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Abstract: Battery temperature is a primary factor affecting the battery performandg@bl8 battery

temperature control, in particular internal temperature control can nogoafgntee the battery operation safety
but also improve its efficiency. This is however challenging as existingoller designs for battery charging
rarely havea mechanism to incorporate such information. This paper propasegel battery charging control
strategy which applies the constrained generalized predictive control (GRarge a LiFeP©Obattery based
on a newly developed coupled thermoelectric model. The control target ibrimiars to maintain the battery
internal temperature withim desirable range while delivering fast charging. To achieve this, theecoup
thermoelectric model is firstly introduced to capture the battery behavioyparticular SOC and internal
temperature which are not directly measurable. Then a controlled auto-regliessgrated moving average
(CARIMA) model, whose structure is optimized ayast recursive algorithm and the parameters are identified
by the recursive least squares algorithm, is devel@ssh online self-tuning predictive model fa GPC
controller. Then the constrained generalized predictive controller is developednipulai@ the charging
current. Experiment ressleonfirm the effectiveness of the proposed control strategy. Furthershecgiorof

the heat dissipation rate and proper internal temperature set-points are inveatigededlysed.

Keywords: LiFePQ battery; Constrained generalized predictive control; Coupled thermoelectrit; Buaitiery

internal temperature; Battery charging process
1. Introduction

To tackle the air pollutions and green-house gas emissions due to extamsuenption of fossil fuels from
different sectors including the transportation, pure battery electric vehicle$ &dshybrid electric vehicles
(HEVS) have attracted substantial interests in recent years to replace conveéntégnal combustion engine
(ICE) based vehicles [1]. In this fast-growing area, high gnéegsity and high specific power batteries are the
focus in order to meet the operational requirements for electric vehicles.gAmdnus types of batteries (e.g.
lead-acid, nickel metdlli-MH and metal/air), lithium-ion (Li-ion) battery is widely usad power supplies in
electric vehicles due tds excellent performance in terms of power densities, longevity and améial
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characteristics. Operation safety of Li-ion batteries is a key issue fori@hagtticles, and a high performance
battery management system (BMS) which consists of distributedbrseasd control units is essential
protecting batteries from damages due to detrimental operation conditisusing batteries operate within safe

environment and prolonging their service life [2].

Battery thermal management is a kernel part of the BMS. Temperature affects patferynance in many
ways such as round trip efficiency, energy and power capability, lfg;lesliability and charge acceptance [3].
Both the surface temperature and internal temperature may exceed permissiblehevebatteries charge or
discharge at prevailing conditioms at high ambient temperature, which is detrimental for battery operation
safety and will dramatically decrease the battery performance. On thehattedr if the battery temperature
exceeds a certain minimum threshold, it starts to generate heat uncolytrelide in operation [4]. The battery
capacity will be lost irreversibly if charging battery at low temperature dysgotw charge transfer at the
electrode/electrolyte interface][5Therefore, suitable battery thermal management which monitors andigontro

the battery temperature is indispensable in EV applications [6].

To date the reasonable working temperature suitable for most currenn batteries igo charge between O-
45°C and discharge betweeB0-60 °C based on the instruction marsitbm most battery manufacturera.
number of effective approaches have been proposed to estimatéornamu control the temperature and to
guaranteeli-ion battery operation safety [[3]. In terms of battery materiasel electrolytes materials, and
anode and cathode materials which can improve operation safety fan batteries under high temperature
circumstance have been researched. Maleki et al. [7] resédrigih thermal Li-ion conductivity cells based on
negative electrode material with high thermal conductive property. Kise et gkented a novel electrode
which can improve safety for Li-ion batteries at high temperat@sbattery packages, researches are mainly
focused on developing passive (i.e., using ambient environment) or ackévegn embedded source provides
heating or cooling) systems to control the battery temperature undeediffituations. Based on the medium
used, these systems can be further grouped as thermal managestemt &3ing air [9], liquid 0], phase

change materialslfl], and combination of these mediumg]|

Furthermore, some researchers focus on the development of electronical airdwuatéemperature management
function is often embedded in the circuits. Park et ] proposed a dynamic thermal model for the Li-ion
battery system using the finite-volume approach. The thermal moddhis-state lumped model where the

Joule heat is applied to calculate the heat generation. A battery cooling systetinewétioling fan was then
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developed under the battery charging and discharging pescésq14], the relationship between the Li-ion
BMS and charging strategies with temperature was analysed, and it habderritgat the battery temperature
has a significant impact on the charging strategy desidn-idn battery protection approach was then proposed
based on the existing integrated circuit (IC) conditions. Kim et al.1By [analysed the effect of power
requirements and temperature change on the electrical states of battery cellbatirdy thermal management

architecture to heat/cool battery cells timely and selectively was proposeprtvéthe efficiency of the BMS.

To design effective control strategies for battery management has been awtitleeresearch topidiang et al.
[16] proposed to adjust the charging current acceptance with different tsitterpf charge (SOC) stages using
a constant-polarization-based fuzzy-control charging method to shorten tlignghame. Liu et al. 17]
presented an optimal five-step charging strategy for Li-ion batteries basedsetutive orthogonal arrays. Hu
et al. [L8] developed a dual-objective optimal charging strategy for lithium nickel-amesg-cobalt oxide
(LINMC) and lithium iron phosphate (LiFeRDbatteries which optimally trades off the conflict between the

energy loss and charging time.

It is clear that most control strategies adapt the charging current acceptdmbattery SOC stageblowever,
little has been done so far to apply advanced control strategiesdhigulate charging currents for battery
thermal management. Klein et al9 used a nonlinear model predictive control (MPC) method to minimize
battery charging time based on the complex electrochemical model. Marcelo[24] alpplied constrained
MPC to generate battery CCCV charge current profile to charge a Li-ion begtbag fast as possiblin these
papers, MPC strategy has been successfully appieBMS, but they mainly consider constraints on the
charging current and voltage, as well as average shell temperature of, bh&demperatures especially the
internal temperature of battery are not considered. This battery internal termgeoatinol is however crucial in
many prevailing battery application conditions. When batteries are chardetightcurrent in order to reach
the specified SOC as quickly as possible in high power applicatiotis, the battery shell and internal
temperature will increase noticeably. When the battery temperature exceeds the opbadting range, battery
performance will be severely damaged and even lead to battery failuresfetyl problemsFurther, there
exists large difference between the battery surface and internal temperainge aharging process (e.g.,
sometimes greater than °ID in high power applications2l]). The battery internal temperature usually
increases to a critical temperature point earlier than the battery surface tereperhrrefore, the battery

temperature especially the internal temperature has to be taken into accourtiattbeas are charged with
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high currents in high power applications. In other word, the baitéeynal temperature has to be controlled

within certain range during the charging process.

