai




∣∣∣∣∣∣∣∣∣∣
p∗0=0

=

=T̂0(gα,0).

By Lemma 2.1, ∂g

∂uα − gα,0 is a linear combination of the local functionals
∫
uβdx. It is easy to

see that

g|
~=0 =

∫ ( ∑

α1,α2,α3

1

6
cα1,α2,α3

uα1uα2uα3 +O(u4))

)
dx.
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We conclude that ∂g

∂uα − gα,0 = 0. The lemma is proved. �

4.3. Examples. Here we explicitly compute the DR hierarchy in two examples. In both of
them the phase space of a cohomological field theory will be one-dimensional. So, we will omit
the first index in the Hamiltonians gα,d and denote them by gd.

4.3.1. Trivial CohFT. Consider the trivial cohomological field theory: ctrivg,n = 1. From Sec-

tion 4.2.2 we know that gi =
∫ (

Ω
[0]
1,i+1;1,0 +O(~)

)
dx. We have Ω

[0]
1,i+1;1,0 =

ui+2

(i+2)!
(see e.g. [BPS12a]),

therefore,

gi =

∫ (
ui+2

(i+ 2)!
+O(~)

)
dx.

Let us compute the Hamiltonian g1. We have to compute the integrals
∫

DRg(0,a1,...,an)

λgψ1.(4.5)

We have DRg(0, a1, . . . , an) ∈ H2(2g−2+n)(Mg,n+1;C). Therefore, the integral (4.5) can be
nonzero, only if g = 0 and n = 3, or g = 1 and n = 2. We already know the genus 0 integral.
Let us compute the genus 1 integral:

∫

DR1(0,a,−a)

λ1ψ1 = 2

∫

DR1(a,−a)

λ1
by (3.4)
= 2a2

∫

δ
{1,2}
0

λ1 =
a2

12
.

Thus, g1 =
∫ (

u3

6
+ ~

24
uuxx

)
dx. This is the first Hamiltonian of the KdV hierarchy. From

[Bur13, Lemma 2.4] it follows that the higher Hamiltonians gi, i ≥ 2, coincide with the higher
Hamiltonians of the KdV hierarchy. We conclude that the DR hierarchy for the trivial coho-
mological field theory coincides with the KdV hierarchy.

The Dubrovin-Zhang hierarchy corresponding to the trivial cohomological field theory also
coincides with the KdV hierarchy (see [DZ05]). This agrees with the conjecture that we sug-
gested in the introduction.

4.3.2. Hodge classes. Consider the cohomological field theory formed by the Hodge classes:

cHodge
g,n = 1 + ελ1 + . . . + εgλg. Again we have gi =

∫ (
ui+2

(i+2)!
+O(~)

)
dx. Let us compute the

Hamiltonian g1. We have to compute the integrals
∫

DRg(0,a1,...,an)

λg(1 + ελ1 + . . .+ εgλg)ψ1.(4.6)

The coefficient of εj can be nonzero, only if 2g−2+n = g+j+1, or, equivalently, g−j = 3−n.
Note that λ2g = 0, for g ≥ 1. Thus, the coefficient of εj in the integral (4.6) can be nonzero,
only if g = j = 0 and n = 3, or g ≥ 1, j = g − 1 and n = 2. For g ≥ 1, we have

∫

DRg(0,a,−a)

λgλg−1ψ1 = 2g

∫

DRg(a,−a)

λgλg−1 = a2g
|B2g|

(2g)!
.

Here B2g are Bernoulli numbers: B2 =
1
6
, B4 = −

1
30
, . . .; and the computation of the last integral

can be found, for example, in [CMW12]. We get g1 =
∫ (

u3

6
+
∑

g≥1 ~
gεg−1 |B2g |

2(2g)!
uu2g

)
dx. We

conclude that our DR hierarchy coincides with the deformed KdV hierachy (see [Bur13] and
Lemma 2.4 there).

Consider the Dubrovin-Zhang hierarchy corresponding to our cohomological field theory.
In [Bur13] it is proved that the Miura transformation

u 7→ ũ = u+
∑

g≥1

(−1)g

22g(2g + 1)!
~
gεgu2g
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transforms it to the deformed KdV hierarchy. This again agrees with our conjecture from the
introduction.

