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1 Introduction

A compact Riemann surface is a compact connected complex manifold of dimension 1.

Denote by Mg,l the moduli space of all compact Riemann surfaces of genus g with l marked

points. P. Deligne and D. Mumford defined a natural compactification Mg,l ⊂ Mg,l via

stable curves (with possible nodal singularities) in [9]. The moduli space Mg,l is a non-

singular complex orbifold of dimension 3g − 3 + l. It is defined to be empty unless the

stability condition

2g − 2 + l > 0 (1.1)

is satisfied. We refer the reader to [9, 10] for the basic theory.

In his seminal paper [23], E. Witten initiated new directions in the study of Mg,l. For

each marking index i consider the cotangent line bundle Li → Mg,l, whose fiber over a point
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[Σ, z1, . . . , zl] ∈ Mg,l is the complex cotangent space T ∗
ziΣ of Σ at zi. Let ψi ∈ H2(Mg,l,Q)

denote the first Chern class of Li, and write

〈τa1τa2 · · · τal〉cg :=

∫

Mg,l

ψa1
1 ψa2

2 · · ·ψal
l . (1.2)

The integral on the right-hand side of (1.2) is well-defined, when the stability condition (1.1)

is satisfied, all the ai are non-negative integers and the dimension constraint 3g−3+l =
∑

ai
holds. In all other cases 〈∏ τai〉cg is defined to be zero. The intersection products (1.2) are

often called descendent integrals or intersection numbers. Let ti, i ≥ 0, be formal variables

and let

F c(t0, t1, . . .) :=
∑

g≥0

F c
g (t0, t1, . . .), where

F c
g (t0, t1, . . .) :=

∑

l≥1

∑

a1,...,al≥0

〈τa1τa2 · · · τal〉cg
∏

tai
l!

.

The generating series F c is called the closed free energy. The exponent τ c := exp(F c)

is called the closed partition function. Witten’s conjecture ([23]), proved by M. Kontse-

vich ([13]), says that the closed partition function τ c becomes a tau-function of the KdV

hierarchy after the change of variables tn = (2n + 1)!!T2n+1. Integrability immediately

follows [11] from Kontsevich’s matrix integral representation

τ c|Tk=
1
k
tr Λ−k = cΛ,M

∫

HM

e
1
6
trH3− 1

2
trH2ΛdH, (1.3)

where one integrates over the space of Hermitian M ×M matrices, Λ = diag(λ1, . . . , λM )

is a diagonal matrix with positive real entries and

cΛ,M := (2π)−
M2

2

M∏

i=1

√
λi

∏

1≤i<j≤M

(λi + λj).

In [15] the authors started to develop a parallel theory for Riemann surfaces with

boundary. A Riemann surface with boundary is a connected 1 dimensional complex man-

ifold with finite positive number of circular boundaries, each with a holomorphic collar

structure. A compact Riemann surface is not viewed here as a Riemann surface with

boundary. Given a Riemann surface with boundary (X, ∂X), we can canonically construct

a double via Schwarz reflection through the boundary. The double D(X, ∂X) of (X, ∂X)

is a compact Riemann surface. The doubled genus of (X, ∂X) is defined to be the usual

genus of D(X, ∂X). On a Riemann surface with boundary (X, ∂X), we consider two types

of marked points. The markings of interior type are points of X\∂X. The markings of

boundary type are points of ∂X. Let MR
g,k,l denote the moduli space of Riemann surfaces

with boundary of doubled genus g with k distinct boundary markings and l distinct interior

markings. The moduli space MR
g,k,l is defined to be empty unless the stability condition

2g − 2 + k + 2l > 0
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is satisfied. The moduli space MR
g,k,l may have several connected components depending

upon the topology of (X, ∂X) and the cyclic orderings of the boundary markings. Founda-

tional issues concerning the construction of MR
g,k,l are addressed in [14]. The moduli space

MR
g,k,l is a real orbifold of real dimension 3g − 3 + k + 2l, it is in general not compact and

may be not orientable when g > 0.

Since interior marked points have well-defined cotangent spaces, there is no difficulty

in defining the cotangent line bundles Li → MR
g,k,l for each interior marking, i = 1, . . . , l.

Naively, one may want to consider a descendent theory via integration of products of the

first Chern classes ψi = c1(Li) ∈ H2(MR

g,k,l,Q) over a compactification MR

g,k,l of MR
g,k,l.

Namely,

〈
τa1τa2 · · · τalσk

〉o

g
:= 2−

g+k−1
2

∫

M
R

g,k,l

ψa1
1 ψa2

2 · · ·ψal
l , (1.4)

when

2
∑

ai = 3g − 3 + k + 2l,

and in all other cases
〈
τa1τa2 · · · τalσk

〉o
g
:= 0. Note that, in particular, g+k must always be

odd in order to get non-zero numbers. The new insertion σ corresponds to the addition of

a boundary marking. The coefficient in front of the integral on the right-hand side of (1.4)

appears to be useful for the description of the new intersection numbers, that are called

the open intersection numbers, in terms of integrable systems.

In genus 0 the moduli M0,k,l := MR

0,k,l is canonically oriented for k odd, and one can

calculate an integral of the form
∫
M0,k,l

ψa1
1 ψa2

2 · · ·ψal
l , given boundary conditions for the

line bundles Li. More precisely, given nowhere vanishing boundary conditions s ∈ C∞(E →
∂M0,k,l), for E =

⊕
L
⊕ai
i , one may define the integral (1.4) by

〈
τa1τa2 · · · τalσk

〉o

0
:= 2−

k−1
2

∫

M0,k,l

e(E, s), (1.5)

where e(E, s) is the relative Euler class. The result depends on the boundary conditions.

In [15] a family of boundary conditions, called canonical boundary conditions for each

bundle Li is constructed. It is proven that for a generic choice of canonical boundary

conditions, sij ∈ C∞
m (Li → ∂M0,k,l), i ∈ [l], j ∈ [ai], the boundary conditions s =

⊕
sij

is nowhere vanishing along ∂M0,k,l, assuming 2
∑

ai = 3g − 3 + k + 2l. Here we use the

notation [l] for a set {1, 2, . . . , l} and the subscript m indicates that multi-valued section,

rather than sections, are used. It is then shown that any two generic choices of canonical

boundary conditions give rise to the same integral (1.5). In [15] all open intersection

numbers for doubled genus 0 were calculated, and the authors proposed a conjectural

description of the open intersection numbers in all genera. Let s be a formal variable.

Define

F o(t0, t1, . . . , s) :=
∑

g≥0

F o
g (t0, t1, . . . , s), where

F o
g (t0, t1, . . . , s) :=

∑

k,l≥0

∑

a1,...,al≥0

〈
τa1 · · · τalσk

〉o

g

sk
∏

tai
k!l!

.
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The generating series F o is called the open free energy and the exponent τ o := exp(F o+F c)

is called the open partition function. The conjecture of R. Pandharipande, J. P. Solomon

and the third author ([15]) says that the generating series F o satisfies a certain system of

partial differential equations that is called in [15] the open KdV equations.

In higher genus the construction of open intersection numbers needs some refinement.

Firstly, the moduli space Mg,k,l is in general non-orientable for g > 0. In order to overcome

this issue, J. P. Solomon and the third author define graded spin surfaces, which are open

surfaces with a spin structure and some extra structure. In [18] the moduli of graded spin

surfaces Mg,k,l is defined and is proved to be canonically oriented. When g = 0 it coincides

with MR

0,k,l. Canonical boundary conditions are then constructed for the line bundles Li,

and again it is proven that one can define

〈
τa1τa2 · · · τalσk

〉o

g
:= 2−

g+k−1
2

∫

Mg,k,l

e(E, s), (1.6)

where e(E, s) is the relative Euler with respect to the canonical boundary conditions. As

in g = 0, generic choices of canonical boundary conditions give rise to the same integrals.

It should be stressed that, although [18] has not appeared yet, the moduli and boundary

conditions mentioned above are fully described in section 2 of [21].

A combinatorial formula for the open intersection numbers was found in [21]. The

conjecture of R. Pandharipande, J. P. Solomon and the third author was proved in [6].

Properties of the open free energy F o were intensively studied in [2–4, 7, 8, 16]. In particu-

lar, in [7, 8] the second author introduced a formal power series F o,ext(t0, t1, . . . , s0, s1, . . .),

where s0 = s and s1, s2, . . . are new formal variables. The function F o,ext is an extension

of the open free energy F o,

F o,ext
∣∣
s≥1=0

= F o,

and, therefore, it was called the extended open free energy. The exponent τ o,ext :=

exp(F o,ext+F c) was called the extended open partition function. In [7, 8] the new variables

si, i ≥ 1, appeared naturally from the point of view of integrable systems. The second

author suggested to consider them as descendents of the boundary marked points. A geo-

metric construction of the descendent theory for the boundary marked points, a derivation

of the combinatorial formula for it, and a geometric proof of the conjecture of [7] regarding

the extended theory, will appear in [19, 22].

In [8] the second author found a simple relation of the extended open partition func-

tion τ o,ext to the wave function of the Kontsevich-Witten tau-function. In [3] the first

author proved that both extended open partition function and closed partition function

belong to the same family of tau-functions, described by the matrix integrals of Kontsevich

type. Namely, the Kontsevich-Penner integral

τN |Tk=
1
k
tr Λ−k := cΛ,M

∫

HM

e
1
6
trH3− 1

2
trH2Λ detN Λ

detN (Λ−H)
dH (1.7)

for N = 0 coincides with Kontsevich’s integral (1.3). In [3] it was shown that for N = 1 it

describes the extended open partition function. From this matrix integral representation
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it immediately follows that the extended open partition function is a tau-function of the

KP hierarchy, moreover, it is related to the closed partition function τ c by equations of

the modified KP hierarchy [12]. A full set of the Virasoro and W-constrains for the tau-

function, described by the Kontsevich-Penner matrix integral (1.7), was derived in [3] for

arbitrary N . Later these constraints were described by the first author [4] in terms of the

so-called free bosonic fields.

1.1 Refined, very refined and extended refined open intersection numbers

As we already discussed above, the moduli space Mg,k,l may have several components

depending upon the topology of Riemann surface with boundary. For b ≥ 1, denote

by Mg,k,l,b the submoduli of Mg,k,l that consists of isomorphism classes of surfaces with

boundary with b boundary components. So we have the decomposition

Mg,k,l =
⊔

1≤b≤g+1
b+g=1(mod 2)

Mg,k,l,b.

We can decompose further. Let P (k, b) be the set of unordered b-tuples of non-negative

integers k = (k1, . . . , kb), ki ≥ 0, such that
∑

ki = k. For k = (k1, . . . , kb) ∈ P (k, b) let

Mg,k̄,l ⊂ Mg,k,l,b be the submoduli of graded smooth Riemann surfaces with boundary of

genus g, with l internal marked points, b boundary components and k boundary marked

points distributed on the boundary components according to the b-tuple k. Clearly,

Mg,k,l,b =
⊔

k̄∈P (k,b)

Mg,k̄,l.

It is also easy to see that if we define Mg,k,l,b as the closure of Mg,k,l,b in Mg,k,l and Mg,k,l

as the closure of Mg,k,l in Mg,k,l,b, then

Mg,k,l =
⊔

1≤b≤g+1
b+g=1(mod 2)

Mg,k,l,b,

Mg,k,l,b =
⊔

k̄∈P (k,b)

Mg,k̄,l.

In [18] the authors defined open intersection numbers over any connected component of

the moduli space Mg,k,l. To be precise, they proved the following result.

