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A fast multiple mode intermediate level circuit model 
for the prediction of shielding effectiveness of a 

rectangular box containing a rectangular aperture 
 

T. Konefal, J.F. Dawson, A.C. Marvin, M. P. Robinson and S.J. Porter 
 

Abstract 
 
 
This paper presents an intermediate level circuit model (ILCM) for the prediction of the 
shielding effectiveness (SE) of a rectangular box containing a rectangular aperture, irradiated by 
a plane wave.  The ILCM takes into account multiple waveguide modes, and is thus suitable for 
use at high frequencies and/or relatively large boxes.  Inter-mode coupling and reradiation from 
the aperture are taken into account.  The aperture may be positioned anywhere in the front face 
of the box, and the SE at any point within the box may be found.  The model is presented in such 
a way that existing ILCM techniques for modelling elements such as monopoles, dipoles, loops 
or transmission lines may be seamlessly incorporated into the circuit model.  Solution times 
using the ILCM technique are hundreds of times less than those required by traditional numerical 
methods such as FDTD, TLM or MoM, even when using a relatively slow interpreted language 
such as MATLAB. Accuracy however is not significantly compromised.  Comparing the circuit 
model with TLM over nine data sets from 4MHz to 3GHz resulted in an rms difference of 
7.70dB and mean absolute difference of 5.55dB in the predicted SE values. 
 
Keywords:  Circuit model, multiple modes, shielding effectiveness, aperture in box. 

 
1  Introduction 
 
A frequently occurring problem in electromagnetic compatibilit y (EMC) is the determination of 
the electromagnetic fields inside an enclosure containing apertures.  In many cases the enclosure 
and apertures are rectangular, and this has led to a number of attempts at solving the problem of 
a rectangular box with a rectangular aperture, irradiated by a plane wave.  For example, in [1-4] 
the electric field integral equation (EFIE) is used to solve the problem using the Method of 
Moments (MoM).  Although the treatment of the aperture is efficient, this self-consistent method 
is still computationally intensive.  Indeed, using a variety of standard numerical techniques such 
as Finite Difference Time Domain (FDTD), Transmission Line Matrix (TLM) or Method of 
Moments (MoM), the problem is readily tackled e.g. [5-7].  Unfortunately there can often be 
some differences in the solutions in critical regions using these techniques, depending on the 
slight differences in spatial, time or frequency resolution chosen for the computer simulations, 
and indeed on the precise simulation method chosen.  A purely analytic approach is described in 
[6], though even in this case we are forced to truncate an infinite series at some suitable point, 
and the method effectively becomes a MoM solution.  However, the main problem with such 
techniques is that they all require significant computer resources such as RAM and/or hard disk 
space, and can take several hours, days or even weeks to reach a solution.  This is true despite the 
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significant and continuing improvement that has been made in commonly available computing 
resources in recent years.  (Clock speeds of 2-3GHz are typical of computing equipment at the 
time of writing). 
 
The slowness of solution using these methods has prompted a number of investigators to try and 
find a more rapid solution to the problem, using various approximations.  One of the first 
successful techniques was that due to Robinson et al. [8], who used an equivalent circuit 
technique to find a sufficiently accurate frequency domain solution to the problem in just a few 
lines of computer code, taking only a small fraction of a second.  The original solution of [8] is 
limited in its scope in a number of ways.  The incident plane wave can only have one 
polarization and direction of travel, though fortunately this is often the worst case as far as 
shielding effectiveness (SE) is concerned.  In addition, the rectangular slot must be centrally 
placed in both height and width in the rectangular front face of the box.  However, the most 
severe limitation of the model in [8] is that the model considers only the excitation of the TE10 
mode of the box.  This limits the accuracy of the solution to low frequencies and/or relatively 
small boxes, where the TE10 mode is dominant.  We note here that the model has no difficulty 
with dealing with an exponentially decaying (evanescent) mode, below the TE10 cut off 
frequency.  However, at frequencies where higher order modes can propagate, the model 
becomes inaccurate.  For reasonably large boxes, of the order 0.1m3 , the scope of the model in 
[8] is thus limited to a few hundred MHz. 
 