One approach to achieve this is through the implementation of the genepaédétive control (GPC) assisted
with a proper battery model which can not only reflect the battery electravioairs but also the surface and
internal temperature. GPC is a self-adapted control algorithmlywigkeed in industrial application22)].
According to ‘look-ahead strategy in GPC, the future outputs can be predicted at each sanmsiagt
effectively. More importantly, GPC is able to calculate the suitable control ieatsnwith the constraist
imposed on both the inputs and the outputs. This implies thatdoastraints suclas voltage, current and
current increment limits which affect the battery performance can dwpiorated into the battery thermal

control strategy directly.

On the other handnany researchers have foed®n developing various battery thermal-electrical models. Lin
et al. 23] proposedan one-dimensional thermal-electrochemical model to comprehensivelytigatesthe

effects of solid electrolyte interphase (SEI) growth on battery perfaenabhao et al. Z4] introduceda
coupled mechanical-electrical-thermal model for battery simulation to better unddtstdmehaviour oLi-ion
batteries under mechanical abubtarie-Therese et al2p] proposed a phenomenological equivalent circuit
model for aLi-ion battery to account for the local electrochemical and thermal behaviour, vanable thyer
capacitance and degradatiorhese developed models have significantly improved the understandihg of
battery charging and discharging processes, though most of thegersgrally too complex to be used in real-
time control. In this paper, we aim to develop advanced control métindzhttery charging, with particular
consideration of the battery internal temperature for safety operation. Tieerefaroper and simplified battery
thermoelectric model plays a vital role in designanbighly efficient control strategy and should be adopted.
Our previous work26] has showra successful development of a coupled battery thermoelectric ma/ital
some improvements of this thermoelectric model and the propomestrained GPC strategy, the battery
behaviours under a given internal temperature and SOC, which are oftenltdiéf measure directly can now

be estimated and controlled, and real world constraints on the battery opesat@hbe incorporated.

In summaryfor the proposed strateghe constrained GPC is first used to charge a battery from an initial SOC
to a targeted state as quickly as possible, while keeping the battery interpatatme within an acceptable
range during the charging process so as to enhance the batteyy ssafeto avoid damages caused by

overheating. Furtherboth battery electrical and thermal constraints including SOC, voltage, cumént a
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temperature during operation are also incorporatediie control strategyrhe main contributions of this work
are summarized as followgl) The proposed fast charging control strategy considers the battenmyainter
temperature which is important for safe operation and control of eleethicles, particularly in some high
power applications where the difference between surface temperatuiatenmél temperature can be quite
large. (2) The improved battery thermoelectric model in the chargingotairategy can guarantee both
charging efficiency and control of internal temperature rising to pgobattery service life. (3) The CARIMA
model structure is optimized by a fast recursive algorithm (FRAs Brings extra benefits in that the model
complexity is optimized so that the CARIMA model used in the GPC camipdified with good performance
and the computation time can be shoetéin the implementation of the GPC controller. (4) The correlation
between battery cooling cost and charging time during the chargingsprizcanalysed to identify the most
appropriate region of heat dissipation ra{&.The effect of internal temperature set-points on both charging

time and energy loss is investigated to identify the proper internpketature set-points.

The remainder of this paper is organized as follows. Section 2 first iceedelevant basics of Li-ion battery
especially LiFeP®battery in particular their temperature constraints, then the improved coupled thermoelectric
model is presented. Section ddvelops the constrained GPC algorithm, especially the predictive model
identification and constraints formulatioDetails to formulate the battery charging control objectieespled
thermoelectric model identification, and battery charging control strategy are preseSttiam 4. Sectiob

gives the experiment results to demonstrate the efficacy of thesgd approach. The most appropriate region
of heat dissipation rates and battery internal temperature set-point aisvalstigated and analysed. Finally,

section 6 concludes the paper.

2. Battery coupled thermoelectric model

In this section, the relevant basics of Li-ion battery especially LikdR@ery, in particular their temperature
constraints are presented firstipllowed by the illustration of the improved battery coupled thermoelectric

model.

2.1 Basics of LiFePOs battery

LiFePQ battery uses nano-scale phosphate cathode materieffer good electrochemical performance with
low resistance. Particular characteristics of LiFgB&ttery are shown in Table 1. LiFePi® more tolerant to

full charge condition and is less stressed than dthérn systems if being kept charging at high voltage.
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[Table 1 about here.]

LiFePQ battery is now widely used in electric vehicles to replace the lead acid batte($)-E2).describe the
chemical reactions occur during charging process. It should be tiated is vital to control the LiFePO

battery charging process as it directly impacts the battery safety dachpmarce.

Ch,
LiFePO, % yLi* +ye™ + Li;_,FePo4  for positive electrode @)
4 _ . Charge .
xLi™ +xe” + Li;_,Cc —— LiCg for negative electrode (2)

Conventional charging methods include current control, voltage contdoMas Law control 27]. Current
control uses a small current to charge battery to avoid sharp increasth ihattery temperature and voltage.
However, this method is difficult to generate a suitable charging currenbrétatfery capacity balancing and

to further ensure operation safety. For voltage control method, battrgriged at constant voltage in order

to avoid overvoltage problem which may ocatithe end of charging process. The disadvantage of this method
is that the current at the beginning of charging process may begioowhich can harm the battery life. The
Mas Law method calculates the current to charge the baiyefylas Three Laws’, but it is only designed for

lead-acid batteries, not for Li-ion batteries.