Theorem 1.1. Let a1, . . . , al, k be non-negative integers satisfying 2
∑

ai = 3g−3+k+2l,

and let E =
∑k

i=1 L
⊕ai
i . Then for any connected component C of Mg,k,l there exist nowhere

vanishing canonical boundary conditions s in the sense of [15, 18]. Thus one may define the

integral
∫
C e(E, s). Moreover, any two nowhere vanishing choices of the canonical boundary

conditions give rise to the same integral.

The theorem allows us to define refined open intersection numbers as the integrals

of monomials in psi-classes over the components Mg,k,l,b of Mg,k,l and very refined open

– 5 –
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intersection numbers as the corresponding integrals over the components Mg,k̄,l:
〈
τa1τa2 · · · τalσk

〉o

g,b
:= 2−

g+k−1
2

∫

Mg,k,l,b

e(E, s), (1.8)

〈
τa1τa2 · · · τalσk̄

〉o

g
:= 2−

g+k−1
2

∫

Mg,k̄,l

e(E, s), (1.9)

where a1, . . . , al, k, E are as in Theorem 1.1 and s is a nowhere vanishing canonical multi-

section. These new intersection numbers are rational numbers. Let N be a positive integer.

Introduce the refined open free energy F o,N by

F o,N (t0, t1, . . . , s) :=
∑

g,k,l≥0
b≥1

∑

a1,...,al≥0

〈
τa1 · · · τalσk

〉o

g,b

N bsk
∏

tai
k!l!

.

Clearly, F o,1 = F o. Let q0, q1, . . . be formal variables. Introduce the very refined open free

energy F̃ o by

F̃ o(t0, t1, . . . , q0, q1, . . .) :=
∑

g,k,l≥0
b≥1

∑

k=(k1,...,kb)∈P (k,b)
a1,...,al≥0

〈
τa1 · · · τalσk

〉o

g

∏
tai

∏
qkj

k!l!
.

Of course, the function F o,N can be easily expressed in terms of the function F̃ o:

F o,N = F̃ o
∣∣∣
qi=Nsi

.

The reason, why we want to consider the refined open free energy F o,N separately, is that

it admits a natural extension, while we do not know whether the very refined open free

energy F̃ o can be extended. The exponents τ oN := exp(F o,N +F c) and τ̃ o := exp(F̃ o +F c)

will be called the refined open partition function and the very refined open partition function

respectively.

In this paper we generalize the result of the third author from [21] and find a com-

binatorial formula for the very refined open intersection numbers. We also derive matrix

models for the refined and the very refined open partition functions. We then show that

the form of our matrix model for the refined open partition function τ oN suggests a natural

way to add the variables si, i ≥ 1, in it. We denote the extended function by τ o,extN and

call it the extended refined open partition function. This function satisfies the properties

τ o,extN

∣∣∣
s≥1=0

= τ oN , τ o,ext1 = τ o,ext.

Therefore, it is natural to view the variables si, i ≥ 1, in the function τ o,extN as descendents of

the boundary marked points in the refined open intersection theory. We also prove that the

extended refined open partition function τ o,extN is related to the very refined open partition

function τ̃ o by a simple transformation. Moreover, we show that this transformation is

invertible, so the collection of functions τ o,extN , N ≥ 1, and the function τ̃ o are in a certain

sense equivalent. Finally, we conjecture that the function τ o,extN coincides with the tau-

function τN given by the Kontsevich-Penner matrix integral (1.7) and present an evidence

for the conjecture. In particular, we derive the string and the dilaton equations for the

function τ o,extN and also prove the conjecture in genus 0 and 1.
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Remark 1.2. In [16] the author conjectured that there exists a refinement of the extended

open partition function τ o,ext that distinguishes contributions from Riemann surfaces with

different numbers of boundary components and that coincides with the Kontsevich-Penner

tau-function τN . Since we construct this refinement, our conjecture can be considered as

a stronger version of the conjecture of B. Safnuk from [16].

Remark 1.3. Another approach to refined open intersection numbers was recently sug-

gested by B. Safnuk in [17]. His approach is quite different to ours, because, in particular,

he does not consider boundary marked points and, moreover, he uses a different compact-

ification of Mg,0,l. His intersection numbers are given as integrals of some specific volume

forms. B. Safnuk also has a combinatorial formula for his refined open intersection num-

bers and it directly gives the Kontsevich-Penner matrix model. It would be interesting to

obtain a direct relation between the two approaches.

1.2 Organization of the paper

In section 2 we show that the construction of [18] admits a refinement that allows to define

the products (1.8) and (1.9). We also prove combinatorial formulas for the refined and the

very refined open intersection numbers. In section 3 we construct a matrix model for the

very refined open partition function τ̃ oN . We then show that the specialization of it, giving

the refined open partition function, has a natural extension, where new variables can be

interpreted as descendents of boundary marked points. We prove that the extended refined

open partition function τ o,extN is related to the very refined open partition function by a

simple transformation. We also prove the string and the dilaton equations for τ o,extN . In

section 4 we formulate our conjecture about the relation between the function τ o,extN and

the Kontsevich-Penner tau-function τN and present an evidence for it.

2 Very refined open intersection numbers

2.1 Reviewing the proof of the combinatorial formula of [21]

In order to prove a combinatorial formula for the refined open intersection numbers, we

first review the proof technique in the rather long paper [21]. Throughout this subsection

we shall address to places in [21].

Step 1. The starting point of [21] is the following well known fact. Let M be an orbifold

with boundary or even corners, of real dimension 2n. Suppose E → M is a vector bundle

of real rank 2n, and s a nowhere vanishing (possibly multi-valued) section of E → ∂M.

Let π : S → M be the sphere bundle associated to E, Φ an angular form and Ω an Euler

form on M. In other words, Φ is a 2n− 1 form on the total space S with

•
∫
π−1(p)Φ = 1, ∀p ∈ M .

• dΦ = −π∗Ω.

Then we have ∫

M
e(E, s) =

∫

M
Ω+

∫

∂M
s∗Φ. (2.1)

– 7 –
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Step 2. In [21], section 4 using the theory of Jenkins-Strebel differential [20], with the

required modifications for graded surfaces with boundary, a combinatorial stratification

of Mg,k,l is constructed. The stratification, given a choice of positive perimeters p =

{p1, . . . , pl}, consists of cells parameterized by metric graded ribbon graphs (G, z). These

are ribbon graphs with a (positive) metric on edges, l+b holes, where the last b holes, called

boundaries correspond to boundary components, the ith hole for 1 ≤ i ≤ l is called a face

and is of perimeter pi, and there are k boundary vertices which correspond to boundary

marked points. z is an index for the graded structure, whose description is not important

at the moment. The topology of the cells is defined in the natural way using the metric.

A cell M(G′,z′) is a face of a cell M(G,z) if G′ is obtained from G by contracting some

edges and z′ is the degenerated graded structure. The edge contraction operation allows a

compactification of the combinatorial moduli, which is a quotient ofMg,k,l, generically 1 : 1.

Denote this compactification by Mcomb
g,k,l (p). Write also Mcomb

g,k,l =
∐

p1,...,pl>0M
comb
g,k,l (p), and

endow it with the natural topology and piecewise linear structure obtained by the graphs

description. For later uses, write M(G′,z′) = ∂eM(G,z) if (G
′, z′) is the result of contracting

the edge e of G.

Not only the moduli, but also the S1 bundles associated to the line bundles Li have

a combinatorial counterpart, first obtained in [13]. Using these, in [21], subsection 4.3, a

combinatorial S2n−1 bundle S = S(E) is constructed for any vector bundle E =
⊕

L
ai
i ,

where n =
∑

ai. It is then shown, in Proposition 4.39, that canonical multisections used

to calculate the open intersection numbers can be taken to be pull backs of canonical mul-

tisections over Mcomb
g,k,l . Call multisections of S whose pull back is canonical combinatorial

canonical. [21], Lemma 4.42 says

Lemma 2.1. For any p1, . . . , pl > 0,
∫

Mg,k,l

e(E, s) =

∫

M
comb
g,k,l (p)

e(S, s′),

where s is a canonical multisection which is a pull back of the combinatorial canonical

multisection s′.

Step 3. In [13] a combinatorial angular form αi and a combinatorial curvature form

ωi were constructed, and using them a combinatorial formula for the closed numbers was

obtained, by integration over highest dimensional cells, those parameterized by trivalent

ribbon graph. The main result of [21], section 3 is an explicit formula for the angular form

Φ of a bundle which is a direct sum of complex line bundles Li, in terms of their angular

forms αi and curvature forms ωi, such that dΦ is the pull back of − ∧ ωi. Plugging this

and (2.1) in Lemma 2.1 we get

2
g+k−1

2 〈τa1 · · · τalσk〉og =

∫

M
comb
g,k,l

l∧

i=1

ωai
i +

∫

∂M
comb
g,k,l

(s′)∗Φ,

where Φ is the explicit angular form for
⊕

L
⊕ai
i .

Finally, this equation can be simplified by noting that only highest dimensional cells

of the combinatorial moduli and its boundary contribute to the integrals. The highest

– 8 –
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dimensional cells of Mcomb
g,k,l are those parameterized by trivalent graded ribbon graphs.

Denote their set by SR0
g,k,l. For any such graph, (G, z) write Br(G) for the set of bridges,

that is, edges which are either internal edges between two boundary vertices or boundary

edges between boundary marked points. The highest dimensional cells in ∂Mcomb
g,k,l are

exactly those obtained from contracting a bridge in a cell of SR0
g,k,l. Putting all together

we obtain ([21],Lemma 4.45)

2
g+k−1

2 〈τa1 · · · τalσk〉 =
∑

(G,z)∈SR0
g,k,l

∫

M(G,z)(p)

l∧

i=1

ωai
i +

∑

(G,z)∈SR0
g,k,l

e∈Br(G)

∫

M∂e(G,z)(p)
(s′)∗Φ, (2.2)

where s′ is combinatorial canonical.

Step 4. The expression (2.2) has a complicated part, the integral of (s′)∗Φ, since it

involves the multisection s′. However, it turns out that the properties of canonical sections

allow computing the right-hand side of (2.2) using iterative integrations by parts. The

result is the integral version of the combinatorial formula. To this end, one must first have

an explicit description of the contributing graded ribbon graphs.

Definition 2.2. Let g, k, l be non-negative integers such that 2g − 2 + k + 2l > 0, A be

a finite set and α : [l] → A a map. α,A will be implicit in the definition. A (g, k, l)-

ribbon graph with boundary is an embedding ι : G → Σ of a connected graph G into a

(g, k, l)-surface with boundary Σ such that

• {xi}i∈[k] ⊆ ι(V (G)), where V (G) is the set of vertices of G. We henceforth consider

{xi} as vertices.

• The degree of any vertex v ∈ V (G) \ {xi} is at least 3.

• ∂Σ ⊆ ι(G).

• If l ≥ 1, then

Σ \ ι(G) =
∐

i∈[l]

Di,

where each Di is a topological open disk, with zi ∈ Di. We call the disks Di faces.

• If l = 0, then ι(G) = ∂Σ.

The genus g(G) of the graph G is the genus of Σ. The number of the boundary components

of G or Σ is denoted by b(G) and vI(G) stands for the number of the internal vertices. We

denote by Faces(G) the set of faces of the graph G, and we consider α as a map

α : Faces(G) → A,

by defining for f ∈ Faces(G), α(f) := α(i), where zi is the unique internal marked point

in f. The map α is called the labeling of G. Denote by VBM (G) the set of boundary marked

points {xi}i∈[k].
Two ribbon graphs with boundary ι : G → Σ, ι′ : G′ → Σ′ are isomorphic, if there

is an orientation preserving homeomorphism Φ: (Σ, {zi}, {xi}) → (Σ′, {z′i}, {x′i}), and an

isomorphism of graphs φ : G → G′, such that
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1. ι′ ◦ φ = Φ ◦ ι.

