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H I G H L I G H T S

• Multi-objective algorithm applied to
the self-optimization of flow reactor.

• Algorithm simultaneously targeted
reactor productivity and environ-
mental objectives.

• Pareto front shows the trade-off be-
tween these target objectives.

• Gaussian process models provide
knowledge about the nature of inter-
actions.
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A B S T R A C T

Automated development of chemical processes requires access to sophisticated algorithms for multi-objective
optimization, since single-objective optimization fails to identify the trade-offs between conflicting performance
criteria. Herein we report the implementation of a new multi-objective machine learning optimization algorithm
for self-optimization, and demonstrate it in two exemplar chemical reactions performed in continuous flow. The
algorithm successfully identified a set of optimal conditions corresponding to the trade-off curve (Pareto front)
between environmental and economic objectives in both cases. Thus, it reveals the complete underlying trade-off
and is not limited to one compromise as is the case in many other studies. The machine learning algorithm
proved to be extremely data efficient, identifying the optimal conditions for the objectives in a lower number of
experiments compared to single-objective optimizations. The complete underlying trade-off between multiple
objectives is identified without arbitrary weighting factors, but via true multi-objective optimization.

1. Introduction

Robotic automated chemistry development is the future of chem-
istry and chemical manufacturing – increasingly methods using robotics
and machine learning are applied to discovering new chemical

transformations [1], synthesizing organic compounds [2], and multiple
process parameter optimization [3–5]. The task of optimizing chemical
reactions is highly challenging, since optimization response surfaces are
often non-linear, and there are many simultaneous objective functions,
such as reaction yield, process cost, impurity levels and environmental
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impact, which need to be considered [6]. Especially the problem of
optimizing the impurities profile is of huge significance for the phar-
maceutical industry. The ability to perform efficient and automated
multi-objective optimization represents a step-change advance in de-
veloping novel chemical processes. However, in the optimization
community, the problem of multi-objective black-box optimization
where the objective functions are expensive-to-evaluate, in terms of
cost and time of conducting an experiment, which covers most pro-
blems of interest to the chemistry community, belongs to the class of
‘orphan’ problems, with very few advanced algorithms available. This
paper demonstrates for the first time the use of true multi-objective
machine learning methods for the self-optimization of two exemplar
chemical reactions with competing economic and environmental ob-
jectives. We demonstrate that both objectives can be simultaneously
optimized and that a set of optimal solutions corresponding to the
trade-off between reactor productivity and environmental impact can
be identified. Furthermore, the problem of minimizing product im-
purities was included, which has not been addressed in previous self-
optimizations [7–12].

Single-objective optimization algorithms, such as simplex [13,14]
and SNOBFIT [15], have been successfully employed for the optimi-
zation of chemical reactions [16–23]. However, it is important to
consider multiple performance criteria when developing a chemical
process. For example, Moore and Jensen observed low conversion at the
self-optimized conditions corresponding to optimal productivity for a
Paal-Knorr reaction, thus yielding an overall sub-optimal process. This
was resolved by the addition of a penalty term for low conversion to
their objective function [24].

The combination of multiple competing objectives into a single
function is a common remedy. This was demonstrated by Houben et al.
for the multitarget optimization of an emulsion polymerization process
using a machine learning algorithm [25,26]. However, the a priori de-
termination of adequate weights for these objectives is difficult. For
example, Fitzpatrick et al. combined throughput, conversion and con-
sumption into a single-objective function that led to skewed results
[27].

These examples highlight two major problems with the scalarization
of multiple performance criteria: (i) quantitative a priori knowledge is
needed which requires additional experiments; (ii) only one optimal
result is obtained which is dependent on the chosen objective function
and does not reveal the complete trade-off between multiple perfor-
mance criteria, i.e., their Pareto front (Fig. 1).

As economic and environmental objectives are generally competing,

it is impossible to find one point where both objectives are at their
optimal values [6]. Rather, the solution of a multi-objective optimiza-
tion problem is a set of non-dominated points where one objective
cannot be improved without having a detrimental effect on the other.
This set is called a Pareto front (Fig. 1) [28]. The goal of this study is to
explore the complete Pareto front of a reaction system and not only a
single compromise point. This requires the simultaneous optimization
of multiple objectives.

Multiple (conflicting) objectives are encountered in many chemical
engineering applications, e.g., conversion and selectivity in a chemical
reaction [29]. The simultaneous optimization of those using multi-ob-
jective optimization techniques has also been reported in numerous
literature examples [30–35]. As solution strategies, parametric ap-
proach, epsilon constraint method or genetic algorithms like the NSGA-
II algorithm are most commonly used [36]. However, these methods are
not well-suited for the automated chemical reaction system because
they require many function evaluations and partly derivative informa-
tion that is not (analytically) available.