The constant-current-constant-voltage (CCCV) method integrates coorgrl and voltage control method to
shorencharging time as well as to improve charging performance and §28tyn this method, battery is first
charged at a constant current and the voltage increases due to the charge cheerthéNbattery terminal
voltage reaches the maximum safe value, the battery begins to be chagedstant voltage until the battery
capacity meets the goal requirement. Although CCCV is easy to apypften designed using the voltage
limits and thus may not take full advantage of the actual operating tdréstics of batterieBesides, both the
shell and core temperature may exceed acceptable ranges when the batseged iohhigh power applications
without any other solutionst is therefore vital to include the temperature information when batteharged

using CCCV method for some high power cases.
2.2 Battery temperature constraints

The reasonable ambient temperature limits for various batteries during chargitigcharging process are
shown in Table ﬂ Compared with Lead acid and NiMH/NICd batteky;ion batteries have fairly desirable
charging performance at cooler temperaturesiwitie range of 0 to 45°C (41 to 113°F). During the charging

process, the battery internal resistance will usually cause a slight tempeisunéthiin the battery, and this
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temperature rise will be more significant in cold environment dueetinttrease of the internal resistance. On
the other hand, the battery internal resistance can be reduced by elewabiatidéhy temperature, thus increase
the Li-ion battery charging effectiveness slightly, but excessive higipaeature will dramatically reduce the
battery life. To achieve the best performardeipn batteries are recommended to be charged within a narrower

ambient temperature range of 10°C and 30°C (50°F and 86°F).
[Table 2 about here.]

Apart from the ambient temperature, the internal and surface tempsrafuteion batteries also impact the
battery behaviour during the charging process. In our pregimay , it is clearly shown that the battery
internal and shell temperatures are distinctively different from ambiermget@ture during the fast charging
process. The battery internal temperature is always higher and the difdretween the internal and shell
temperatures can be even more dramatical, which has revealed the imporeffeetitely control the battery

internal temperature in order to prevent Li-ion battery from overheatinggdiine charging process.
2.3 Battery coupled thermoelectric model

In the battery charging process, some battery internal states such as S@€raattemperature are difficult to
measure directly, yet they play vital roles for battery online statusot@md to ensure safe operation. In this
paper, a newly developed thermoelectric model is used to capture bothattbey thermal and electric
behaviours, including voltage, surface temperature, and in particular SOGtanhl temperature during
battery charging. Then according to the comprehensive capture obattery behaviours using this
thermoelectric model, the constrained GPC strategy enables simultaneous and effitiehto guarantee both
battery charging efficiency and internal temperature rising within reaserranges, further to prolong the

battery service life.
2.3.1 Battery electric circuit model

Different battery models including electrochemical models, equivalent electric circuit modelscanpidels
and reduced-order models have been proposed for different applid@8@ng&or LiFePQ battery cells, the
first-order RC model30], namely the Thevenin model, has been widely used in industrial appigatie to its
simple circuitry representation and easy to configure and identify the paraowmtgyared to other mechanism
models. In this paper, the Thevenin model, as shown in Figichosen as the battery electric model to describe

the charging behaviour of Li-ion batteries.
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Fig. 1. Battery Thevenin model.

In the Thevenin model),., is the battery open circuit voltage which is equivalent to electromotive fohee.
inherent conductivity is expressed by an ohmic resistBpcand a RC network is used to describe the battery

polarization. The electrical potential balance is described by
V=V1+i*RO+UOCV (3)

whereV is the battery terminal voltage ands the battery currenk; is the voltage of the RC network, which is

also called the battery polarization voltagg.represents battery internal resistance.

The battery SOGs calculated based on the battery nominal capacity shown as follows,
soc(k) =soc(k — 1) — CT—S *i(k—1) (4)

where(,, is the battery nominal capacity which unit is As (3600 As=1 Ah)Tansl the sampling time period

which unit is second respectively.

Suppose the terminal load current keeps constant during the sanggiiod, phen, following the dynamics of a

RC network, the battery polarization voltalge of RC network could be calculated as,

T

) *Vi(k—1)—Ry (1 — exp (——))* itk—1)

A
R1Cqy

Vi(k) = exp (— i

T
R,Cq
=a, *Vik—1)—by*i(k—1) (5)

Combing equations (3)-(5), the battery Thevenin model can be ezgrasgollows:

soc(k) =sco(k —1) —T,/C, xi(k — 1)
Vitk) =a; «Vi(k—1) — by xi(k — 1) (6)
V(k) =Vi(k) +i(k) xR, + Upcy
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whereR, andU,., are dependent on internal temperature and SOC respectively shown R(&q.Bbth of

them can be obtained from a look-up table based on linear interpolatioithafgor
Ry = fr(Tin) )
Uocy = focv(SOC) (8)
2.3.2 Battery lumped thermal model

Assuming the battery shell temperature and internal temperature are both umifmrheat generation is
uniformly distributed within the battery. Heat conduction is assumed thebenly heat transfer form between
the battery core and shell, and also between the battery shell and the aj@btemcstage approximation of the
radially distributed thermal model for the battery cells can be defined as

(Tsh - Tin)

Cl*Tin=Q+ Re

=Q + ky * (Tsp — Tin) 9)

C, * T — Tin—Tsh + (Tamb=Tsn)
2 sh Re Ry

:kl * (Tin - Tsh) + k2 * (Tamb - Tsh) (10)

where the two states are the battery shell temper&y@nd the battery internal temperat@yg respectively.
T.mp IS the battery ambient temperatufg.is the heat capacity inside the cell aids the heat capacity of the
battery casing@ stands for the generated heat within the battery during the chaigaingidjing processk, is
a lumped parameter gathering the conduction and contact thermal resistane¢haccosnpact materialg,, is
a convection resistance to account for the convective heat transfer mettveedattery surface and the

surroundingatmospherek, , k, both stand for the heat dissipation rate.

For the heat generation p&t two typical ways$ to calculate the heat generation are given below,

{ SR (1)

Q;=i* (W —Upcy) +i*Ty*dUpcy/dTy,
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whereR, is the battery internal resistaney; considers the heat generation is mainly dominated by the ohmic
heat generated over internal resistareconsiders the heat generation caused by the over-potentials and

entropy change within battery.