2. φ(xi) = x′i, for all i ∈ [k].

3. α′(φ(f)) = α(f), where α, α′ are the labelings of G,G′ respectively and f ∈ Faces(G)

is any face of the graph G.

Note that in this definition we do not require the map Φ to preserve the numbering of the

internal marked points.

A ribbon graph is critical, if

• Boundary marked points have degree 2.

• All other vertices have degree 3.

• If l = 0, then g = 0 and k = 3.

A (0, 3, 0)−ribbon graph with boundary is called a ghost.

Consider maps K from the set of directed edges of G to Z2 which satisfy

• K(e) +K(ē) = 1, where ē is e with opposite orientation.

• For any face fi of the graph G we have
∑

K(e) = 1, where the sum is taken over the

directed edges of fi, whose direction agree with the orientation of fi.

• Any directed edge of a boundary component has K = 0.

A grading of a critical ribbon graph is the equivalence class of such maps modulo the

relations obtained by vertex flips. That is, K,K ′ are identified if they differ by a sequence

of moves which flip all the edge assignments for the edges which touch a vertex v. Write

[K] for the equivalence class of K. A graph together with a grading is called a graded graph.

Ametric graded graph is a graded graph (G, [K]) together with a metric ℓ : Edges(G) →
R+. Let M(G,[K]) be the moduli of such metrics.

From now on the explicit object [K] will replace the abstract index z used so far.

In figure 1 two critical ribbon graphs are shown, the right one is a ghost. We draw

internal edges as thick (ribbon) lines, while boundary edges are usual lines. Note that not

all boundary vertices are boundary marked points. We draw parallel lines inside the ghost,

to emphasize that the face bounded by the boundary is a special face, without a marked

point inside.

Definition 2.3. A nodal ribbon graph with boundary is G = (
∐

iGi) /N , where

• ιi : Gi → Σi are ribbon graphs with boundary.

• N ⊂ (∪iVBM (Gi))×(∪iVBM (Gi)) is a set of ordered pairs of boundary marked points

(v1, v2), v1 6= v2, of the Gi’s which we identify.

We require that
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Figure 1. Critical ribbon graphs.

• G is a connected graph,

• Elements of N are disjoint as sets (without ordering).

After the identification of the vertices v1 and v2 the corresponding point in the graph

is called a node. The vertex v1 is called the legal side of the node and the vertex v2 is

called the illegal side of the node.

The set of edges Edges(G) is composed of the internal edges of the Gi’s and of the

boundary edges. The boundary edges are the boundary segments between successive ver-

tices which are not the illegal sides of nodes. For any boundary edge e we denote by m(e)

the number of the illegal sides of nodes lying on it. The boundary marked points of G are

the boundary marked points of Gi’s, which are not nodes. The set of boundary marked

points of G will be denoted by VBM (G) also in the nodal case.

A nodal graph G = (
∐

iGi) /N is critical, if

• All of its components Gi are critical.

• Ghost components do not contain the illegal sides of nodes.

It is called odd critical if it is critical and any boundary component of Gi has an odd

number of points that are the boundary marked points or the legal sides of nodes.

A graded (odd) critical nodal graph (G, [K]) is a critical (odd) ribbon graph with

gradings associated to each component Gi.

A nodal ribbon graph with boundary is naturally embedded into the nodal surface

Σ = (
∐

iΣi) /N . The (doubled) genus of Σ is called the genus of the graph. The notions

of an isomorphism and metric are also as in the non-nodal case. Write M(G,[K]) for the

moduli of metrics on (G, [K]).

Remark 2.4. The genus of a closed, and in particular doubled, nodal surface Σ is the

genus of the smooth surface obtained by smoothing all nodes of Σ.

In figure 2 there is a critical nodal graph of genus 0, with 5 boundary marked points,

6 internal marked points, three components, one of them is a ghost, two nodes, where a

plus sign is drawn next to the legal side of a node and a minus sign is drawn next to the

illegal side.
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Figure 2. A critical nodal ribbon graph.

1
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6

Figure 3. A non-critical nodal ribbon graph.

In figure 3 a non-critical nodal graph is shown. Here there is some vertex of degree

4, the components do not satisfy the parity condition and the ghost component has an

illegal node.

Let SRm
g,k,l(S̃R

m

g,k,l) be the set of isomorphism classes of graded (odd) critical nodal

ribbon graphs with boundary of genus g, with k boundary marked points, l faces and

together with a bijective labeling α : Faces(G)
∼→ [l], and m nodes.

Denote by R̃m
g,k,l the set of isomorphism classes of odd critical nodal ribbon graphs

with boundary of genus g, with k boundary marked points, l faces and together with a

bijective labeling α : Faces(G)
∼→ [l], and m nodes.

Definition 2.5. An effective bridge in a graded critical graph (G, [K]) is a bridge e with

m(e) = 0. We denote their set by Breff(G). The graph ∂e(G, [K]), the result of contracting

of the edge e of (G, [K]), which has one node N more than G has, can also be made

critical nodal by declaring the side of N which corresponds to e to be legal, if K(e) = 0,

and otherwise declare the other side of N to be legal. Denote the resulting graph by

B∂e(G, [K]). The operation B is called the base operation.

Definition 2.6. For a metric graded ribbon graph G, define

WG :=
∏

e∈Edges(G)

ℓ
2m(e)
e

(m(e) + 1)!
, W̃G :=

∏

e∈Edges(G)

ℓ
2m(e)
e

m(e)!(m(e) + 1)!
.

Definition 2.7. An l−set is a map L : [n] → [l]. The size of L is n. A subset of an

l−set is the restriction map L : A → [l], A ⊆ [n]. It can canonically identified with a map

L′ : [|A|] → [l], hence can be thought as an l−set on its own right. We write L′ ⊆ L, and

set
(
L
m

)
for the set of all

(
n
m

)
l−subsets of L of size m.
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Definition 2.8. Any l−set defines a vector bundle EL :=
⊕

LL(i), defined both on the

moduli and on the combinatorial moduli. Let SL be the associated combinatorial sphere

bundle. Let ΦL be the associated explicit angular form, mentioned in Step 3 above, and

defined in [21], section 3. Its curvature form is ωL =
∧

i∈[n] ωL(i).

Lemma 2.9. Write n = k+2l+3g−3
2 Let C ⊆ SRm

g,k,l be a set of graphs and let C ′ ⊆ SRm+1
g,k,l

be the set of graphs obtained by applying for any graph in C and any effective bridge e of

it, first the edge contraction ∂e and then the base operation B. Suppose C is closed in the

following sense: for any graph (G, [K]) in SRm
g,k,l \ C and any effective bridge e of it we

have B(∂eG) /∈ C ′. Then

∑

(G,[K])∈C

∑

e∈Breff(G)

∑

L′∈( L
n−m)

∫

M∂e(G,[K])

WGΦL′ =

=
∑

(G,[K])∈C

∑

L′∈( L
n−m−1)



∫

M(G,[K])

WGωL′ +
∑

e∈Breff(G)

∫

M∂e(G,[K])

WGΦL′


 .

This lemma is the global version of the combination of Lemmas 6.7 and 6.8 of [21]

(there a local version is given, in terms of a single graph, rather than a set C, and in terms

of a single l−subset of it, rather than summing over all subsets).

Applying Lemma 2.9 iteratively to C = SRm
g,k,l, and using some parity observation

(Proposition 6.13 in [21]) give the integrated form of the combinatorial formula, [21], The-

orem 6.12.

Theorem 2.10. For integers a1, . . . , al ≥ 0 which sum to n = k+2l+3g−3
2 , let L be any

l−set with EL =
⊕

L
⊕ai
i , then

2
g+k−1

2 〈τa1 · · · τalσk〉og =
∑

m≥0

∑

(G,[K])∈S̃R
m

g,k,l

∑

L′∈( L
n−m)

∫

M(G,[K])(p)
WGωL′ .

A straightforward corollary is (equation (35) in [21])

Corollary 2.11.

2
g+k−1

2

∑
∑l

i=1 ai=n

∏
p2aii 〈τa1 · · · τalσk〉og =

∑

m≥0

∑

(G,[K])∈S̃R
m

g,k,l

∑

L′∈( L
n−m)

∫

M(G,[K])(p)
W̃G

ω̄n−m

(n−m)!
,

where ω̄ =
∑

i p
2
iωi.

Note that in the last theorem and corollary there is no more dependence on the choice

of the multisection.

Step 5. The last step is to perform Laplace transform to the integrated formula de-

scribed above. This is the content of [21], sections 6.2, 6.3. The only difficulty in the

calculation of the Laplace transform of
∫

M(G,[K])(p)
W̃G

ω̄n−m

(n−m)!
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for a given (G, [K]) ∈ S̃R∗

g,k,l is to show

l∧

i=1

dpi ∧
ω̄n−m

(n−m)!
:

∧

e∈Edges(G)

dℓe = ±
∏

i

2
g(Gi)+b(Gi)−1

2
+vI(Gi),

and to understand the signs. Here Gi are the components of G. This is the content of

section 6.2 in [21].

After understanding the sign and the ratio of forms, the Laplace transform calculations

are straightforward and give

∫

pi∈R+

∧
dpi exp

(
−
∑

λipi

)∫

M(G,[K])(p)
W̃G

ω̄n−m

(n−m)!
= ±

∏
i 2

vI(Gi)+
g(Gi)+b(Gi)−1

2

|Aut(G, [K])|
∏

e∈Edges(G)

λ(e),

(2.3)

where

λ(e) :=





1
λi+λj

, if e is an internal edge between faces i and j;

1
(m+1)

(
2m
m

)
λ−2m−1
i , if e is a boundary edge of face i and m(e) = m;

1, if e is a boundary edge of a ghost.

(2.4)

Summing over the different gradings K, and using the results of section 6.2 regarding the

signs give

∑

[K] is a grading for G

∫

pi∈R+

∧
dpi exp

(
−
∑

λipi

)∫

M(G,[K])(p)
W̃G

ω̄n−m

(n−m)!
=

=

∏
i 2

vI(Gi)+
g(Gi)+b(Gi)−1

2

|Aut(G)|
∏

e∈Edges(G)

λ(e). (2.5)

Summing over all graphs, the resulting combinatorial formula is

Theorem 2.12. Fix g, k, l ≥ 0 such that 2g − 2 + k + 2l > 0. Let λ1, . . . , λl be formal

variables. Then we have

2
g+k−1

2

∑

a1,...,al≥0

〈τa1τa2 · · · τalσk〉og
l∏

i=1

2ai(2ai − 1)!!

λ2ai+1
i

=

=
∑

G=(
∐

i Gi)/N∈R̃∗
g,k,l

∏
i 2

vI(Gi)+g(Gi)+b(Gi)−1

|Aut(G)|
∏

e∈Edges(G)

λ(e). (2.6)

2.2 A combinatorial formula for the refined and very refined numbers

In order to write a combinatorial formula for the more refined numbers, first note

Observation 2.13. Let (G′, [K ′]) ∈ SRm
g,k,l be an arbitrary graph, then there exists a graph

(G, [K]) ∈ SR0
g,k,l, called the smoothing of (G′, [K ′]) and a sequence (ej)

m
j=1 of bridges of

G such that

B∂em · · · B∂e1(G, [K]) = (G′, [K ′]).
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Moreover, if [K̃ ′] is another graded structure on G′ then the smoothing of (G′, [K̃ ′]) is

some (G, [K̃]) with the same G. Thus, the number of boundaries and partitions of boundary

points of the smoothing of a graph (G′, [K ′]) is well-defined and independent of the graded

structure.