5. Commutativity of the Hamiltonians

In this section we prove Theorem 4.1. In Section 5.1 we introduce the Losev-Manin moduli
space LMr+n0

and a map q :Mg;a1,...,an → LMr+n0
/Sr. In Section 5.2 we compute the pullbacks

of certain divisors in LMr+n0
/Sr. In Section 5.3 we show that an equation of certain divisors

in LMr+n0
implies Theorem 4.1.

We recommend the reader the paper [BSSZ12] for a more detailed discussion of the geometric
constructions that we use here.

5.1. Losev-Manin moduli space. The Losev-Manin moduli space LMr is a compactification
ofM0,r+2. It is the moduli space of chains of spheres with two special “white” marked points 0
and ∞ at the extremities of the chain and r more “black” marked points in the other spheres.
The black points are allowed to coincide with each other and there should be at least one black
point per sphere. For more details see [LM00].

We have two forgetful maps from the DR-spaceMg;a1,...,an :

LMr+n0
/Sr

q
←−Mg;a1,...,an

st
−→Mg,n,

where n0 is the number of indices i such that ai = 0 and r := 2g − 2 + n is the number of
branch points.

The map st assigns to a relative stable map its stabilized source curve. This is the map that
we used to define the DR-cycle DRg(a1, . . . , an).

Let us describe the map q. It is very similar to the branch morphism (see e.g. [GJV11]).
By Sr we denote the symmetric group. It acts on LMr+n0

by permutation of the first r black
marked points. Suppose f : C → T is a relative stable map. The map q assigns to f its target
rational curve T . Since f : C → T is a relative stable map, we already have the points 0
and∞ in T . Therefore, it remains to choose black marked points in T . Suppose that over each
irreducible component of T the map f is a ramified covering. Then the black marked points
in T are the r branch points and the images of the marked points with zero labels in the source
curve C. The fact, that the branch points are not numbered, is the reason that we have to take
the quotient of the Losev-Manin space by the action of the symmetric group.

5.2. Pullbacks of divisors. Consider the space Mg;0,0,a1,...,an , where a1, . . . , an 6= 0. We
denote by p1 and p2 the first two “free” marked points in a curve from Mg;0,0,a1,...,an . The
images of these points in a curve from LMr+2/Sr will be denoted by x1 and x2 correspondingly.

Denote by D(0,x1|x2,∞) ⊂ LMr+2 the divisor of two-component curves, where the pairs of

points 0, x1 and x2,∞ lie in different components. Let DSym

(0,x1|x2,∞) be its symmetrization

in LMr+2/Sr. Let us compute the class st∗q
∗DSym

(0,x1|x2,∞). In order to do it we have to introduce

a bit more notations.
Let b1, . . . , bm be some integers such that b1 + . . .+ bm = 0 and not of all them are equal to

zero. Let us divide the list b1, . . . , bm into two non-empty disjoint parts, I ⊔ J = {1, . . . ,m},
in such a way that

∑
i∈I bi < 0 or, equivalently,

∑
j∈J bj > 0. Then we choose a list of positive

integers k1, . . . , kp in such a way that

∑

i∈I

bi +

p∑

i=1

ki =
∑

j∈J

bj −

p∑

i=1

ki = 0.

Now we take two DR-cycles DRg1(bI , k1, . . . , kp) and DRg2(−k1, . . . ,−kp, bJ) and glue them
together at the “new” marked points labeled by k1, . . . , kp. Since we want to get the genus g
in the end, we impose the condition g1 + g2 + p− 1 = g. We denote by

DRg1(bI , k1, . . . , kp)⊠DRg2(−k1, . . . ,−kp, bJ)
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the resulting cycle inMg,m.
We have the following formula (see [BSSZ12]):

st∗q
∗DSym

(0,x1|x2,∞) =
∑

I⊔J={1,...,n}
I,J 6=∅∑
i∈I ai<0

∑

g1,g2≥0
p≥1

g1+g2+p−1=g

∑

k1,...,kp≥1∑
i∈I ai+

∑p
i=1

ki=0

∏p

i=1 ki
p!