Assumingl' (k + 1) = ZT_—l *T(k) = Ti* (T(k + 1) — T(k)), the two-stage thermal model for the battery cells

can then be formulatemb

Tinl + 1) = (1= Ty ¢ 22) x Ty (k) + Ty + 22 % T (k) + 2% Q
C1 Cy C1 (12)

kq1+k
¥ Fatke

k Ts
Tsh(k+1)=Ts*_l* in(k)+(1_Ts c )* sh(k)+k2* amb*a

Cz

As the ambient temperature decreases or battery shell temperaturk,riséisincrease accordingly and more
heat be dissipated into the ambien8g,[i.e. k, increases with the temperature gradi&pt— T,,,,,. In order to
take this effect into consideration and further improve the accuracy dhénmal model, two cases are

considered and compared: 1) constant?) time-varyingk,: k, = ky 1 + k5 * (Tsp — Tamp)-
Battery coupled thermoelectric model

The battery Thevenin model and the two-stage thermal model are combinecsbdiacep the coupled

thermoelectric model as follows,

{x(k +1) = Axx(k) + B(k) (13)

V(k) = Vi(K) + fo(Tin (k) * i(k) + foe,(SOC(K))
where

x(k) = [SOC (), Vy (k), Tin (k), Tsp (k)]"

1 0 0 0
A= 0 o 0 0
0 0 1—-Toxk/Cy T * ky/Cy
0 0 Ts x k1 /Gy 1 =T (ky + k3)/C,

B(k) = [_Ts/Cn * i(k), _bl * i(k)' Q * Ts/CD k2 * Tamb * TS/CZ]T

Compared with the battery electric sub-model or the thermal sub-mode] tile above thermoelectric model
couples both the battery electric and thermal behaviours simultanedBsign this advantage, this
thermoelectric modek used to capture the battery behaviours, including voltage, surfaperaure, and in

particular SOC and internal temperature, which are not directly measurabld-iimeeapplications Given

10| Page



these abovea constrained GPC strategy is then applied to charge a battery fromia@nSQIC to a targeted
state while to maintain the battery temperature within an acceptable.reogber both battery electrical and

thermal constraints are also considered in the controller design.

3. Constrained generalized predictive control

3.1 Fundamental principles

Generalized predictive control (GPC) belongs to a wide range of MPC algorithnisrmulates the
optimization proces®f a suitable cost function concerning the future output errors and toenttinns
Compared with traditional control approach, GPC offers some advantadeassaapability of stabilizing non-
minimum phase and unstable open-loop processes, and handling ankneaviable dead-time and plants with
unknown orders. Over the years, the GPC strategy has proven tgtig éffective in many industrial
applications where the performance and robustness are difficult to achieveaditional designs. Besides, the
hard constraints can be incorporated into the controller directly and smheedjuadratic optimization problem

in GPC.

3.2 Predictive model identification

When applying the constrained GPC strategy for the battery chargiogsgr the first task is to select a suitable
predictive model to represent the controlled dynamic process. In order toventite robustness of GPC
controller, an online self-tuning predictive model is formulated using theotled auto-regressive integrated

moving average (CARIMA) model shown as follows,
Az My (k) = 2B k) +5C(zH)e(k) (14)

whereu(k), y(k) ande(k) arem = 1 input vector,;n * 1 output vector andgh * 1 noise vector at sampling
time k respectively. The noise in CARIMA model is supposed to be a zero wigta noised is the delay
factor andA= 1 — z~1 is a difference operatoB.(z™1) is a n * m polynomial matrix,A(z~1) andC(z~') are
n * n polynomial matrices defined respectively as follows.

Az = lyn + A1z + Apz 2 + o+ Ay 27

B(z™') =By +Biz7' + Bz7? + -+ By, 27T (15)
Cz™) =lyn + C1z7" + Coz72 + o+ Cp 277
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In our battery predictive model, the polynomial maifigz=1) is set as an identity matrix,, for easy
computation of each control incremeMultiplying A on each side of Eq. (15), the CARIMA model can be

expressed as follows,

Ay(k) = @™ (k)0 + (k) (16)
whereAy(k) is the vector of the current output increment obtained from #ftierlg coupled thermoelectric
model, ¢(k) = [-Ay(k — 1), ...,—Ay(k — n,), Au(k — 1), ..., Au(k — n, — 1)]7 is a vector of past input and
output increments ang(k) is the white noised = [a, ..., ay,, by, ...,bnb]T stands for the estimated parameter
vectors Both Ay(k) andg(k) can be obtained in each sampling time, therefore to find the oim4[L6)
becomes a typical least square (LS) problem in model identification if theuomsioh is defined as the sum of

squared errors. In order to achieve online self-tuning, the pararfiateesi to be identified using a recursive

least squares (RLS) identification algorithm with forgetting fagtshown as follows,

6(k) =8k — 1) + K()[Ay(k) — oT (k)B(k — 1)]
K (k) = Pk = D[4 + ¢ (k)P(k — Dop()] (17)
P(k) = A [1- K)o (k)] P(k — 1)

In each sampling time, the parametgrsan be updated by Eq. (17), so for a nonlinear systerpatiagneter®
in the predictrte model can be updated in real time and it formulates a self-tuning prodessol€ of the
forgetting factorl is to give the original and new data different weights, so the &§&ithm can track the

variation of the system behaviours quickly during the battery chapgowess.
3.3 J-step prediction outputs

Once the CARIMA model is obtained, the j-step prediction outputs neeel ¢altulated in order to minimize
the prediction error variance. The minimum j-step optimal predigtidn+ j|k) can be derived from the

difference equation as follows.