The proof is immediate, the operation B remembers the cyclic order of the illegal

nodes on each boundary edge, hence remembers the topology of the graph on which B was

applied. The edge contraction is easily inverted on the level of graphs, and the value of K

on the contracted bridge can be read from knowing which side of the node the B operation

declared to be illegal. The second part of the observation follows from the fact that the

different gradings on G′ do not change the way we invert ∂e.

Note that Steps 1–3 of the previous section work without change for the more refined

numbers, giving us

2
g+k−1

2 〈τa1 · · · τalσk〉og,b =
∑

(G,z)∈SR0
g,b,k,l

∫

M(G,z)(p)

l∧

i=1

ωai
i +

∑

(G,z)∈SR0
g,b,k,l

e∈Br(G)

∫

M∂e(G,[K])(p)
(s′)∗Φ,

(2.7)

where SRm
g,b,k,l is the subset of SRm

g,k,l made of graphs whose smoothing has b boundary

components, and s′ is again combinatorial canonical. Define similarly S̃Rm

g,b,k,l,Rm
g,b,k,l

and R̃m
g,b,k,l. Define SRm

g,k̄,l
, S̃Rm

g,k,l,Rm
g,k,l

, R̃m
g,k,l

, accordingly, for graphs which correspond

to a partition k̄ of boundary marked points. Then acting similarly for the very refined

numbers yields

2
g+k−1

2 〈τa1 · · · τalσk̄〉og =
∑

(G,z)∈SR0
g,k̄,l

∫

M(G,z)(p)

l∧

i=1

ωai
i +

∑

(G,z)∈SR0
g,k̄,l

e∈Br(G)

∫

M∂e(G,[K])(p)
(s′)∗Φ,

(2.8)

where s′ is again combinatorial canonical.

Step 4 requires some modification. Observation 2.13 allows us to apply Lemma 2.9 to

the sets C obtained by taking an arbitrary (G, [K]) ∈ SR0
g,k,l and creating all elements of

SRm
g,k,l obtained from it by contracting bridges and applying B.
Using Lemma 2.9 iteratively now gives

Theorem 2.14. For integers a1, . . . , al ≥ 0 which sum to n = k+2l+3g−3
2 , let L be any

l−set with EL =
⊕

L
⊕ai
i , then

2
g+k−1

2 〈τa1 · · · τalσk〉og,b =
∑

m≥0

∑

(G,[K])∈S̃R
m

g,b,k,l

∑

L′∈( L
n−m)

∫

M(G,[K])(p)
WGωL′ ,

and

2
g+k−1

2

∑
∑l

i=1 ai=n

∏
p2aii 〈τa1 · · · τalσk〉og,b =

∑

m≥0

∑

(G,[K])∈S̃R
m

g,b,k,l

∑

L′∈( L
n−m)

∫

M(G,[K])(p)
W̃G

ω̄n−m

(n−m)!
,

where ω̄ =
∑

i p
2
iωi.
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Similarly, under the same assumptions,

Theorem 2.15.

2
g+k−1

2 〈τa1 · · · τalσk̄〉og =
∑

m≥0

∑

(G,[K])∈S̃R
m

g,k,l

∑

L′∈( L
n−m)

∫

M(G,[K])(p)
WGωL′ ,

and

2
g+k−1

2

∑
∑l

i=1 ai=n

∏
p2aii 〈τa1 · · · τalσk〉og =

∑

m≥0

∑

(G,[K])∈S̃R
m

g,k,l

∑

L′∈( L
n−m)

∫

M(G,[K])(p)
W̃G

ω̄n−m

(n−m)!
.

Step 5 follows without change, since the Laplace transform is performed cell-by-cell,

and then summed over gradings, we see that for the refined numbers it holds that

Theorem 2.16. Fix g, k, l ≥ 0 such that 2g − 2 + k + 2l > 0. Let λ1, . . . , λl be formal

variables. Then we have

2
g+k−1

2

∑

a1,...,al≥0

〈τa1τa2 · · · τalσk〉og,b
l∏

i=1

2ai(2ai − 1)!!

λ2ai+1
i

=

=
∑

G=(
∐

i Gi)/N∈R̃∗
g,b,k,l

∏
i 2

vI(Gi)+g(Gi)+b(Gi)−1

|Aut(G)|
∏

e∈Edges(G)

λ(e). (2.9)

Moreover, suppose that b ≥ 1 and k ∈ P (k, b). Then we have

2
g+k−1

2

∑

a1,...,al≥0

〈τa1τa2 · · · τalσk̄〉og
l∏

i=1

2ai(2ai − 1)!!

λ2ai+1
i

=

=
∑

G=(
∐

i Gi)/N∈R̃∗
g,k̄,l

∏
i 2

vI(Gi)+g(Gi)+b(Gi)−1

|Aut(G)|
∏

e∈Edges(G)

λ(e). (2.10)

3 Matrix models

In this section we present matrix models for the very refined and the extended refined

open partition functions and study their properties. In section 3.1 we briefly recall the

derivation of the matrix model for the open partition function τ o. Then in section 3.2

we show how to modify it in order to control the distribution of boundary marked points

on boundary components of a Riemann surface with boundary. As a result, we obtain a

two-matrix model for the very refined open partition function τ̃ o. In section 3.3 we give

a construction of the extended refined open partition function τ o,extN and present simple

transformations that relate it to the function τ̃ o. In section 3.4 we analyze the Feynman

diagram expansion of the matrix integral for τ o,extN and then in sections 3.5, 3.6 derive the

string and the dilaton equations for τ o,extN .
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It will be useful for the future to rewrite formula (2.10) in the following way. For a graph

G = (
∐

iGi) /N ∈ R̃∗
g,k,l

introduce a combinatorial constant c(G) by c(G) :=
∏

i c(Gi),

where

c(Gi) :=

{
1
2 , if Gi is a ghost,

2eI(Gi)−vI(Gi)−vB3(Gi)−vBM (Gi)+b(Gi), otherwise,
(3.1)

and eI(Gi) denotes the number of internal edges in Gi, vB3(Gi) is the number of boundary

trivalent vertices and vBM (Gi) is the number of boundary marked points in Gi. Then for

any g, k, l ≥ 0, b ≥ 1 and k ∈ P (k, b) we have

∑

a1,...,al≥0

〈τa1τa2 · · · τalσk〉og
l∏

i=1

(2ai − 1)!!

λ2ai+1
i

=
∑

G=(
∐

i Gi)/N∈R̃∗

g,k,l

c(G)

|Aut(G)|
∏

e∈Edges(G)

λ(e).

(3.2)

3.1 Open partition function

Let M ≥ 1. Consider positive real numbers λ1, . . . , λM ∈ R>0 and the diagonal matrix

Λ := diag(λ1, . . . , λM ).

Let

cΛ,M := (2π)−
M2

2

M∏

i=1

√
λi

∏

1≤i<j≤M

(λi + λj).

Denote by HM the space of Hermitian M ×M matrices. For a Hermitian matrix H ∈ HM

denote by hi,j , 1 ≤ i, j ≤ M , its entries. Let

ti(Λ) := (2i− 1)!! tr Λ−2i−1, i ≥ 0.

We consider the standard volume form

dH :=
M∏

i=1

dhi,i
∏

1≤i<j≤M

d (Rehi,j) d (Imhi,j)

on HM . In [6] the second and the third authors proved that

τ o|ti=ti(Λ)
= e

∂2

∂s∂s−

(
e

s3

6 cΛ,M

∫

HM

e
1
6
trH3− 1

2
trH2Λ det

Λ +
√
Λ2 − 2s− −H + s

Λ +
√
Λ2 − 2s− −H − s

dH

)∣∣∣∣∣
s−=0

.

(3.3)

The integral in the brackets on the right-hand side of this expression can be understood in

the sense of formal matrix integration. The form

cΛ,Me−
1
2
trH2ΛdH
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Figure 4. Boundary piece.

gives a Gaussian probability measure on HM . Then we can expand the function

e
1
6
trH3

det
Λ +

√
Λ2 − 2s− −H + s

Λ +
√
Λ2 − 2s− −H − s

in a series of the form
∑

a,b,m≥0

sasb−Pa,b,m, (3.4)

where Pa,b,m is a polynomial of degree m in expressions of the form

tr(HΛ−d1HΛ−d2 · · ·HΛ−dr), r ≥ 1. Here the degree is introduced by putting

deg(tr(HΛ−d1HΛ−d2 · · ·HΛ−dr)) := r + 2
∑r

i=1 di. Note that the integral

cΛ,N

∫

HN

Pa,b,me−
1
2
trH2ΛdH

is zero, if m is odd, and is a rational function in λ1, . . . , λN of degree −m
2 , if m is even.

The integral on the right-hand side of (3.3) is understood as the term-wise integral of (3.4)

with respect to our Gaussian probability measure on HM . We refer the reader to [6] for a

more detailed discussion.

Let us briefly recall the derivation of formula (3.3). It is obtained from the combinato-

rial formula (2.6), rewritten similarly to (3.2), using the standard matrix models technique.

An odd critical nodal ribbon graph with boundary can be obtained from the disjoint union

of critical non-nodal ribbon graphs with boundary by gluing boundary marked points.

Since the sides of each node of the nodal graph are marked by plus or minus, we should

assign pluses and minuses to the boundary marked points of the critical non-nodal ribbon

graphs with boundary. A collar neighborhood of a boundary component of a critical non-

nodal ribbon graph with boundary, that is not a ghost, is a circle with ribbon half-edges

attached to it and also with boundary marked points (see figure 4). Such a circle with a

configuration of ribbon half-edges and marked points will be called a boundary piece. We

see that our odd critical nodal ribbon graph with boundary is obtained by

• gluing a set of trivalent stars (see figure 5) and boundary pieces,

• taking the disjoint union with a number of ghost components (see figure 5), and

• gluing each boundary marked point coming with minus to a boundary marked point

coming with plus.
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Figure 5. Trivalent star and a ghost.

Remember also that, according to the definition of an odd critical nodal ribbon graph with

boundary, the number of boundary marked points coming with plus on each boundary

piece should be odd. We obtain that the trivalent stars give the contribution e
1
6
trH3

in the

matrix model (3.3). Let

G(Λ, s−) :=
∑

m≥0

2−m

m+ 1

(
2m

m

)
sm−Λ−2m−1 =

2

Λ +
√

Λ2 − 2s−
.

Then boundary pieces give

exp


tr


∑

k≥1

1

k

(
H + s

2
G(Λ, s−)

)k

−
∑

k≥1

1

k

(
H − s

2
G(Λ, s−)

)k





= det
Λ +

√
Λ2 − 2s− −H + s

Λ +
√
Λ2 − 2s− −H − s

.

The ghost components give the factor e
s3

6 in (3.3). The application of the operator e
∂2

∂s∂s−

and setting s− = 0 correspond to gluing each boundary marked point coming with minus

to a boundary marked point coming with plus.

3.2 Very refined open partition function

Let us construct now a matrix model for the very refined open partition function τ̃ o.