×(5.1)

×DRg1(0p1 , aI , k1, . . . , kp)⊠DRg2(−k1, . . . ,−kp, 0p2 , aJ).

Here the symbol 0pi means that the marked point pi has zero label.

Denote the class st∗q
∗DSym

(0,x1|x2,∞) byDx1,x2;a1,...,an . SinceD
Sym

(0,x1|x2,∞)−D
Sym

(0,x2|x1,∞) = 0 ([LM00]),

we have

Dx1,x2;a1,...,an −Dx2,x1;a1,...,an = 0.(5.2)

The formulas (5.1) and (5.2) play the crucial role in the proof of Theorem 4.1.

5.3. Proof of Theorem 4.1. Since the class λg vanishes onMg,n\M
ct
g,n, we have

∫

DRg1
(0p1 ,aI ,k1,...,kp)⊠DRg2

(−k1,...,−kp,0p2 ,aJ )

ψd1
p1
ψd2
p2
λgcg,n+2(eα1

⊗ eβI
⊗ eα2

⊗ eβJ
) = 0, if p ≥ 2.

Here by ψpi we denote the psi-class corresponding to the marked point pi. If p = 1, then from
equation (3.2) it follows that

∫

DRg1
(0p1 ,aI ,k)⊠DRg2

(−k,0p2 ,aJ )

ψd1
p1
ψd2
p2
λgcg,n+2(eα1

⊗ eβI
⊗ eα2

⊗ eβJ
) =

=
∑

µ,ν

ηµ,ν

(∫

DRg1
(0p1 ,aI ,k)

ψd1
p1
λg1cg1,|I|+2(eα1

⊗ eβI
⊗ eµ)

)
×

×

(∫

DRg2
(−k,0p2 ,aJ )

ψd2
p2
λg2cg2,|J |+2(eν ⊗ eα2

⊗ eβJ
)

)
.

Using (5.1) we get

∑

g≥0

∑

n≥2

(−~)g

n!

∑

a1,...,an 6=0
a1+...+an=0
1≤β1,...,βn≤N

(∫

Dx1,x2;a1,...,an

λgψ
d1
p1
ψd2
p2
cg,n+2(eα1

⊗ eα2
⊗ eβ1

⊗ . . .⊗ eβn
)

)
n∏

i=1

pβi
ai
=

=
∑

k≥1
µ,ν

kηµ,ν
∂gα1,d1

∂pµk

∂gα2,d2

∂pν−k

.

In the same way we obtain

−
∑

g≥0

∑

n≥2

(−~)g

n!

∑

a1,...,an 6=0
a1+...+an=0
1≤β1,...,βn≤N

(∫

Dx2,x1;a1,...,an

λgψ
d2
p2
ψd1
p1
cg,n+2(eα2

⊗ eα1
⊗ eβ1

⊗ . . .⊗ eβn
)

)
n∏

i=1

pβi
ai
=

= −
∑

k≥1
µ,ν

kηµ,ν
∂gα2,d2

∂pµk

∂gα1,d1

∂pν−k

.

Summing these two expressions and using (5.2), we obtain

0 =
∑

k≥1
µ,ν

kηµ,ν
∂gα1,d1

∂pµk

∂gα2,d2

∂pν−k

−
∑

k≥1
µ,ν

kηµ,ν
∂gα2,d2

∂pµk

∂gα1,d1

∂pν−k

= −i{gα1,d1 , gα2,d2}η.
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By Lemmas 2.2 and 2.1, this implies that the bracket {gα1,d1
, gα2,d2

}η∂x is a linear combina-

tion of the functionals
∫
uβdx. Since {gα1,d1

, gα2,d2
}η∂x ∈ Λ̂

[1]
N , we get {gα1,d1

, gα2,d2
}η∂x = 0.

Theorem 4.1 is proved.