C(z Vy(k + jlk) = Gi(zHy(k) + F;(z"DAu(k +j — 1) (18)

where G;(z~") andF;(z~1) are polynomial matrices which need to satisfy following Diophantine equation

{C(z‘l) = A(z"YDAE;(z7Y) + 277 Gi(z™) 19)

Fi(z™") = Bz )E;(z™)
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After the corresponding polynomial matrices in Eq. (19) are obtained:step prediction can thus be derived

as follows:
Y = GAU +F (20)

whereY = [9(k + jlt) ... 9(k + Np|t)]™, AU = [Au(k) ... bu(k + Ne — DI, F = [fy . fu,I”

[ Go 0 0 0]
| G G 0 0 |
G=| G',-'_1 G]%Z Gy 0|
lGN.y—1 GN;,—Z GOJ

3.4 Constrained formulation

The predictive control sequence can be obtained by minimizing a multtsiag&inction of the following form:

J =SBk +jlk) =y, (k + DT QLI + jlk) = i (ke + )]
+ 37 Mu(k + j — DTRAu(k +j — 1)

(21)
whereN; is the prediction horizon and. is the control horizon respectivel§). andR stand for weighten the
error vector and control vector respectively in order to constrainutiieeftracking errors and control efforts
along the horizons:,.(k + j) is the set-point sequence for the reference system output g@tck.j|k) is the
optimal j-step prediction for the model output up to tikmédu(k +j— 1) =u(k+j—1) —utk+j—2)is
the future control increment sequence. Tuning parameters for the soairdrweights are the key in designing

the controller.

When the input and output constraints are incorporated into the Iciamtmulation then the optimal solution of
cost function Eg. (21have to fall within the feasible region defined by the constraimsqualities Eq.22) and
Eqg. @3) stipulate the input constraints. Besides, the output constraints which aréatedrioy inequality Eq.

(24) need tde used to confine the control actions within the reliable operating region.

Umin < u(k) < Umax (22)
—Apgy < Au(k) < Ay (23)

whereu,,;, andu,,q, are the minimum and maximum input values respectively/ang,, stands for the
maximum rate of control input.

Ymin < Y(k) < Ymax (24)
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wherey,,in andy,, ., are the minimum and maximum output values respectively.
Substituting the prediction equation EQQO) into the cost function Eq.20), the objective function can be

reformulatedas

] = %AUT(k) -2-[6"QG + RIAU(k) + [2GTQ(F — y,(k + 1))]TAU(k) +C )

= %AUT(k)HAU(k) +gTAU(k) + C
whereC = [F — y,(k + 1)]"Q[F — y,(k + 1)] is a constant term.
In order to formulate a quadratic objective function and employ popularsdor quadratic programming to

solve the constrained control problem, the inequali2@s (23) and @4) should be reformulateas

LAU <D (26)
[_Cl — By + Bu(k — 1) IIZ IO 8 %
where=1 ¢, E D =| Bupgy —Bu(k—=1) |, G| 2 .7 | 0
-G —BpYmin + F I. 'I |
lg | |l By —F | 2 2 2dnexne
L = Ignxngyximxngyr 12 = lonxmys I3 = lgxny, B=[lz I =+ L]TandB, =[l; Iz - L]". m, nare
Nc¢ Np

the number of inputs and outputs respectivaly, N, are the prediction horizon and control horizon
respectively.

4. Constrained GPC for battery temperature control

4.1 Control objectives for battery charging process

Constrained GPC will be first used in battery charging with the target ptkedattery temperature especially
for the internal temperature within acceptable ranges while fast charging the.dd#tetconstraints should be
also considered during the charging process. The constrained GPQ@ysfmatdattery charging process is
shown in Fig. 2. The main control objective is to keep each nethguocess outpdi,, (k) as close as possible
to its set-pointgd;,_r(k). Besides, the hard constraints for terminal voltédgéattery shell temperatufg,,,

battery SOC, and battery charging input curieare also considered.
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Fig. 2. Constrained GPC for battery charging

To ensure that the battery charging is operated efficienthyimille safety region, the current controller for the

battery needs to meet the following requirements:
(1). The battery SOC must meet the EV application demand.

(2). The terminal voltage must be operated within reliable and safe operatigg to avoid high voltage
situation which will accelerate the capacity loss, resulting in internal sinouits as well as decomposition of

the electrolyte.

(3). Both the temperatures of battery shell and core must be maintaitéd avidesired level to ensure proper
and safe charging avoiding battery service life being shortened or terminated and batteryathemaway

caused by over-temperature.

(4). The battery SOC should be charged from initial SOC state to aisgestdte as fast as possible under the

above mentioned constraints.

4.2 Thermoelectric model identification

To apply constrained GPC strategy for the battery thermal management, itessargcto identify its
thermoelectric model based on test and measurement data. Under laboratondigshspa Li-ion battery cell
which has a nominal capacity of 10Ah and a nominal operation voltagedfwas used in this study. The
electric model parameters were identified through the least square methodibasedsured battery terminal
current, voltage and the thermal model parameters were also acquitted theolegstisquare method based on

battery self-heating test data respectively. The detailed identification procesbeaeafdrred to our previous

work and will be not repeated in this paper due to page limit.

15| Page



The battery OCV with SOC is shown in Table 3, and their relaligfy, = f,.,(SOC) is calculated by the
linear interpolation method. The battery internal resistajce calculated under different internal temperature

T, and the relationship fat, = fz(T;,) at different internal temperature is shown in Table 4.
[Table 3 about here.]
[Table 4 about here.]

The identified parametesf the improved thermoelectric model are listed in Table 5. The identified madel
further validated, and for the electric part, the maximum validation voltage isrfess than 50mV (2.1% of
battery nominal voltagepnd the root mean square error (RMSE) is about 3.4mV, the detaliddtion results

can be found i. For the improved thermal part, the validation results are presented in Section 5 in detail.

These modelling errors are acceptable for the design of a suitable batteryghargiol strategy in this study.
[Table 5 about here.]