Let N ≥ 1. In addition to the space HM of Hermitian matrices, we consider the

space MatN,N (C) of complex N × N matrices. We consider it as a real vector space

of dimension 2N2. For a matrix Z ∈ MatN,N (C) denote by zi,j , 1 ≤ i, j ≤ N , its entries.

Define a volume form dZ on MatN,N (C) by

dZ :=
∏

1≤i,j≤N

d(Re zi,j)d(Im zi,j).

Consider the Gaussian probability measure on MatN,N (C) given by the form

1

(2π)N2 e
− 1

2
trZZ

t

dZ.

Let θi,j , 1 ≤ i, j ≤ N , be complex variables and

Θ :=(θi,j)1≤i,j≤N ∈ MatN,N (C),

qm(Θ) := trΘm, m ≥ 0.
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Figure 6. Inserting external ribbon edges.

Theorem 3.1. We have

τ̃ o| ti=ti(Λ)
qi=qi(Θ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
e−

1
2
trH2Λ− 1

2
trZZ

t

e
1
6
trH3+ 1

6
trZ3+ 1

2
trZ

t
Θ× (3.5)

× det
Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN + idM ⊗ Z

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN − idM ⊗ Z

dHdZ.

Proof. We now use the combinatorial formula (3.2). As we explained in the previous

section, an odd critical nodal ribbon graph with boundary is obtained by gluing trivalent

stars (figure 5) and boundary pieces (figure 4), adding ghost components (figure 5) and then

gluing boundary points to create nodes. The problem now is to control the distribution

of the boundary marked points on the boundary components in a smoothing the resulting

nodal ribbon graph with boundary. Our idea is the following. Consider the nodal surface

with boundary that is associated with our nodal ribbon graph with boundary. Consider

a small neighborhood of a boundary node of this surface. At this node two small pieces

of boundary components meet. Then, instead of gluing these two pieces at one point, we

connect them by a small ribbon edge (see figure 6). The new ribbon edge will be called

an external ribbon edge. In figure 6 we fill the external ribbon edges by dots in order to

distinguish them with the usual internal ribbon edges. Doing this procedure at each node,

we obtain a non-nodal surface with boundary, which is a smoothing of the initial nodal

surface. Note that each half of an external ribbon edge is marked by plus or minus.

Note that the resulting non-nodal surface can be glued from elementary pieces in the

following way. Again we have trivalent stars (figure 5). Then we have boundary pieces

similar to what we have in the previous section, but now we want to replace each boundary

marked point by an external ribbon half-edge, marked by plus or minus (see figure 7).

In the same way we replace the ghost component from figure 5 by the ghost component

with external ribbon half-edges (see figure 8). In order to have marked points we have to

introduce an external ribbon half-edge marked by minus (see figure 9). Now, in order to
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Figure 7. Boundary piece with external ribbon half-edges.

Figure 8. Ghost component with external ribbon half-edges.

Figure 9. External ribbon half-edge corresponding to a marked point.

obtain our non-nodal surface with external ribbon edges, we glue a set of elementary pieces

of four types (figures 5, 7, 8, 9) according to the following rules:

• An internal ribbon half-edge should be glued to an internal ribbon half-edge.

• An external ribbon half-edge with some sign should be glued to an external ribbon

half-edge with an opposite sign.

For a polynomial P (Z) ∈ C[zij , zkl] let

〈P (Z)〉 := 1

(2π)N2

∫
P (Z)e−

1
2
trZZ

t

dZ.

Then we have

〈zi,j , zk,l〉 = 〈zi,j , zk,l〉 = 0, (3.6)

〈zi,j , zk,l〉 = 2δi,kδj,l. (3.7)

Formulas (3.6) and (3.7) show that our Gaussian probability measure on MatN,N (C) is

the correct measure to control gluings of external ribbon half-edges with signs. To each

elementary piece from figures 5, 7, 8, 9 we assign a function on HM × MatN,N (C) in the

way shown on these figures. Only the case of boundary pieces with external ribbon half-

edges needs explanations. The function, corresponding to such a piece, is the product of a
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function on HM and a function on MatN,N (C). The function of HM is obtained in the same

way as in the previous section with the only difference that we forget about the variables s

and s−. Concerning a function on MatN,N (C), we go around the boundary piece in the

clockwise direction and look at the external ribbon half-edges that we meet. If an external

ribbon half-edge is marked by plus then we assign to it the matrix Z and if it is marked

by minus then we assign to it the matrix Z
t
. Then the function on MatN,N (C) is the trace

of the product of these matrices taken according to their order in the clockwise direction.

So, the resulting function on HM ×MatN,N (C) is the product of two traces. Note that the

product of the traces of two matrices is the trace of their tensor product. We obtain that

all boundary pieces with external ribbon half-edges give the following contribution to the

matrix model for τ̃ o:

exp


tr


∑

k≥1

1

k

(
H ⊗ idN+idM ⊗ Z

2
G(Λ, Z

t
)

)k

−
∑

k≥1

1

k

(
H ⊗ idN−idM ⊗ Z

2
G(Λ, Z

t
)

)k



 ,

(3.8)

where idM and idN are the identity matrices in the spaces HM and MatN,N (C), respec-

tively, and

G(Λ, Z
t
) :=

∑

m≥0

2−2m

m+ 1

(
2m

m

)
Λ−2m−1 ⊗ (Z

t
)m =

2

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t
.

We see that the expression (3.8) is equal to

det
Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN + idM ⊗ Z

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN − idM ⊗ Z

.

Finally, the trivalent stars give the contribution e
1
6
trH3

in the matrix model (3.5), the ghost

components with external ribbon half-edges give e
1
6
trZ3

and the external ribbon half-edges

corresponding to marked points give e
1
2
trZ

t
Θ. The theorem is proved. �

Using this theorem, we can obtain a matrix model for the refined open partition func-

tion τ oN in the following way:

τ oN |ti=ti(Λ)
=

(
τ̃ o| ti=ti(Λ)

qi=qi(Θ)

)∣∣∣∣∣
Θ=s idN

= (3.9)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
e−

1
2
trH2Λ− 1

2
trZZ

t

e
1
6
trH3+ 1

6
trZ3+ s

2
trZ

t

×

× det
Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN + idM ⊗ Z

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN − idM ⊗ Z

dHdZ.
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3.3 Extended refined open partition function

The extended open partition function τ o,ext ∈ Q[[t0, t1, . . . , s0, s1, . . .]], introduced in [7, 8],

is uniquely determined by the following equations:

τ o,ext
∣∣
s≥1=0

= τ o, (3.10)

∂

∂sn
τ o,ext =

1

(n+ 1)!

∂n+1

∂sn+1
τ o,ext, n ≥ 0. (3.11)

Note that equation (3.9) gives a formula for τ o that is slightly different to the initial

formula (3.3),

τ o|ti=ti(Λ)
=

cΛ,M
2π

∫

HM×C

e−
1
2
trH2Λ− 1

2
zze

1
6
trH3+ z3

6
+ 1

2
sz det

Λ +
√
Λ2 − z −H + z

Λ +
√
Λ2 − z −H − z

dHd2z,

(3.12)

where d2z := d(Re z)d(Im z). Formulas (3.10) and (3.11) imply that

τ o,ext
∣∣
ti=ti(Λ)

=

=
cΛ,M
2π

∫

HM×C

e−
1
2
trH2Λ− zz

2 e
1
6
trH3+ z3

6 det
Λ +

√
Λ2 − z −H + z

Λ +
√
Λ2 − z −H − z

e
∑

i≥0
2−i−1

(i+1)!
siz

i+1

dHd2z.

Let

si(Λ) := 2ii! tr Λ−2i−2, i ≥ 0.

It is easy to see that

e
∑

i≥0
2−i−1

(i+1)!
siz

i+1
∣∣∣∣
si=si(Λ)

= e
1
2

∑
i≥0

zi+1

(i+1)
tr Λ−2i−2

= e−
1
2
tr log(1−zΛ−2) =

= det
1√

1− zΛ−2
=

detΛ

det
√
Λ2 − z

.

So, we get

τ o,ext
∣∣
ti=ti(Λ)
si=si(Λ)

= (3.13)

=
cΛ,M
2π

∫

HM×C

e−
1
2
trH2Λ− zz

2 e
1
6
trH3+ z3

6 det
Λ +

√
Λ2 − z −H + z

Λ +
√
Λ2 − z −H − z

detΛ

det
√
Λ2 − z

dHd2z.

This formula together with equation (3.9) motivates us to introduce a formal power series

τ o,extN ∈ C[[t0, t1, . . . , s0, s1, . . .]] by

τ o,extN

∣∣∣ti=ti(Λ)
si=si(Λ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
e−

1
2
trH2Λ− 1

2
trZZ

t

e
1
6
trH3+ 1

6
trZ3× (3.14)

×det
Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN + idM ⊗ Z

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN − idM ⊗ Z

detΛNdHdZ

det

√
Λ2 ⊗ idN−idM ⊗ Z

t
.
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The uniqueness of a power series with this property is obvious. However, the existence of

such a series is not trivial. In order to prove it we will define a formal power series τ o,extN

using the function τ̃ o and then prove that it satisfies equation (3.14).

For a given N ≥ 1 let us define a formal power series τ o,extN ∈ Q[[t0, t1, . . . , s0, s1, . . .]] by

τ o,extN (t0, t1, . . . , s0, s1, . . .) :=
1

(2π)N2

∫

MatN,N (C)
τ̃ o|qi=qi(Z) e

∑
i≥0

2−i−1

(i+1)!
si tr(Z

t
)i+1

e−
1
2
trZZ

t

dZ.

(3.15)

Lemma 3.2. The function τ o,extN satisfies equation (3.14).

Proof. Note that

detΛN

det

√
Λ2 ⊗ idN − idM ⊗ Z

t
=

1

det

√
idM ⊗ idN − Λ−2 ⊗ Z

t
= e

∑
i≥0

2−i−1

(i+1)!
si(Λ) tr(Z

t
)i+1

.

(3.16)

Then the lemma follows from Theorem 3.1 and the elementary formula:

1

(2π)N2

∫

MatN,N (C)
Q(Θ)e

1
2
trZ

t
Θe−

1
2
trΘΘ

t

dΘ = Q(Z),

where Q(Θ) ∈ C[θi,j ] is an arbitrary polynomial. �

For a finite value of N the transform, defined by the right hand side of (3.15) is not

invertible. However, if we know τ o,extN for all N ≥ 1, we can find τ̃ o. Let us consider the

space UN of unitary N ×N matrices. Then we introduce the volume form on UN , which is

proportional to the Haar measure and normalized by

∫

UN

dU = 1.

Let p1, p2, . . . and p′1, p
′
2, . . . be formal variables.

Lemma 3.3. If

fN (p′1, p
′
2, . . . ) :=

1

(2π)N2

∫

MatN,N (C)
g|pi= 1

i
trZi e

∑
i≥1 2

−ip′i tr(Z
t
)ie−

1
2
trZZ

t

dZ

for some g ∈ C[[p1, p2, . . . ]], then

g|pi= 1
i
trAi =

∫

UN

fN |p′i= 1
i
trU i e

trU
t
AdU, A ∈ MatN,N (C).

Proof. The Schur functions sλ(p1, p2, . . . ), labeled by partitions λ = {λ1 ≥ λ2 ≥ λ3 ≥ . . . },
constitute a basis in the space of formal series in the variables p1, p2, . . . . Recall that they

can be defined by

sλ := det(hλi−i+j)1≤i,j≤l(λ),
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where the polynomials hk(p1, p2, . . .), k ∈ Z, are defined by
∑

i≥0

hiz
i = e

∑
i≥1 piz

i

for k ≥ 0 and by hk := 0 for k < 0. Thus, it is enough to prove the lemma for g = sλ,

where l(λ) ≤ N . (If l(λ) > N then both g|pi= 1
i
trZi and fN are equal to zero.) For any

matrix A ∈ MatN,N (C) let

pi(A) :=
1

i
trAi, i ≥ 1.