Appendix A. Properties of the map T0 : Λ→ B
pol
N

Here we prove Lemmas 2.1 and 2.2. We also formulate two auxiliary lemmas: Lemma A.1
will be used in the proof of Lemma 2.2 and Lemma A.2 is used in the proofs of Lemmas 4.6
and 4.8.

A.1. Auxiliary lemmas.

Lemma A.1. For any local functional h ∈ ΛN , we have

T

(
δh

δuα

)
=
∑

n 6=0

∂

∂pαn
(T0(h))e

−inx + T0

(
∂h

∂uα

)
.(A.1)

Proof. It is sufficient to prove the lemma for a local functional h of the form h =
∫
uα1
n1
. . . uαk

nk
dx,

k ≥ 1. Let d := n1 + . . .+ nk. We have

δh

δuα
=

k∑

j=1

δα,αj
(−∂x)

nj

∏

r 6=j

uαr

nr
=

k∑

j=1

(−1)njδα,αj

∑

c1+...+ĉj+...+ck=nj

nj!∏
r 6=j cr!

∏

r 6=j

uαr

nr+cr
.

We get

T

(
δh

δuα

)
= id

k∑

j=1

δα,αj

∑

a1,...,âj ,...,ak 6=0

(
−
∑

r 6=j

ar

)nj
(
∏

r 6=j

anr

r

)(
∏

r 6=j

pαr

ar

)
eix

∑
r 6=j ar .

On the other hand we have

T0(h) = id
∑

a1+...+ak=0
a1,...,ak 6=0

(
k∏

r=1

anr

r

)(
k∏

r=1

pαr

ar

)
,

T0

(
∂h

∂uα

)
= id

k∑

j=1

δα,αj
δ0,nj

∑

a1,...,âj ,...,ak 6=0
a1+...+âj+...+ak=0

(
∏

r 6=j

anr

r

)(
∏

r 6=j

pαr

ar

)
.

Now formula (A.1) is clear. �

Let h ∈ ΛN be an arbitrary local functional. We want to give a formula for T0

(
∂h
∂uα

)
. Before

doing that we need to introduce some notations.
Let us consider formal variables pαn for all integers n and let B′

N ⊂ C[[pαn]]n∈Z be the subalgebra
that consists of power series of the form

f =
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk∈Z

n1+...+nk=0

fn1,...,nk
α1,...,αk

pα1

n1
pα2

n2
. . . pαk

nk
,

where fn1,...,nk
α1,...,αk

∈ C. For any symmetric matrix η = (ηα,β)1≤α,β≤N ∈ MatN,N(C) we endow

the algebra B′
N with the Poisson algebra structure by {pαm, p

β
n}η := imηα,βδm+n,0. Denote by

B′pol
N ⊂ B

′
N the subspace that consists of power series of the form

f =
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk∈Z

n1+...+nk=0

Pα1,...,αk
(n1, . . . , nk)p

α1

n1
pα2

n2
. . . pαk

nk
,

where Pα1,...,αk
(z1, . . . , zk) ∈ C[z1, . . . , zk] are some polynomials and the degrees of them in the

power series f are bounded from above.
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Given a series

f =
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk 6=0

n1+...+nk=0

Pα1,...,αk
(n1, . . . , nk)p

α1

n1
pα2

n2
. . . pαk

nk
∈ Bpol

N ,

define a series Z(f) ∈ B′pol
N by

Z(f) :=
∑

k≥0

∑

1≤α1,...,αk≤N
n1,...,nk∈Z

n1+...+nk=0

Pα1,...,αk
(n1, . . . , nk)p

α1

n1
pα2

n2
. . . pαk

nk
.

We have obtained a map Z : Bpol
N → B

′pol
N .

Lemma A.2. For any local functional h ∈ ΛN , we have

T0

(
∂h

∂uα

)
=




1, if h =

∫
uαdx,

∂Z(T0(h))
∂pα0

∣∣∣
p∗0=0

, otherwise.