Bayesian optimization methods are derivative-free global stochastic
optimization methods that are particularly well-suited for expensive-to-
evaluate problems. They have successfully been used to optimize ex-
pensive-to-evaluate computer simulations in many disciplines
[35,37–39]. To archive this, Bayesian optimization algorithms train
Gaussian process (GP) surrogate models on available data and identify
new samples based on the predictions and uncertainty of the surrogates.

There exist a few multi-objective Bayesian optimization algorithms
that aim to approximate a Pareto front, including: Thompson Sampling
Efficient Multi-Objective (TS-EMO) [40–42], ParEGO [43] and ex-
pected hypervolume improvement (EHI) [44]. The quality of a Pareto
front can be quantified by its hypervolume, i.e., the area spanned by the
Pareto front and a reference point in the 2-dimensional case. Data ef-
ficiency in this context is given by hypervolume obtained in a limited
number of function evaluations. In this work, we use TS-EMO which has
been shown to have comparable or better data efficiency than both EHI
and ParEGO. Further, TS-EMO has performed favorable compared to
the commonly used genetic algorithm NSGA-II on a set of mathematical
test functions for a given budget [40–42]. The TS-EMO algorithm
[40–42] has recently been applied to the optimization of a process
flowsheet, combining targets of low cost and low carbon emissions over
the life cycle [35]. An open-source implementation of TS-EMO is
available on GitHub [42].

2. Results and discussion

Herein, the recently developed TS-EMO algorithm is combined with
an automated continuous reaction system. A small dataset is collected
using Latin hypercube (LHC) sampling to initialize the TS-EMO algo-
rithm [45,46]. Within the algorithm, individual GP surrogate models
are trained to approximate the unknown response surfaces of the ob-
jectives [46,47]. The GPs are non-parametric regression models that
can be understood as infinite dimensional generalizations of multi-
variate Gaussian distributions [46]. The TS-EMO algorithm randomly
samples functions from those GPs using spectral sampling. Then, a
multi-objective genetic algorithm is called within TS-EMO and identi-
fies the Pareto front of the random samples. Finally, TS-EMO identifies
a set of experiments from that Pareto front (of the random GP samples),
which aim to improve the hypervolume of the actual Pareto front (of
the experiments conducted). After conducting the suggested experi-
ments, the GPs are updated and the process is repeated iteratively for a
desired number of experiments. Within the algorithm the randomness
of sampling naturally accounts for the exploration and exploitation
trade-off desired in Bayesian optimization.

The TS-EMO algorithm was incorporated into the automated flow
reactor (Scheme 1) and evaluated using two case studies: (i) SNAr re-
action between 2,4-difluoronitrobenzene 1 and morpholine 2 to form
desired ortho product 3 and undesired para-4 and bis adduct 5 (Scheme

Fig. 1. An example of a system with two competing minimization performance
criteria A and B. It is infeasible to find the utopian point where both A and B are
at their optimal values. The points on the Pareto front are non-dominated so-
lutions, as A or B cannot be improved without having a detrimental effect on
the other.
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2); [47] (ii) N-benzylation of α-methylbenzylamine 6 with benzyl
bromide 7 to form desired 2° amine 8 and undesired 3° amine 9
(Scheme 3) [48]. In both cases, the product composition was de-
termined by on-line HPLC and the data used as inputs for the TS-EMO
algorithm.

To find environmentally acceptable and economic operating con-
ditions for the synthesis of ortho-3, we aimed to maximize the space-
time yield (STY) and minimize the E-factor of the reaction simulta-
neously [Eq. (1)], where the STY is a measure of reactor productivity
[Eq. (2)] and the E-factor is defined as the ratio of the mass of waste to
the mass of product [Eq. (3)] [49].

− −minimize [ ln(STY), ln(E factor)] (1)

= ×m V tSTY ̇ /( )resproduct (2)

− = m mE factor ̇ / ̇waste product (3)

where ṁproduct =mass of product, ṁwaste=mass of waste, V= volume
of reactor and tres= residence time.

It is important to note that the product composition, and the re-
sulting downstream processes (work-up etc.), will have a significant
impact on the STY and E-factor of a process. However, such con-
siderations were beyond the scope of this work, as non-reactive unit

operations were not included in the optimizations.
The objectives were natural log-transformed as this is known to

enhance response-surface-based optimization [50]. Due to the log-
transformation, the distances in the Pareto front of the algorithm are
log-scaled and hence the algorithm favors a log-spaced Pareto front.
The optimization was conducted with respect to four-variables: re-
sidence time (tres), morpholine 2 equivalents, concentration of 1 and
temperature (Table 1). The results of the optimization are shown in
Fig. 2.