For any partition µ and matrices A,B ∈ MatN,N (C) we have the following formula ([1],

eq. (39)),

1

(2π)N2

∫

MatN,N (C)
sλ(p∗(ZA))sµ

(
p∗

(
1

2
Z

t
B

))
e−

1
2
trZZ

t

dZ =
sλ(p∗(AB))

sλ(1, 0, 0, . . .)
δλ,µ.

Then for any unitary matrix U we can compute

1

(2π)N2

∫

MatN,N (C)
sλ(p∗(Z))e−

1
2
trZZ

t
+
∑

i≥1
2−i

i
trU i tr(Z

t
)idZ =

=
1

(2π)N2

∫

MatN,N (C)
sλ(p∗(Z))

∑

µ

sµ(p∗(U))sµ

(
p∗

(
1/2Z

t
))

e−
1
2
trZZ

t

dZ =

=
sλ(p∗(idN ))

sλ(1, 0, 0, . . .)
sλ(p∗(U))

[1], section 1.1
= CN (λ)sλ(p∗(U)),

where

CN (λ) =

N∏

i=1

(λi +N − i)!

(N − i)!
.

On the other hand, for any partition µ and matrices A,B ∈ MatN,N (C) we have [1], eq. (31)

∫

UN

sλ(p∗(UA))sµ(p∗(U
t
B))dU =

sλ(p∗(AB))

sλ(p∗(idN ))
δλ,µ.

Therefore, we obtain

∫

UN

sλ(p∗(U))etrU
t
AdU =

∫

UN

sλ(p∗(U))
∑

k≥0

p1(U
t
A)k

k!
dU =

=

∫

UN

sλ(p∗(U))
∑

µ

sµ(1, 0, 0, . . .)sµ(p∗(U
t
A))dU =

1

CN (λ)
sλ(p∗(A)).

This completes the proof of the lemma. �

In particular, we have

τ̃ o|qi=qi(A) =

∫

UN

τ o,extN

∣∣∣
si=i! trU i+1

etrU
t
AdU.

Equations (3.9), (3.13), (3.14) and (3.16) imply that

τ o,extN

∣∣∣
s≥1=0

= τ oN , τ o,ext1 = τ o,ext.
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We conjecture that there exists a geometric construction of boundary descendents in the

refined open intersection theory giving the extended refined open partition function τ o,extN .

The function

F o,ext,N := log τ o,extN − F c

will be called the extended refined open free energy.

3.4 Feynman diagram expansion of the extended matrix model

Introduce the extended refined open intersection numbers by

〈τa1 · · · τalσc1 · · ·σck〉o,ext,N :=
∂l+kF o,ext,N

∂ta1 · · · ∂tal∂sc1 · · · ∂sck

∣∣∣∣
t∗=s∗=0

. (3.17)

From (3.15) it follows that the intersection number 〈τa1 · · · τalσc1 · · ·σck〉o,ext,N is actually

a polynomial in N with rational coefficients. So, it is well-defined for all values of N , not

necessarily positive integers. Therefore, the extended refined open partition function τ o,extN

is also well-defined for all values of N . We want to write a combinatorial formula for

the extended refined open intersection numbers similar to (2.9). Let us write the matrix

model (3.14) for τ o,extN in the following way:

τ o,extN

∣∣∣
ti=ti(Λ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
e−

1
2
trH2Λ− 1

2
trZZ

t

e
1
6
trH3+ 1

6
trZ3× (3.18)

×det
Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN + idM ⊗ Z

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN − idM ⊗ Z

e
∑

i≥0
2−i−1

(i+1)!
si tr(Z

t
)i+1

dHdZ.

We see that this matrix model is obtained from (3.9) simply by adding the factor

e
∑

i≥1
2−i−1

(i+1)!
si tr(Z

t
)i+1

in the integrand. Doing the Feynman diagram expansion of (3.18)

one can easily see that there is a combinatorial formula for the intersection numbers (3.17)

similar to (2.9), where we allow odd critical nodal ribbon graphs with boundary to have

certain exceptional components. Let us formulate it precisely.

Recall that a (g, k, l)-ribbon graph with boundary is called critical, if

• Boundary marked points have degree 2.

• All other vertices have degree 3.

• If l = 0, then g = 0 and k = 3.

We will call a (g, k, l)-ribbon graph with boundary exceptional, if g = l = 0 and k ≥ 1.

Obviously, for each k ≥ 1 there exists a unique such graph up to an isomorphism, see

figure 10. Note, that we step back a little bit from the original definition of a ribbon graph

with boundary, because exceptional graphs with k = 1 or k = 2 are strictly speaking not

stable. Note also that a critical (0, 3, 0)-ribbon graph with boundary, that we call a ghost,

coincides with an exceptional graph with k = 3. However, our idea is to distinguish them.

Speaking formally, to a (0, 3, 0)-ribbon graph with boundary we additionally assign a type:
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Figure 10. Exceptional graph and the corresponding diagram for the extended matrix model.

it can be a ghost or an exceptional graph. Using this terminology, the set of critical ribbon

graphs with boundary does not intersect the set of exceptional graphs.

A nodal ribbon graph with boundary G = (
∐

iGi) /N will be called extended critical, if

• It does not have boundary marked points.

• All of its components Gi are critical or exceptional.

• Ghost components do not contain the illegal sides of nodes.

• Exceptional components do not contain the legal sides of nodes.

The fact, that we do not allow boundary marked points now, may look surprising, but one

can note that an exceptional component with k = 1 can be easily interpreted as a boundary

marked point. An extended critical nodal ribbon graph with boundary G = (
∐

iGi) /N is

called odd if any boundary component of each non-exceptional Gi has an odd number of the

legal sides of nodes. Denote by R̃ext
l the set of odd extended critical nodal ribbon graphs

with boundary with l internal faces. For a graph G = (
∐

iGi) /N ∈ R̃ext
l introduce the

following notations. Denote by b(G) the number of boundary components in a smoothing of

the nodal surface associated with G. Let c(G) :=
∏

i c(Gi), where c(Gi) is defined by (3.1)

if Gi is non-exceptional and

c(Gi) :=
1

m!
, if Gi is an exceptional graph with m+ 1 boundary vertices, m ≥ 0.

For m ≥ 0 denote by excm(G) the number of exceptional components Gi with exactly

m + 1 boundary vertices. The set of edges Edges(G) is composed of the internal edges of

the Gi’s and of the boundary edges. The boundary edges are the boundary segments in

non-exceptional Gi’s between successive legal sides of nodes. For an edge e ∈ Edges(G)

the function λ(e) is defined by the old formula (2.4). The Feynman diagram expansion of

the matrix model (3.18) gives the following formula for the intersection numbers (3.17):

∑

a1,...,al≥0

∑

m≥0

∑

c1,...,cm≥0

〈τa1 · · · τalσc1 · · ·σcm〉o,ext,N
l∏

i=1

(2ai − 1)!!

λ2ai+1
i

∏m
j=1 scj

m!
=

=
∑

G=(
∐

i Gi)/N∈R̃ext
l

c(G)

|Aut(G)|N
b(G)

∏

e∈Edges(G)

λ(e)
∏

m≥0

sexcm(G)
m . (3.19)
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3.5 String equation

Proposition 3.4. We have the string equation


 ∂

∂t0
−
∑

i≥0

ti+1
∂

∂ti
−
∑

i≥0

si+1
∂

∂si
− t20

2
−Ns0


 τ o,extN = 0. (3.20)

Proof. We will use formula (3.18). Denote

I1 := e
1
6
trH3+ 1

6
trZ3− 1

2
trH2Λ− 1

2
trZZ

t

,

I2 := det
Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN + idM ⊗ Z

Λ⊗ idN +

√
Λ2 ⊗ idN − idM ⊗ Z

t −H ⊗ idN − idM ⊗ Z

,

I3 := e
∑

i≥0
2−i−1

(i+1)!
si tr(Z

t
)i+1

,

ZM,N := τ o,extN

∣∣∣
ti=ti(Λ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
I1I2I3dHdZ.

Our approach is a modification of the diagrammatic method of E. Witten ([24]) that he

used for a proof of the Virasoro equations for the closed partition function τ c. First of all,

note that

−

∑

i≥0

ti+1
∂

∂ti


 τ o,extN

∣∣∣∣∣∣
tj=tj(Λ)

=
M∑

i=1

1

λi

∂

∂λi
ZM,N = (3.21)

=
t0(Λ)

2

2
ZM,N +

cΛ,M

(2π)N2

∫

HM×MatN,N (C)

(
−I2

2
trH2Λ−1 +

M∑

i=1

1

λi

∂I2
∂λi

)
I1I3dHdZ

and

−

∑

i≥0

si+1
∂

∂si
−Ns0


 τ o,extN

∣∣∣∣∣∣
tj=tj(Λ)

=


−

∑

i≥0

si+1
∂

∂si
−Ns0


ZM,N = (3.22)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)


−

∑

i≥0

2−i

i!
si tr(Z

t
)i


 I1I2I3dHdZ =

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
I1I2(−2)

N∑

i=1

∂I3
∂zi,i

dHdZ.

The only non-trivial step in the proof is to express the derivative
∂τo,ext

N

∂t0

∣∣∣∣
ti=ti(Λ)

, as a

matrix integral. Let us prove that

∂τ o,extN

∂t0

∣∣∣∣∣
ti=ti(Λ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)
(trH + trZ) I1I2I3dHdZ. (3.23)
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Figure 11. Graphs that dominate for λ0 → ∞.

The t0 derivative corresponds to an extra insertion of τ0 on the left-hand side of (3.17). We

want to consider the generating function from the left-hand side of (3.19) with an extra

insertion of τ0. In order to get it from the right-hand side of (3.19), we have to sum over

graphs G = (
∐

iGi) /N ∈ R̃ext
l+1 with a distinguished face, which we call C0, labeled with

a variable λ0, then consider the behavior for λ0 → ∞ and extract the coefficient of 1
λ0
.

The coefficient of 1
λ0

comes precisely from graphs, where the face C0 has only one edge.

The structure of the neighborhood of the distinguished face in such graphs is indicated in

figure 11. We see that there are two cases. In the first case, the edge of our face is internal.

In the second case, the edge of the face is boundary. Then, automatically, the face belongs

to a component Gi of type (0, 1, 1). The first picture in figure 11 already appeared in [24]

in the diagrammatic proof of the string equation for τ c. The contribution of this picture in

our situation is computed in exactly the same way, as in [24], and it gives the first term trH

in the brackets on the right-hand side of (3.23). Consider the second picture in figure 11.

A graph outside the dotted lines can be an arbitrary odd extended critical nodal ribbon

graph with an additional distinguished illegal “half” of a node. The part inside the dotted

lines gives 1
λ0
. So, in order to get the contribution of the second picture, we should sum

over all exteriors. It is easy to see that this sum gives the second term trZ in the brackets

on the right-hand side of (3.23).

Computations (3.21), (3.22) and (3.23) show that the string equation (3.20) is equiv-

alent to the equation

∫

HM×MatN,N (C)

[(
−trH2Λ−1

2
+trH+trZ

)
I2I3+I3

M∑

i=1

1

λi

∂I2
∂λi

−2I2

N∑

i=1

∂I3
∂zi,i

]
I1dHdZ=0.