The problem of oblique incidence of irradiation has been addressed in [9], whilst still retaining 
only the TE10 mode.  The aperture is treated as a two-wire transmission line with no radiation 
losses.  The treatment is extended in [10] to take into account multiple modes, though only 
frequencies below 1GHz are considered.  In fact, only one of the results presented in [10] 
involves a higher order propagating mode below 1GHz, and in this particular case there is a 
feature in the predicted SE just below 700MHz, corresponding to the TE201 resonance [11], 
which is not observed in experiment.  (In this particular case the TE20 mode begins to propagate 
above 621MHz).  Another attempt at a multimode treatment of the aperture in a box problem has 
been made in [12], though curiously only TEm0 and TM1n modes are considered, making the 
theory totally unsuitable for prediction of SE for off-centre positions in the box.  Indeed, no 
direct comparisons with numerical results on the same graph are given, and an unknown 
empirical loss factor is introduced into the model.  In all of the models [8-10] and [12], only 
apertures centrally placed in height and width in the front face of the box are considered. 
 
In this paper we present a multimode intermediate level circuit model (ILCM) for the problem of 
a rectangular aperture in a rectangular box.  The circuit model is presented in such a way that 
existing ILCM techniques [13-15] may be used to further model the presence of such elements as 
monopoles, dipoles, loops or microstrip transmission lines inside the box, though for simplicity 
we limit ourselves in this paper to an empty box.  The technique of multimode analogous 
transmission line circuit theory [16][14] is used to model the modal excitation and coupling of 
modes in the aperture.  In addition, a simple and rapid use of the Numerical Electromagnetics 
Code (NEC) [17] is made to estimate the radiation resistance of a simple dipole over the 
frequency range considered.  The radiation resistance is converted via Babinet’s principle [18] to 
an equivalent radiation resistance at the centre of the aperture in the front face of the box.  Using 
a method similar to that in [9], the electric field in the aperture is calculated, but in the presence 
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of the radiation resistance.  The resultant aperture field is used to give a first estimate of the 
modal excitation of the box, under the temporary assumption that the presence of the box does 
not affect the aperture field.  However, unlike the model of [10], the aperture field is then 
allowed to be altered by energy entering and exiting the box, taking into account inter-mode 
coupling and energy reradiation into free space.  The model thus accounts for all the physical 
processes present. 
 
The ILCM model can cope with rectangular apertures positioned anywhere in the front face of 
the box, unlike the models of [8-10] and [12].  However, it is most accurate for ‘slot’ type 
apertures where the height of the slot is significantly less than its length (say less than 12%).  
Any direction of incidence and polarisation of the incoming plane wave may be dealt with in the 
theory, though we have only been concerned with ŷ  polarized waves travell ing in the ẑ+  
direction.  In addition, the model can readily be used at high frequencies (we have set an upper 
limi t of 3GHz for convenience) without deterioration in accuracy, providing an appropriate 
number of modes are taken into account. 
 
The circuit model is rapid, taking typically less than 30 seconds to process 750 frequency data 
points using a relatively slow interpreted language such as MATLAB.  This contrasts with a 
typical run time of four and a half hours for the numerical technique of Transmission Line 
Matrix (TLM) modelling.  Despite its simplicity, the ILCM model is remarkably accurate, 
showing an overall rms difference in SE values of 7.70dB compared with TLM, and a mean 
absolute difference of 5.55dB.  Visual examination of the curves in Section 6 supports the 
validity of the circuit model, with the vast majority of the many features in the TLM simulations 
reproduced by the circuit theory. 
 