4.3 Battery charging controller design
Following the introductions of section 2.3 and section 4.2, wedisiuce the constraints for battery charging
process based on the identified thermoelectric model. The applied currenitesl ffor 3C rates based on the

battery properties. The hard constraints of both the terminal voltagauemedt are given as follows,

—30A<i(k)<0A  for3C; (27)
26 V<V(k) <3.65V (28)

Suppose the charging process stiam initial SOC of 0.1, and the targeted state is 0.9, that is
0.1 <S0C(k) <09 (29)

The main control target is to find a suitable charging current prifife that could maintain the battery
temperature within a desired level while driving the SOC from initial stateo(ifial state 0.9 simultaneously.
The hard constraints for voltage and current should be also casidering the charging process. According
to the constrained GPC strategy, the optimal increment seqiéfgeof control inputs (charging current) are
calculated ateachsampling time. This optimal increment sequence minimizes the multistsjefunction
formulated in Eq. Z1) within the area limited by hard constraints on input current,ubB®C and terminal
voltage simultaneously. Finally, the first value of the optimal comieement is extracted and the step-wise

control inputi(k) at each sampling time can be calculated as
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i) = itk — 1) + Ai(k) 30)
whereAi(k) = [1,0,+-,0] * [ Al Aigyq -+ Aigyy,—1]"-

The constrained GPC strategy for battery control is implemented througblltwerig steps at each sampling

time:

Step 1: Acquire the outputs of electric and thermal behaviours based oertnedlectric model and estimate

the parameters of the CARIMA model using the RLS with forgettictpf.
Step 2: Calculate the j-step predictions based on the online identified CARIM&l.mod

Step3: Employ a standard solver such as the interior point method ¢atlsishguadratic programming problem
and find the optimal incremental control current, considering the inequatisgramts and extract the first value

of the incremental current control sequence.

Step4: Feed the control signal to the actuators and the data vectors of argmhsted in preparation for the

next sampling time.
5. Experiments

The accuracy of the improved thermal sub-model is first validated thraygactical battery self-heating test.
Then simulation tests are conducted to investigate the performance of thrainedspredictive controller for
battery charging proposed in section 4.3. In the simulation thetsampling time i§; = 1s, and the CARIMA
model is used as a predictor. The ambient temperature is chosetCaarirthe initial battery shell and interior
temperatures are both chosen a8Q9Three simulation tests are conducted, including (i) tracking pexfaren
test with different GPC tuning paramete(s) test with different heat dissipation rateti;) (test with different
internal temperature set-points. The tests are further analysed tdyidéetimost appropriate of the heat

dissipation rates and proper internal temperature set-points for the desigrggdghontrol strategy.

When using CARIMA model as the predictive model in the GPC controller, plernmodel with a large
number of model terms will increase the model complexity and computatien @m the other hand, an
oversimplified model suffers from low performance in termbath generalization performance and accuracy

thus it is vital to perform structural optimization for CARIMA model.
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In this paper, we use the fast recursive algorithm (FR8) o determine the order af, andn,. This can be
one of the contributions in this paper to optimize the CARIMA model stri@tuthe GPC controller. The FRA
is a fast forward method to select the most significant terms and optimizacdthel structure. The
candidate terms in the CARIMA model are selected continuously accordimg toost net contribution for
which terms that make the maximum contributions. This selection pracedwld stop based on the cost

function criterion. And the Sum Squared Error (SSE) is used as thainogoh criterion in this study.

The order ofh, andn, are set tm, = n, = 8 initially. After the model structure optimization using the FRA
method, the most significant terms in the CARIMA model can be selegtetithe order are determined as
n, = 4 andn, = 5 respectively. This brings some benefits such as the orders déiredem that the CARIMA
model can be simplified with good performance and the computatiorcimée shorten in the design of GPC
controller. The detailed description of the FRA algorithm could be ref@r@ and will be not presented in

this paper due to page limit.
5.1 Practical validation of the thermal model

The same practical battery self-heating test run at@@8 described irﬁ is used to validate the improved
battery thermal model. The load current and voltage are shown in Figng{#he heat generation results using
two different calculation approaches in Efjl)(are compared in Fig. 3(b) respectively. Té&,., /dT;, values

given in [34] is applied here. It is clear th@; which only considers Joule heat generated by the internal
resistance, is smaller th&) which considers the heat generation caused by the over-potentials ang entrop
change within the batteryl.o further explore the effects of these two different heat calculation apE®as

well as the effect of the two forms of thermal dissipation katen the battery thermal model accuracy, two
case studies, including) Q, with constant, and 2)Q, with time-varyingk, are conducted to validate the

battery thermal model. The model validation results are then compared.
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Fig. 3. Battery self-heating test and validation results for battery thermal model

The validation results for the thermal models are given in3Hg) for Q; with constant, and Fig.3 (d) for Q,
with atime-varyingk,, respectively. The validation results are summarized in Table 6. According leo6lab

is clear that the thermal model accuracy is improved noticeably @henused for the calculation of the heat
generation while the thermal dissipation rijetakes the time-varying form. Therefofg, and time-varyinde,

are adoptecth the battery thermal model.

Table 6.
Validation test results for battery thermal model
T;RMSE Tipmax error Tsn RMSE Tspmax error
Q,+constant k, 0.82°C 1.80°C 0.69°C 1.72°C
Q,+time-varying k, 0.42°C 0.86°C 0.38°C 0.82°C

5.2 Tracking performance test with different control parameters
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Parameters in the constrained GPC controller, including prediction hd¥izand penalty weigh® have huge
impacts on the performance of the proposed battery charging camatelgy. In order to test the effects of
various parameters on control results and to achieve high efficiency IcahtendR were varied while the
control horizon and positive penalty weight for the output are fatég.=2 andQ = 1 respectively in this test.

The maximum charging current rate is chosen as 3C and the set-gdimshattery internal temperature are

fixed at 40C.

The system responses with varying prediction horiprare shown in Fig. 4These responses include the
charge current as the control input and the corresponding controlled eattiaiies (terminal voltage, internal
temperature, shell temperature, SOC). It is shown that with the batteryaintemperature control, the total
battery charging timéo bring SOC from 0.1 to the final targeted state 0.9 has increased to h&aflg
compared with the CCCV profile it309s due to the different charging current rate. The internal temperature is
however maintained around U0 This allows the avoidance of the continuous rise of battery internal
temperature. The surface temperature is also be maintained aroui@@ Sihbe the battery surface temperature
always reacbsto a critical temperature more slowly than the internal temperature in thénchprgcess, it is

sufficient to control the internal temperature alone for battery charging theremalgement.
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Fig. 4. Effect of the prediction horizon, Np (N, = 2,R = 1)

The tests demonstrated that the control response spesaliced for larger prediction horizala. WhenN, is
increased from 15 to 120, the charging profile become less steep arfthtge current increment is smaller,
and the output values are less fluctuated. But the largeiill require more computing time for the GPC
controller to calculate the corresponding incurrent increments. To balance thritcgmtime and the

fluctuations of the output values, we finally chage= 60.