(3.24)

Note that 


M∑

i=1

1

λi

(
∂

∂λi
+

∂

∂hi,i

)
+ 2

N∑

j=1

∂

∂zj,j


 I2 = 0.

Therefore, equation (3.24) is equivalent to

∫

HM×MatN,N (C)

[(
−trH2Λ−1

2
+trH+trZ

)
I2I3−I3

M∑

i=1

1

λi

∂I2
∂hi,i

− 2
N∑

i=1

∂(I2I3)

∂zi,i

]
I1dHdZ=0.

(3.25)
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Applying the relations

0 =

∫

HM×MatN,N (C)

M∑

i=1

1

λi

∂(I1I2I3)

∂hi,i
dHdZ =

=

∫

HM×MatN,N (C)

[(
trH2Λ−1

2
− trH

)
I2I3 + I3

M∑

i=1

1

λi

∂I2
∂hi,i

]
I1dHdZ,

0 =

∫

HM×MatN,N (C)

N∑

j=1

∂(I1I2I3)

∂zj,j
dHdZ =

=

∫

HM×MatN,N (C)

[
−trZ

2
I2I3 +

N∑

i=1

∂(I2I3)

∂zi,i

]
I1dHdZ,

we see that equation (3.25) is true. The string equation (3.20) is proved. �

3.6 Dilaton equation

Proposition 3.5. We have the dilaton equation

 ∂

∂t1
−

∑

n≥0

2n+ 1

3
tn

∂

∂tn
−

∑

n≥0

2n+ 2

3
sn

∂

∂sn
− N2

2
− 1

24


 τ o,extN = 0. (3.26)

Proof. We have


−

∑

i≥0

2i+ 1

3
ti

∂

∂ti


 τ o,extN

∣∣∣∣∣∣
tj=tj(Λ)

=
1

3

∑
λi

∂

∂λi
ZM,N =

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)

[(
M2

6
− trH2Λ

6

)
I1I2I3 +

1

3
I1I3

∑
λi

∂I2
∂λi

]
dHdZ. (3.27)

It is also easy to see that

−

∑

i≥0

2i+ 2

3
si

∂

∂si


τ o,extN

∣∣∣∣∣∣
tj=tj(Λ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)

[
−2

3
I1I2

∑
zi,j

∂I3
∂zi,j

]
dHdZ.

(3.28)

As in the proof of the string equation, the only non-trivial step here is the computation

of the t1 derivative. Let us prove that

∂τ o,extN

∂t1

∣∣∣∣∣
ti=ti(Λ)

=
cΛ,M

(2π)N2

∫

HM×MatN,N (C)

[(
1

3
trH3 − trH2Λ + trHΛ2 +

M2

2
+

1

24

)
I1I2I3

(3.29)

+ I1I3

(
−
∑

λi
∂I2
∂hi,i

+
1

2

∑
zi,j

∂I2
∂zi,j

+
∑

hi,j
∂I2
∂hi,j

)
(3.30)

+

(
1

12
trZ3 +

1

4
trZZ

t
)
I1I2I3

]
dHdZ. (3.31)
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Figure 12. Graphs of internal type that contribute in order 1

λ3

0

.

We want to compute the generating series from the left-hand side of (3.19) with an extra

insertion of τ1. In order to get it from the right-hand side of (3.19), we have to sum over

graphs G = (
∐

iGi) /N ∈ R̃ext
l+1 with a distinguished face, which we call C0, labeled with

a variable λ0, and then pick out the coefficient of 1
λ3
0
. The coefficient of 1

λ3
0
can only come

from graphs, where the face C0 has at most three edges. The structure of such graphs in

indicated in figure 12 and figure 13. We see that there are 10 cases and we divide them

in two types. Graphs of internal type are those graphs where all the edges of the face C0

are internal and graphs of boundary type are those graphs where at least one edge of the

face C0 is boundary. The diagrams inside the dotted lines in the top row in figure 12 are

pieces of arbitrary larger graphs, while the graphs in the bottom row in figure 12 are special

ribbon graphs corresponding to closed Riemann surfaces of genus 0 and 1 respectively. The

five pictures in figure 12 already appeared in [24] in the diagrammatic proof of the dilaton

equation for τ c. The contribution of these pictures in our situation is computed in exactly

the same way, as in [24], and it gives the five terms in the integrand in line (3.29).

Let us consider graphs of boundary type. Let us look at the first picture in figure 13.

Suppose that the face adjacent to C0 is labeled with λi. Then the diagram inside the dotted

lines gives

1

2

1

λ0(λ0 + λi)
=

1

2

(
1

λ2
0

− λi

λ3
0

+ . . .

)
.

So, the coefficient of 1
λ3
0
is −λi

2 . Note that the graph outside the dotted lines can be

an arbitrary odd extended critical ribbon graph with boundary with a distinguished face

labeled by λi and having a boundary edge. Now it is easy to see that the first picture

in figure 13 gives the term −∑
λi

∂I2
∂hi,i

in line (3.30). Consider now the second picture in
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Figure 13. Graphs of boundary type that contribute in order 1

λ3

0

.

figure 13. The part inside the dotted lines gives

1

4

1

λ2
0(λ0 + λi)

=
1

4

1

λ3
0

+ . . . .

So, the coefficient of 1
λ3
0
is 1

4 . Now we may shrink the interior of the dotted lines to a point

and sum over all possible exteriors. This gives the term 1
2

∑
zi,j

∂I2
∂zi,j

in line (3.30). In the

third picture in figure 13 the interior of the dotted lines gives

1

2

1

λ0(λ0 + λi)(λ0 + λj)
=

1

2

1

λ3
0

+ . . . .

Therefore, the coefficient of 1
λ3
0
is 1

2 , and this picture corresponds to the term
∑

hi,j
∂I2
∂hi,j

in line (3.30). One can also easily see that the two pictures in the bottom row in figure 13

correspond to the two terms in the integrand in line (3.31). Thus, formula (3.29) for the

t1 derivative is proved.

Formulas (3.27), (3.28) and (3.29) imply that the dilaton equation (3.26) is equiva-

lent to∫

HM×MatN,N (C)

[(
1

3
trH3− 7

6
trH2Λ+ trHΛ2+

2

3
M2 +

1

12
trZ3+

1

4
trZZ

t− 1

2
N2

)
I1I2I3

+ I1I3

(
1

3

∑
λi

∂I2
∂λi

−
∑

λi
∂I2
∂hi,i

+
1

2

∑
zi,j

∂I2
∂zi,j

+
∑

hi,j
∂I2
∂hi,j

)

−2

3
I1I2

∑
zi,j

∂I3
∂zi,j

]
dHdZ = 0. (3.32)

Using the relation

0=

∫

HM×MatN,N (C)

∑ ∂

∂zi,j
(zi,jI1I2I3) dHdZ =

=

∫

HM×MatN,N (C)

[(
N2− 1

2
trZZ

t
)
I1I2I3 + I1I3

∑
zi,j

∂I2
∂zi,j

+ I1I2
∑

zi,j
∂I3
∂zi,j

]
dHdZ,
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we see that equation (3.32) is equivalent to

∫

HM×MatN,N (C)

[(
1

3
trH3− 7

6
trH2Λ+trHΛ2+

2

3
M2+

1

12
trZ3− 1

12
trZZ

t
+
1

6
N2

)
I1I2I3

(3.33)

+I1I3

(
1

3

∑
λi

∂I2
∂λi

−
∑

λi
∂I2
∂hi,i

+
1

2

∑
zi,j

∂I2
∂zi,j

+
∑

hi,j
∂I2
∂hi,j

+
2

3

∑
zi,j

∂I2
∂zi,j

)]
dHdZ=0.

Note that

(∑
λi

∂

∂λi
+ 2

∑
zi,j

∂

∂zi,j
+
∑

hi,j
∂

∂hi,j
+
∑

zi,j
∂

∂zi,j

)
I2 = 0.

This relation simplifies (3.33) in the following way,

∫

HM×MatN,N (C)

[(
1

3
trH3− 7

6
trH2Λ+trHΛ2+

2

3
M2+

1

12
trZ3− 1

12
trZZ

t
+
1

6
N2

)
I1I2I3

+I1I3

(
−
∑

λi
∂I2
∂hi,i

+
1

6

∑
zi,j

∂I2
∂zi,j

+
2

3

∑
hi,j

∂I2
∂hi,j

)]
dHdZ = 0. (3.34)

Using now the relation

0 =

∫

HM×MatN,N (C)

∑ ∂

∂zi,j
(zi,jI1I2I3) dHdZ =

=

∫

HM×MatN,N (C)

[(
N2 − 1

2
trZZ

t
+

1

2
trZ3

)
I1I2I3 + I1I3

∑
zi,j

∂I2
∂zi,j

]
dHdZ,

we obtain that (3.34) is equivalent to

∫

HM×MatN,N (C)

[(
1

3
trH3 − 7

6
trH2Λ + trHΛ2 +

2

3
M2

)
I1I2I3 (3.35)

+I1I3

(
−
∑

λi
∂I2
∂hi,i

+
2

3

∑
hi,j

∂I2
∂hi,j

)]
dHdZ = 0.

Finally, using the relations

0 =

∫

HM×MatN,N (C)

∑ ∂

∂hi,j
(hi,jI1I2I3) dHdZ =

=

∫

HM×MatN,N (C)

[(
M2 +

1

2
trH3 − trH2Λ

)
I1I2I3 + I1I3

∑
hi,j

∂I2
∂hi,j

]
dHdZ,

0 =

∫

HM×MatN,N (C)

∑
λi

∂

∂hi,i
(I1I2I3) dHdZ =

=

∫

HM×MatN,N (C)

[(
1

2
trH2Λ− trHΛ2

)
I1I2I3 + I1I3

∑
λi

∂I2
∂hi,i

]
dHdZ,

we see that equation (3.35) is true. This completes the proof of the dilaton equation. �
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4 Main conjecture

In this section we formulate a conjectural relation of the extended refined open partition

function τ o,extN to the Kontsevich-Penner tau-function τN from (1.7). In the case N = 1

we show how to relate directly our matrix model (3.14) to the Kontsevich-Penner matrix

model. We also discuss more evidence for the conjecture. In particular, we show that the

conjecture is true in genus 0 and 1.

4.1 Kontsevich-Penner matrix model and the partition function τ o,extN

Let Tk, k ≥ 1, be formal variables. Recall that the Kontsevich-Penner tau-function τN is

defined as a unique formal power series in the variables T1, T2, . . . satisfying equation (1.7)

for each M ≥ 1. It is not hard to see (see section 4.3.2 below) that τN is a formal

power series in T1, T2, . . . with the coefficients that are polynomials in N with rational

coefficients. Therefore, similarly to τ o,extN , the function τN is well-defined for all values

of N , not necessarily positive integers.

Remark 4.1. Note that in [2] our variables Tk are denoted by tk. Note also that we write

the Kontsevich-Penner matrix integral in a way slightly different from [2] (see formula (1.1)

there). In order to identify formula (1.1) from [2] with the right-hand side of (1.7), one has

to make the shift Φ 7→ Φ+ Λ and then the variable change Φ = −H.

In [2, 3] the first author proved that

τ o,ext = τ1| T2i+1=
ti

(2i+1)!!
,

T2i+2=
si

2i+1(i+1)!
.

(4.1)

We propose the following conjecture.

Conjecture 4.2. For any N we have

τ o,extN = τN |
T2i+1=

ti
(2i+1)!!