Proof. The cases h =
∫
1dx and h =

∫
uµddx are obvious. It remains to check the lemma for

h =
∫
uα1
n1
. . . uαk

nk
dx, where k ≥ 2. This can be done by an easy direct computation. �

A.2. Proof of Lemma 2.1. Let us prove the surjectivity. The space Bpol
N is spanned by the

constants and the elements of the form

sα1,...,αk

d1,...,dk
:=

∑

a1+...+ak=0
a1,...,ak 6=0

(
k∏

i=1

adii

)(
k∏

i=1

pαi
ai

)
, k ≥ 2.

It is easy to see that (−i)
∑

djT0
(∫

uα1

d1
. . . uαk

dk
dx
)
= sα1,...,αk

d1,...,dk
. Now the surjectivity is clear.

Let us find the kernel of the map T0. Define Λ
[k,l]
N to be the subspace of ΛN spanned by

the local functionals of the form
∫
uα1

d1
. . . uαl

dl
dx, where

∑l

i=1 di = k. Let Bpol;k,l
N ⊂ Bpol

N be the
subspace spanned by the elements of the form

∑

a1+...+ak=0
a1,...,ak 6=0

P (a1, . . . , al)p
α1

a1
. . . pαl

al
,

where P (z1, . . . , zl) ∈ C[z1, . . . , zl] are homogeneous polynomials of degree k. It is clear that T0
maps Λ

[k,l]
N in Bpol;k,l

N . Obviously, the kernel of the map T0 :
⊕

k≥0
l≤1

Λ
[k,l]
N →

⊕
k≥0
l≤1
Bpol;k,l
N is

spanned by the local functionals
∫
uαdx ∈ Λ

[0,1]
N . It remains to prove that the map T0 : Λ

[k,l]
N →

Bpol;k,l
N is injective for l ≥ 2. Consider a local functional f =

∫
fdx ∈ Λ

[k,l]
N such that T0(f) = 0.

We have

T (f) =
∑

1≤α1,...,αl≤N

∑

a1,...,al 6=0

Pα1,...,αl
(a1, . . . , al)

(
l∏

i=1

pαi
ai

)
eix

∑
aj ,

where the polynomials Pα1,...,αl
(z1, . . . , zl) ∈ C[z1, . . . , zl] have degree k and satisfy the property

Pα1,...,αl
(z1, . . . , zl) = Pασ1

,...,ασl
(zσ1

, . . . , zσl
),

for an arbitrary permutation σ ∈ Sl. Define the subset Hl ⊂ C
l by

Hl :=

{
(z1, . . . , zl) ∈ C

l

∣∣∣∣
z1,...,zl∈Z 6=0,

z1+...+zl=0,
zi 6=zj .

}
.

From the fact, that T0(f) = 0, it follows that Pα1,...,αl
|Hl

= 0. Since l ≥ 2, we have k ≥ 1 and

Pα1,...,αl
(z1, . . . , zl) = i(z1 + . . .+ zl)Qα1,...,αl

(z1, . . . , zl),
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for some homogeneous polynomial Qα1,...,αl
(z1, . . . , zl) of degree k − 1. In the same way, as

we proved the surjectivity of the map T0, it is easy to show that there exists a differential

polynomial g ∈ Λ
[k−1,l]
N such that

T (g) =
∑

1≤α1,...,αl≤N

∑

a1,...,al 6=0

Qα1,...,αl
(a1, . . . , al)

(
l∏

i=1

pαi
ai

)
eix

∑
aj .

It is clear that ∂xg = f and, therefore, f =
∫
fdx = 0. The lemma is proved.

A.3. Proof of Lemma 2.2. We have to prove that {T0(h1), T0(h2)}η = T0
(
{h1, h2}η∂x

)
, for

arbitrary two local functionals h1, h2 ∈ ΛN . We have the following chain of equations:

T0
(
{h1, h2}η∂x

)
=T0

∫ (∑

α,β

δh1
δuα

ηα,β∂x
δh2
δuβ

)
dx = Coefei0x

(
∑

α,β

T

(
δh1
δuα

)
ηα,β

d

dx
T

(
δh2
δuβ

))
=

by Lemma A.1
=

∑

α,β

∑

n 6=0

inηα,β
∂T0(h1)

∂pαn

∂T0(h2)

∂pβ−n

= {T0(h1), T0(h2)}η.

The lemma is proved.
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