Fig. 5 illustrates the influence of the penalty weifhthoiceson the control increment. Here the control
horizon and the prediction horizon are fixedVat2 andN, = 60 respectively, only the penalty weigRton

the control increment for battery charging procissgaried The primary role for weighR is to avoid control
value change sharpliReducing the value oR can speed up the response for the battery internal temperature.
When the control weighR is increased from 0.05 to 1, the charging current changed slts®lgling toa
slightly slow response for all output values, while the chargimg twith larger control weigh is slightly

longer, up to 1512s when control weight is choseR as1. It should be noted that when the control weight
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is decreased below 0.05, the responses for battery charging pracedmast the same, further decreasing it

will not make any notable difference to the battery charging performarerefdafeR = 0.05 is taken as the

lower limit.
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Fig. 5. Effect of control penalty weight, R (N, = 2, Np = 60)

5.3 Heat dissipation rate test
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The thermal dissipation ratg, in Eq. (12) stands for the heat conduction between the batteryasitethe
ambience which can be increased by active thermal management includary @&ifiquid cooling systenk,,

is a compromi®e between the cooling cost and the dissipation efficiency (ldrgesually implies higher cost).

In order to inspect the influence of different dissipation rates@pehformance of the charging control strategy
and further to find out the most appropriate regionkgffor battery charging, thk, is varied while control
parameters in GPC being fixefi.(= 2, N, = 60,R = 0.05) in this test. The internal temperature set-points are
chosen as 4C. The responses of output variables and the variation of charge cuershibam in Fig. 6 It is
evident that a%, decreases from 0.4 to 0.1, both the battery internal and surface atimgelincrease more
rapidly, and the charging time to bring SOC from 0.1 to théo8c®me noticeably longer. This is mainly due to
the reduced, which implies less thermal conveatioccurring between the battery surface and the surrounding
ambient circumstanc& he charge current therefore had to be smaller in order to maintain interpalatume

at a desirable level. It is clear that the thermal dissipation rate has a significaat amghe battery temperature,
anda suitable thermal dissipation rate needs to be chosen which should balance the cost and charging time

in battery charging process.
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Fig. 6. Effect of different heat dissipation rates k, (N, = 2, Np = 60,R = 0.05)

Given this consideration and the above experimental results, we npassughere is a linear relation between
dissipation raté, and cost, and a nonlinear relation betwkgand the corresponding charging time in our
battery control strategy. Then there must exist a region which further irerefk, does not significantly
reduce the charging time. In order to find the most appropriate régidhe dissipation ratk, in this case
(N. = 2,Np, = 60,R = 0.05), an experiment to find the effect of different dissipation rates on thgiobaime is
conducted and the results are shown in Fig. 7. In the experiment, #dmeepark, and the internal temperature

set pointT;, are incrementally changed with a magnitude of 0.025 &Bdrdspectively. We define the change

of charging timeD; as,

Dr(k5) = T(ky) —T(k5™) (31)

whereT (.) stands for the response charging time with corresporiginghen the change rate of charging time

Ry can be defined as,

Rr(k3) = Dr(k5)/ T(k5) (32)

Charging Time[S]
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From Fig. 7, the following observations can be reached.

Observation 1: According to Fig. 7(3)it can ke observed that for a fixed set-polfy,, as the dissipation ratg
increases, the response charging time decreases. However, this correlation samnoAtira certain point,
further increase of the value kbf will have much less effect on reducing the charging time. This reselalsev

that there exists a best trade-off between the dissipatiok rated the corresponding charging time.

Observation 2: In order to find out the most appropriate regionigrthe correlation of the change rate of the
charging time is further explored and shown in Fig. 7(b).fusd that the change ratelarger than 4% when

k, is less than 0.3After this value 0f0.3, the change rate becomes smaller than 4% which means further
increasek, has insignificant impact on further reducing the charging time. Gapphe relation between
dissipation raté, and the manufacturing cost is linear, the results from Fig. 7¢b)xaeafirm that improper
setting of the dissipation rate will only increase the manufacturing citisbul any noticeable benefit on
reducing the charging time. The dissipation rfgtdetween 0.1 and 0.3 would be the most appropriate region if

we consider 4% as the acceptable change rate of the charging time.

5.4 Test of different internal temperature set-points

Another test is conducted to examine the influence of various internaétatuge set-pointen the battery

charging process and the results are shown in Fig. 8. Then ainosbh considering both the charging time
and the energy loss is presented to find out the proper internal tempdeaget. In this test, five different
battery internal temperature set-points°@637C, 38C, 39C, 40°C) are chosen. All of the five charging

profiles show that the charging time are longer than the CCCV metbdthie charge currents have been
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changed to keep battery internal temperature within the desirable level. At theibggif the charging process,

al charge currents are quite similar with the current profile using CCC¥Waueds an effect to increase the

SOC as quickly as possible. These same charge current profiles wilhtthdhe battery internal temperatures

increase to the targeted temperaturbere are then apparent differences in the charge current for wiiffere

internal temperature targets. When the internal temperature target is redusetDf@® to 36C, the charging

time for different set-pointss 1498s (40°C), 1579s (39C), 1674s (38°C), 1786s (37C) and 1918s (36°C)

respectively. Low targeted internal temperature prolongs the batteryranéirge. Internal temperature target is

a compromise between the battery charging time and energy lossr (laternal temperature target usually

means less charging time but higher energy loss). It is therdfaigorsselect a proper internal temperature

target in charging process to balance the battery charging time and ém&sgespecially in high power

applications
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Fig. 8. Effect of different internal temperatures (N, = 2, Np = 60,R = 0.05)

Given this consideration, we can use a cost function to evaluate thengerée during battery charging which

combines both battery charging time and energy loss

J=Q@=a)*tp+ay* [T i@®) x (V) = Upey () + i(0) * Tin(6) * dUpgy (£)/dTin () At (33)

wheret, stands for the time when battery reaches its final SOC.eéwla; < 1 is the weighting factoto

balance the two objective terms (charging time and energy loss

In the experiment, we use a fixed valwg= 0.25, and the cost functions for five charging profiles with
different battery internal temperature targetS@G&7C, 38C, 39C, 40°C) are calculated and listed in Table 7

It is shown that if the internal temperature target is reduced, the belti@nying timet, will increase but the
energy loss will become less. The cost funcfialecreases from 82.46 (40C trajectory) to 2931.37 (3C
trajectory) and then adversely increase2383.81 (36°C trajectory). So the internal temperature target between
36°C and38°C would give the best cost function value in this case. It is a trideetween charging speed and

energy loss for the selection of the internal temperature targets
[Table 7 about here.]