Herein, the automated setup was started in the evening and run
overnight. The algorithm was terminated manually in the morning
under the criterion that a dense front of at least 20 experimental Pareto
data points were collected. The initial LHC size was 20, and results were
in the region of solutions corresponding to high E-factors and low STYs.
Nevertheless, the subsequent 48 experiments designed by the TS-EMO
algorithm rapidly converged to a dense Pareto front consisting of 26
points. The optimal STY was 13,120 kgm−3 h−1 with an E-factor of 1.6.
Conversely, the optimal E-factor was 0.2 with a STY of
3650 kgm−3 h−1. Therefore, the data shows the inherent trade-off
between STY and E-factor. The Pareto front can be divided into two
sections. The left section where the gradient is shallow, the STY can be
significantly increased whilst having a relatively small effect on the E-
factor. This corresponds to decreasing the tres at the lower limit of
morpholine equivalents. The STY can be further improved by increasing
the morpholine equivalents at the lower tres limit. However, this results

P2
HPLC

Automated 
Reactor

P3

P1

Tubular 
Reactor

BPR

SL

TSEMO

Scheme 1. Reactor set-up for case studies. Reagents were pumped using JASCO
PU980 pumps (P) and were mixed in Swagelok tee-pieces. A Polar Bear Plus
Flow Synthesiser was used for heating and cooling of the tubular reactor.
Aliquots of the reaction mixture were delivered to the HPLC mobile phase using
a VICI Valco 4 port sample loop (SL). The reaction was maintained under fixed
back pressure using an Upchurch Scientific back pressure regulator (BPR). PTFE
tubing (1/16″ OD, 1/32″ ID) provided by Polyflon was used throughout the
reactor. Swagelok unions and fittings were used throughout apart from the
sample loop (VICI) and BPR (Upchurch). Quantitative analysis was performed
on an Agilent 1100 series HPLC instrument. The automated reactor was con-
trolled by a custom written Matlab program, within which the TSEMO algo-
rithm was implemented. See ESI for more experimental details.

Scheme 2. Case study one: SNAr reaction.

Scheme 3. Case study two: N-benzylation reaction.

Table 1
Optimization limits for the self-optimizations. Reservoir solutions: 1=2.0M in
EtOH; 2=4.2M in EtOH; 6=0.4M in CHCl3; 7=0.4M in CHCl3.

Case Study One: SNAr Reaction

Limits tres/min Morpholine/eq Conc 1/M Temp/°C

Lower 0.5 1.0 0.1 60
Upper 2.0 5.0 0.5 140

Case Study Two: N-benzylationa

Limits 6/mL min−1 7:6 Solvent:6 Temp/°C

Lower 0.2 1.0 0.5 110
Upper 0.4 5.0 1.0 150

a Optimization parameters directly input in terms of flow rates and ratios.
7:6 is related to the benzyl bromide 7 equivalents and solvent:6 is related to the
concentration of 6.

Fig. 2. Results of the four parameter multi-objective self-optimization of the
SNAr reaction (case study one). The initial LHC size was 20. The TS-EMO al-
gorithm conducted 48 additional experiments, 26 of which formed a dense
Pareto front highlighting the trade-off between the STY and E-factor. 2 LHC
points were omitted for clarity: STY=370 kgm−3 h−1, E-factor= 5.15 &
STY=500 kgm−3 h−1, E-factor= 7.07.
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in a substantial rise in the E-factor shown by a dramatic increase in the
gradient of the Pareto front (operating conditions for each result are
provided in the ESI).

As the direct alkylation of amines with alkyl halides is prone to by-
product formation via over alkylation [48], we chose the N- benzylation
of 1° amine 6 as a second case study. N,N-diisopropylethylamine
(DIPEA) was selected as the base for this reaction to suppress the for-
mation of the quaternary ammonium salt [51]. Thus, we aimed to si-
multaneously maximize the STY of 2° amine 8 and minimize the yield of
the 3° amine 9 impurity [Eq. (4)].

−minimize [ ln(STY), ln(% impurity)] (4)

As previously, the optimization was conducted with respect to four-
variables: 6 flow rate, 7:6 ratio, solvent:6 ratio and temperature
(Table 1). The results of the optimization are shown in Fig. 3. Again, the
experimental system was run autonomously overnight and was manu-
ally terminated in the morning using the same termination criteria as
previously.