,

T2i+2=
si

2i+1(i+1)!
.

4.2 Case N = 1

In [2, 3] the relation between τ o,ext and τ1 was established with the help of some properties

of the integrable hierarchies. In this section we prove directly that for N = 1 the integral

representation (3.14) for the generating series of the extended refined open intersection

numbers indeed coincides with the Kontsevich-Penner matrix integral (1.7).

Let

Z̃M :=
1

cΛ,M
τ o,ext

∣∣∣∣ti=ti(Λ),
si=si(Λ).

Then from (3.13) we have

Z̃M =
1

2π

∫

HM×C

e
1
6
trH3− 1

2
trH2Λ− 1

2
|z|2+ 1

6
z3 det

Λ +B −H + z

Λ +B −H − z
det

Λ

B
dHd2z, (4.2)
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where

B :=
√
Λ2 − z̄.

Let us use the identity, valid for arbitrary formal series f of two variables:
∫

C

d2z e−
1
2
|z|2f(z̄, z) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy eixyf(−2iy, x).

Remark 4.3. This relation can be considered as a simplest example of the more general

relation between a complex matrix model and a Hermitian two-matrix model.

This identity allows us to rewrite (4.2) as

Z̃M =
1

2π

∫

HM

dH

∫ ∞

−∞
dx

∫ ∞

−∞
dy e

1
6
trH3− 1

2
trH2Λ+ixy+x3

6 det
Λ +A−H + x

Λ +A−H − x
det

Λ

A
,

where

A :=
√
Λ2 + 2iy

is a diagonal matrix A = diag(a1, . . . , aM ). Let us change the variable of integration

H 7→ H + Λ+A.

Then
1

6
H3 − 1

2
H2Λ 7→ 1

3!
H3 +

1

2
H2A+ iyH +

1

6
(Λ +A)2(A− 2Λ)

and

Z̃M =
1

2π

∫

HM

dH

∫ ∞

−∞
dx

∫ ∞

−∞
dy×

×exp

(
1

6
tr (Λ+A)2(A−2Λ)+

1

6
trH3+

x3

6
+iy(x+trH)+

1

2
trH2A

)
det

H − x

H + x
det

Λ

A
.

The Harish-Chandra-Itzykson-Zuber formula for the unitary matrix integral, depen-

dent on two diagonal matrices

V = diag(v1, v2, . . . , vM ), W = diag(w1, w2, . . . , wM )

yields
∫

UM

etrUV U
t
WdU =

(
M−1∏

k=1

k!

)
detMi,j=1 e

viwj

∏
1<i<j≤M (vi − vj)(wi − wj)

.

We use this formula to integrate out the angular variables in the integral over H. Namely,

we diagonalise H as

H = U diag(h1, . . . , hM )U
t
,

where U is a unitary M ×M matrix, then

Z̃M = (2π)
M2−M−2

2

∫ ∞

−∞
dx

∫ ∞

−∞
dy det

Λ

A
e

1
6
tr (Λ+A)2(A−2Λ)×

×
∫ ∞

−∞
dh1 . . .

∫ ∞

−∞
dhM

∏

1≤i<j≤M

hi − hj
(hi + hj)(ai − aj)

e
∑M

i=1(
1
6
h3
i+iyhi+

1
2
h2
i ai)+

x3

6
+iyx

M∏

i=1

hi − x

hi + x
.
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We can consider x as an additional eigenvalue of the Hermitian (M + 1) × (M + 1)

matrix, which we denote it by Φ̃. For the diagonal (M + 1)× (M + 1) matrix

Ã = diag(a1, a2, . . . , aM , 0),

from the Harish-Chandra-Itzykson-Zuber formula it follows that

Z̃M =
detΛ

(2π)M+1

∫ ∞

−∞
dy e

1
6
tr (Λ+A)2(A−2Λ)

∫

HM+1

e
tr

(
Φ̃3

6
+ Φ̃2Ã

2
+iyΦ̃

)

dΦ̃.

Now we shift

Φ̃ 7→ Φ̃− Ã

so that

tr
1

6
(Λ +A)2(A− 2Λ) + tr

(
Φ̃3

6
+

Φ̃2Ã

2
+ iyΦ̃

)
7→ tr

(
Φ̃3

6
− Λ̃2Φ̃

2
− Λ3

3

)
,

where

Λ̃ := diag(λ1, λ2, . . . , λM ,
√
−2iy).

Then

Z̃M =
detΛ

(2π)M+1
e−tr Λ3

3

∫ ∞

−∞
dy

∫

HM+1

e
tr

(
Φ̃3

6
− Φ̃Λ̃2

2

)

dΦ̃.

Since

tr
Φ̃Λ̃2

2
=

1

2

M∑

i=1

Φ̃i,iλ
2
i − i y Φ̃M+1,M+1

we can integrate out y:

∫ ∞

−∞
dy eiyΦ̃M+1,M+1 = 2πδ(Φ̃M+1,M+1),

where δ is the Dirac delta-function. Thus

Z̃M =
detΛ

(2π)M
e−tr Λ3

3

∫

HM+1

δ(Φ̃M+1,M+1) e
tr

(
Φ̃3

6
− Φ̃Λ∗2

2

)

dΦ̃.

Here Λ∗ is an (M + 1)× (M + 1) diagonal matrix

Λ∗ := diag(λ1, λ2, . . . , λm, 0).

Let us change the variable of integration

Φ̃ 7→ Φ̃− Λ∗

so that

tr

(
Φ̃3

6
− Φ̃Λ∗2

2

)
7→ tr

(
Φ̃3

6
− Φ̃2Λ∗

2

)
+ tr

Λ3

3

– 36 –



J
H
E
P
0
3
(
2
0
1
7
)
1
2
3

and

Z̃M =
detΛ

(2π)M

∫

HM+1

δ(Φ̃M+1,M+1) e
tr

(
Φ̃3

6
− Φ̃Λ∗2

2

)

dΦ̃.

Because of the Dirac delta-function, the last integral reduces to the one over the

Hermitian matrices of the form

Φ̃ =

(
H C

C̄t 0

)
,

where H is an M ×M Hermitian matrix and C is a complex vector. Since

tr Φ̃3 = trH3 + 3C̄tHC

and

tr Φ̃2Λ∗ = trH2Λ + C̄tΛC

we have

Z̃M =
detΛ

(2π)M

∫

HM×CM

e
tr

(
H3

6
−H2Λ

2

)
− 1

2
C̄t(Λ−H)C

dH
M∏

i=1

dCi

=

∫

HM

e
1
6
trH3− 1

2
trH2Λ detΛ

det(Λ−H)
dH.

Remark 4.4. We expect that a similar argument can be applied for any positive integer N .

4.3 Further evidence

4.3.1 String and dilaton equations

String and dilaton equations for the Kontsevich-Penner model were derived in [2, 5] (In a

more general setup of the Generalized Kontsevich Model the string equation in terms of

the eigenvalues of the external matrix was derived already in [12]). They coincide with the

equations for the extended refined open partition function, derived in sections 3.5 and 3.6.

4.3.2 Genus expansion

Let

FKP,N := log τN − F c|ti=(2i+1)!!T2i+1
,

〈θa1 · · · θan〉KP,N :=
∂nFKP,N

∂Ta1 · · · ∂Tan

∣∣∣∣
T∗=0

, n ≥ 1, a1, . . . , an ≥ 1.

Then Conjecture 4.2 is equivalent to the equation

〈τa1 · · · τalσc1 · · ·σck〉o,ext,N =
〈θ2a1+1 · · · θ2al+1θ2c1+2 · · · θ2ck+2〉KP,N

∏
i(2ai + 1)!!

∏
j 2

cj+1(cj + 1)!
. (4.3)
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Let us insert genus parameters on the both sides of this equation. Let us look at the

combinatorial formula (3.19). An elementary computation shows that for a graph G ∈ R̃ext
l

we have

− deg


 ∏

e∈Edges(G)

λ(e)


+

∑

m≥0

(2m+ 2)excm(G) = 3


g(G)− 1 + l +

∑

m≥0

excm(G)


 ,

where deg denotes the degree of a rational function in λ1, . . . , λl. This implies that a

graph G ∈ R̃ext
l contributes only to intersection numbers

〈∏l
i=1 τai

∏k
j=1 σcj

〉o,ext,N
with

∑
(2ai+1)+

∑
(2cj +2) = 3(g(G)− 1+ l+k). For g ≥ 0 define

〈∏l
i=1 τai

∏k
j=1 σcj

〉o,ext,N

g

to be equal to
〈∏l

i=1 τai
∏k

j=1 σcj

〉o,ext,N
, if

∑
(2ai+1)+

∑
(2cj+2) = 3(g−1+ l+k), and

to be equal to 0 otherwise. Note that for a graph G ∈ R̃ext
l the parity of b(G) is opposite

to the parity of g(G) and also b(G) ≤ g(G) + 1. Thus,

〈∏
τai

∏
σcj

〉o,ext,N

g
is

{
an odd polynomial in N of degree ≤ g + 1, if g is even,

an even polynomial in N of degree ≤ g + 1, if g is odd.

(4.4)

In particular,
〈∏

τai
∏

σcj

〉o,ext,N

g
=

〈∏
τai

∏
σcj

〉o,ext,1

g
Ng+1, for g = 0, 1. (4.5)

Let us now look at the numbers 〈θa1 · · · θan〉KP,N . For n ≥ 1 denote by RKP
n the set of

critical ribbon graphs with boundary, but with no boundary marked points and n internal

faces together with a bijective labeling α : Faces(G)
∼→ [n]. Doing the Feynman diagram

expansion of the Kontsevich-Penner matrix model (1.7) (see [17]), one gets that

∑

a1,...,an≥1

〈θa1 · · · θan〉KP,N
n∏

i=1

1

aiλ
ai
i

=
∑

G∈RKP
n

2eI(G)−vI(G)

|Aut(G)| N b(G)
∏

e∈Edges(G)

λ(e), n ≥ 1.

(4.6)

We see that, similarly to the intersection numbers (3.17), the number 〈θa1 · · · θan〉KP,N is

a polynomial in N with rational coefficients. It is easy to see that a graph G ∈ RKP
n

contributes only to intersection numbers 〈θa1 · · · θan〉KP,N with
∑

ai = 3(g(G) − 1 + n).

So, for a non-negative integer g we define 〈θa1 · · · θan〉KP,N
g to be equal to 〈θa1 · · · θan〉KP,N ,

if
∑

ai = 3(g − 1 + n), and to be equal to 0 otherwise. The combinatorial formula (4.6)

immediately implies that

〈∏
θai

〉KP,N

g
is

{
an odd polynomial in N of degree ≤ g + 1, if g is even,

an even polynomial in N of degree ≤ g + 1, if g is odd.
(4.7)

Therefore,
〈∏

θai

〉KP,N

g
=

〈∏
θai

〉KP,1

g
Ng+1, for g = 0, 1. (4.8)
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Properties (4.4) and (4.7) agree with the conjectural equation (4.3). Also these prop-

erties together with equation (4.1) imply that Conjecture 4.2 is true for N = −1. Equa-

tions (4.5) and (4.8) together with (4.1) imply that the equation

〈τa1 · · · τalσc1 · · ·σck〉o,ext,Ng =
〈θ2a1+1 · · · θ2al+1θ2c1+2 · · · θ2ck+2〉KP,N

g∏
i(2ai + 1)!!

∏
j 2

cj+1(cj + 1)!
(4.9)

is true for g = 0 and g = 1.

We have also checked equation (4.9) in several cases in genus 2.
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