6. Conclusion

Battery temperature especially the internal temperature is a keyfptre battery thermal management in
electric vehicles for battery operation safety and behaviour especiallyhpbawer applications. In this paper, a
novel control strategy by applying the constrained GPC based on aattevy ltoupled thermoelectric model is

proposed to maintain the LiFek®attery internal temperature withindesirable level while achieving fast
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charging Hard constraints for terminal voltage, surface temperature, SOC andhcheugient are all integrated
into the GPC controller desigio achieve this, an experimentally validated improved thermoelectric model is
firstly used to capture both the battery electric and thermal behaviours siewwsy. Then based on the
comprehensive formulation of the battery behaviours estimated by theotiectnic modela CARIMA model

is proposed as the online self-tuning predictive model used in the GPC conirbégparameters of CARIMA
model are identified by the RLS algorithm with forgetting factor to imerihe robustness of GPC controller.
Then the designed GPC controller is developed to control the charging cuitiendifferent GPC tuning
parameters, together with different heat dissipation rates and various intermmedratme targets. The
experiment results have confirmed the effectiveness of the propmsetbl strategy for battery thermal
management. The most appropriate region for the heat dissipation htid gmoper internal temperature set-
points are further investigated and analysed. This control strategy taitkléganeous battery fast charging and
internal temperature control, which are of significant importanaesigning the battery thermal management
system for EVs. The strategy can be easily implemented in other laitgging applications to manipulate the
charge current for battery thermal management, guaranteeing charging effeehprolonging battery service

lifetime.
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Characteristics of LiFePO4 battery [21]

Table 2.

LiFePo4 battery

Voltage (nominal)

3.20V~3.30V

Charge (C-rate)

Charge to 3.65V (1C): typical 3 hours charge time

Discharge (C-rate)

40A pulse ; 2.50V cut-off (lower than 2V may cause damage)

the safest Li-ion batteries.

Specific energy 90-120 Wh/kg

Thermal runaway 270°C (518 °F)

Cycle life 1000-2000 (related to depth of discharge, temperature)

Applications Stationary and portable needing high endurance and load
currents

Comments Low capacity with very flat voltage discharge curve. One of

Reasonable ambient temperature constraints for various batteries

Table 3.

Battery Type | Charging Temperature

Discharge Temperature

Charge Advisory

Li-ion

0°C to 45 °C
(32°F to 113°F)

-20°C to 60°C
(-4 °F to 140 °F)

Good charge/discharge
performance at higher
temperature but may
shorten battery life.
Not permitted for charging
below freezing.

Lead acid

-20°C to 50°C
(-4°F to 122 °F)

-20°C to 50°C
(-4 °F to 122 °F)

Lower V-threshold by
3mV/°C when hot.
Charging at 0.3C or
less below freezing.

NiMH , NiCd

0°C to 45°C
(32°F to 113°F)

-20°C to 65°C
(-4 °F to 149 °F)

Charge acceptances at
45°C and 60°C are 70%
and 45% respectively.
Charging at 0.1C between
—-18°C and 0°C.
Charging at 0.3C between
0°Cand 5°C.

Battery OCV and SOC relationship

| soc | 0900 | 0.798 | 0.695 | 0.593 | 0.491 | 0.389 | 0.287 | 0.186 | 0.085 |
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| ocv(v) | 3.330 | 3325 | 3.299 | 3.292 | 3.290 | 3.278 | 3251 | 3.215 | 3.057 |

Table 4.

Battery R, and internal temperature T}, relationship

T, (°C) | -10 0 10 23 32 39 52
R,(ohm) | 0.0259 | 0.0180 | 0.0164 | 0.0152 | 0.0125 | 0.0124 | 0.0120
Table 5.
Parameter identification results for thermoelectric model
Parameter Value
a, 0.981
by 1.8e~*
C; 263.8
C, 31.2
ky 1.264
k, 0.33
kyq 0.268
ky, 0.0044
Table 6.
Validation results for battery thermal model part
T RMSE T, max error Tsn, RMSE Tgpmax error
Qq+constant k, 0.82°C 1.80°C 0.69°C 1.72°C
Q,+time-varying k, 0.42°C 0.86°C 0.38°C 0.82°C
Table 7.
Battery cost function J and its terms under different trajectories T;,
T, (°C) | 40 39 38 37 36
J 2952.46 | 2939.03 | 2933.73 | 2931.37 | 2933.81
tf[s] 1498.21 | 1579.73 | 1674.48 | 1786.28 | 1906.36
Heat[w] | 7315.21 | 7016.75 | 6711.48 | 6366.64 | 6016.16
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Figures
Figures captions
Figure 1. Battery Thevenin model.
Figure 2. Constrained GPC for battery charging.

Figure 3. Battery cell charging profile with CCCV method ((a) charge current, (b) terminal voltage
(c) internal temperature, (d) shell temperature, (e) SOC

Figure 4. Effect of the prediction horizon, Np (N, = 2, R = 1).

Figure 5. Effect of control penalty weight, R (N, = 2, Np = 60).

Figure 6. Effect of different heat dissipation rates k, (N, = 2, Np = 60,R = 0.05).

Figure 7. Relations of charging time with dissipation rates.(a) Charging time (b) Change rate of charging
time.

Figure 8. Effect of different internal temperatures (N, = 2, Np = 60,R = 0.05).
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Fig. 1. Battery Thevenin model.
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Fig. 6. Effect of different heat dissipation rates k, (N. = 2,Np = 60,R = 0.05)
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Fig. 8. Effect of different internal temperatures (N. = 2,Np = 60,R = 0.05)
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