Sections 2 and 3 describe the problem at hand, and give an initial solution for the field in the 
aperture, in the absence of the rest of the box.  Sections 4 and 5 explain how this aperture field is 
modified by the presence of the box, and develop an equivalent circuit to model the inter-mode 
coupling and reradiation into free space.  The circuit model results are compared with the 
numerical method of TLM in Section 6, with some conclusions being drawn in Section 7. 
 

 
2  Plane wave excitation of a rectangular box containing a 
rectangular slot 
 
2.1  Experimental Configuration 
 
Figure 1 shows the experimental configuration that it is desired to model using circuit theory.  A 
rectangular box of dimensions a(x)×b(y) ×d(z) contains a rectangular aperture in its front face 
( 0=z ) extending from lxx =  to hxx =  and lyy =  to hyy = .  The box is irradiated by an 

incident plane wave inc
yE , polarized in the ŷ  direction and travelli ng in the ẑ+  direction.  The 

aperture is assumed to be ‘slot’ like, so that )()( lhlh xxyy −<− , but otherwise may be 

positioned anywhere on the front panel.  In addition, the slot height )( lh yy −  is considered to be 
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much less than a wavelength of free space radiation at the frequency of irradiation of inc
yE .  

Under these conditions, and particularly if )()( lhlh xxyy −<<− , the slot can be approximated 

to a section of coplanar strip transmission line that has been short-circuited at lx  and hx .  When 

the aperture or slot is centrally placed in the front panel, it is possible to assign a quasi-static 
characteristic impedance to this transmission line [19].  However, for the purposes of this paper 
we need the slot transmission line to have the same characteristic impedance as the quasi-TEM 
wave it supports.  This is necessary to be consistent with the general theory of analogous 
transmission lines described in [14][20], where the analogous transmission line representing a 
waveguide mode is assigned the same characteristic impedance as the transverse ratio of E and H 
fields that the mode supports.  The ‘analogous’ transmission line (rather than the literal 
transmission line) representing the slot is therefore assigned a characteristic impedance of 

Ω= 377FSZ , the impedance of free space.  This assignment is not only found to improve the 

qualit y of the results (see Section 6) but also negates the need to work out the characteristic 
impedance when the slot is not placed at the central height of the front panel. 
 

 

ŷ 

ẑ  a 

b 

d 
ŷinc

yE
x̂  

lx  
hx  

ly  
hy

 
Figure 1.  Slot in box irradiated by incident field inc

yE , showing box 

 dimensions and slot dimensions. 
 
2.2  Plane wave excitation of a two-wire transmission line 
 
The analysis in this section is similar to that given in [9].  Consider a two-wire transmission line 
of length lh xx −  aligned in the x̂  direction and with a vertical separation lh yyg −=  in the ŷ  

direction.  The line is situated in the plane 0=z  and is illuminated by a plane wave travelling in 

the direction b̂ .  The incident electric and magnetic fields are related by 
 

incinc
FSZ EbH ×= ˆ          (1) 

 
where 
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The transmission line equations of the system, including the forcing terms of the external applied 
fields, can be solved as in [9] to give the voltage )(xV  on the transmission line i.e. 
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and A and B are determined by the boundary conditions of short circuits terminating the line in 
the planes lxx =  and hxx =  i.e. 0)()( == hl xVxV .  Thus 
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Equations 5-8 define the solution to the voltage )(xV  on the two-wire transmission line. 
 
The solution of Equation 5 can be used to find the field wire

yE  between the two wires of the 

transmission line i.e. 
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We now make the assumption that the field )(xE aperture

y  in the slot of Figure 1, in the absence of 

the rest of the box in the region 0>z , is approximately a factor (b/g) times larger than wire
yE , to 

account for the extended width of the transmission line conductors, occupying the regions 
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lyy ≤≤0  and byyh ≤≤ .  Providing b is small compared to a wavelength, this should be a 

good assumption, since when viewed in the plane 0=z  the two-wire transmission line appears 
as a short dipole whose length has been extended by the factor (b/g), with a corresponding 
increase in antenna factor of (b/g).  This should also serve as a reasonable first approximation for 
the increase in field when b is comparable to a wavelength.  The aperture field in Figure 1, in the 
absence of the rest of the box in the region 0>z ,  is thus estimated as 
 