The results from the initial 20 LHC experiments were better dis-
tributed in the objective plane compared to the first case study. Of the
58 experiments designed by the TS-EMO algorithm, 20 points formed a
dense Pareto front. The optimal STY was 331 kgm−3 h−1 with an im-
purity yield of 10.0%. Conversely, the optimal impurity yield was 2.2%
with a STY of 142 kgm−3 h−1. Therefore, the data shows the inherent
trade-off between STY and % impurity, similar to that observed for the
SNAr reaction between STY and E-factor. Similar to case study one, the
STY can initially be increased whilst having a relatively small effect on
the % impurity. This corresponds to increasing the concentration of 6 at
the lower temperature limits. Any further increase in STY is achieved by
increasing the temperature, which results in a substantial increase in
the % impurity (operating conditions for each result are provided in the
ESI). It should be noted that there was no reduction in reactor perfor-
mance observed throughout the course of either optimization, indicated
by low variability in the results between experiments with similar re-
action conditions.

In both case studies, multi-objective optimization successfully
identified the target trade-off curve. However, it should be noted that
although the proposed algorithm searches globally, stochastic methods
cannot give any guarantee that the global Pareto front is approximated
to a given tolerance within any finite number of iterations. The main
advantage of the Pareto front is that the information it contains can be
utilized for process design. For example, it may be beneficial to accept
slightly higher impurities in one reaction step if it archives a sig-
nificantly higher STY that more than offsets the additional downstream
processing costs. In contrast, constrained single-objective optimization,

such as those used by Reizman [19] and Baumgartner [52], only
identify one solution point and reveals no knowledge regarding shape
of the Pareto front. In addition, single-objective optimization may find
points that are optimal with respect to one objective but that are still
dominated by the Pareto front. For instance, Fig. 2 shows several points
with a low E-factor and different STY. A single-objective optimization
with respect to E-factor cannot differ between those points but the
proposed approach identifies points that improve STY without wor-
sening E-factor.

The surrogate models of the underlying objectives include hy-
perparameters that are provided by the TS-EMO algorithm, which
provide qualitative information about the relevance of the input vari-
ables. This is referred to as automatic relevance determination [46].
The hyperparameters for both case studies are shown in Table 2. The
hyperparameters θi correspond to the input variables where lower va-
lues indicate a greater contribution to the objective. In the SNAr case
study, the temperature and concentration are significantly more re-
levant for E-factor compared to STY, however the residence time and
morpholine equivalents are relevant to both objectives. This is con-
sistent with the Pareto optimal points, where the residence time and
morpholine equivalents are the decisive variables in determining the
trade-off between STY and E-factor. In the N-benzylation case study, 6
and 7:6 are more relevant for the % impurity than for the STY. In
contrast to the first case study, the temperature is relevant to both
objectives. This is consistent with the Pareto optimal points where
temperature is the decisive variable in determining the trade-off be-
tween % impurity and STY.

Furthermore, the σ2n hyperparameters correspond to the noise of the
system. The low values observed for the systems indicate high quality
and consistent data. As a result, we were able to generate precise GP
surrogate models of the data, which can be used to predict the response
of additional experiments. In the ESI, we show that the GP surrogate
models can be further optimized to provide a denser Pareto front. This
is useful for the optimization of processes involving high value re-
agents, where the number of actual experiments is limited by cost/
availability.

3. Conclusion

In conclusion, we have demonstrated the application of a machine
learning global multi-objective optimization algorithm for the self-op-
timization of reaction conditions. Two case studies using exemplar re-
actions have been presented, and the proposed setup was capable of
simultaneously optimizing productivity (STY) and environmental im-
pact (E-factor) or % impurity. The four-parameter optimizations

Fig. 3. Results of the four parameter multi-objective self-optimization of the N-
benzylation (case study two). The initial LHC size was 20. The TS-EMO algo-
rithm conducted 58 additional experiments, 20 of which formed a dense Pareto
front highlighting the trade-off between the STY and impurity yield.

Table 2
Hyperparameters of GP surrogate models. Lower values of θi indicate a greater
contribution to the objective.

Case Study One: SNAr Reaction

Variable GP 1 (STY) GP 2 (E-Factor)

θresidence time 3.02 7.39
θmorpholine eq. 6.44 5.00
θconcentration 6.10 0.26
θtemperature 16.75 1.07
σ2n 1.46× 10−4 4.54× 10−5

Case Study Two: N-benzylation

Variable GP 1 (STY) GP 2 (% impurity)

θ6 13.14 4.20
θ7:6 11.45 5.53
θsolvent:6 20.62 18.11
θtemperature 7.50 3.28
σ2n 4.02× 10−5 6.14× 10−6
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efficiently converged to dense Pareto fronts within 68 and 78 experi-
ments respectively. These revealed the complete trade-off between the
objectives, which is valuable information when identifying a good
compromise between multiple performance criteria. The developed
approach is suitable for any robotic optimization procedure with con-
tinuous optimization variables and is readily extended to more than two
simultaneous objectives. The use of Gaussian process models provides
additional knowledge about the nature of interactions within the
system, i.e., the contribution of input variables to the objective func-
tions, as well as numerical characterization of the quality of the ex-
periments.
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