( )






 −+




 −+



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 +−= xjHx

c
jBx

c
jA

g

b
xE x
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y βωω

expexpexp)(
2

  (10) 

 
Equation 10 does not take into account the energy that enters and exits the box, nor does it take 
into account (in free space) any reradiated energy.  The latter aspect is dealt with in the next 
section, which uses the Numerical Electromagnetics Code (NEC) [17] in conjunction with the 
Babinet principle [18] to assign a radiation resistance to the original two-wire transmission line 
problem. This modifies the solution for )(xE aperture

y  given by Equation 10 and significantly 

reduces the Q factor of the undesirable strong resonance that would otherwise occur when the 
slot length )( lh xx −  corresponds to a half wavelength of radiation.  Note that Equation 10 

permits arbitrary angles of incidence for a plane wave, though for the sake of brevity we have 
been concerned in this paper only with plane waves for which 0=xβ , 0=yβ . 

 
 

3  Modification of the aperture field in free space by inclusion of 
radiation resistance 
 
3.1  Use of NEC to find radiation resistance 
 

 

slotZ  dipZ  

(Metal extends to infinity) 

(a) (b) 
 

Figure 2.  Complementary structures illustrating the Babinet principle. 
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Figure 2 shows two complementary structures where metal is replaced by free space and vice 
versa.  From Babinet’s principle [18] the impedances of the two structures at the points shown 
are related by 
 

4

2
FS

dipslot

Z
ZZ =          (11) 

 
where FSZ  is the impedance of free space ( Ω= 377FSZ ).  In order to find the impedance slotZ  

therefore, we simulate the impedance of the planar dipole of Figure 2(b) using the Numerical 
Electromagnetics Code (NEC) [17].  This is very rapid, and typically will take less than a second 
for 750 data points.  In practice, if the width w and the length l of the planar strip are 

lh yyw −= , lh xxl −= , a reasonable approximation to the impedance dipZ  can be found by 

simulating the impedance at the centre of a wire dipole of length l and radius r where wr =π .  
From Equation 11, the corresponding impedance slotZ  of Figure 2(a) may be found.  Note that 

the NEC simulation wil l generate a value of dipZ  which has a real component, representing the 

radiation loss mechanism into free space.  Similarly, slotZ  will have a real component, also 

representing the radiation loss mechanism into free space.  It is this resistance which is used to 
modify the solutions for )(xV  and )(xE aperture

y  given by Equations 5 and 10 respectively, in the 

absence of reradiation from the slot.  Note that we do not in fact have an infinite sheet of metal 
surrounding our slot in Figure 2, so that this treatment is approximate. 
 
3.2  Calculation of parallel radiation resistance of slot 
 
From simulation using NEC, the impedance of the dipole of Figure 2(b) is given by 
 

dddip jXRZ +=          (12) 

 
From the transmission line point of view, slotZ  in Figure 2 can be considered as two short 

circuited sections of transmission line connected in parallel (a pure reactance) in parallel with a 
radiation resistance pR .  Manipulating Equations 11 and 12 yields the parallel radiation 

resistance pR  in terms of the dipole resistance dR  simulated in NEC as  

 

d

FS
p R

Z
R

4

2

=           (13) 

 
Thus from NEC simulation of the dipole in Figure 2(b), it is possible via Equations 12 and 13 to 
find the equivalent radiation resistance pR  strapped across the centre of the slot in Figure 2(a).  

The next section explains how to calculate the aperture field )(xE aperture
y  in the presence of this 

radiation resistance. 
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3.3  Solution for aperture field )(xE aperture

y  in the presence of pR  

 
Figure 3 illustrates a two-wire transmission line, irradiated externally by a plane wave travelling 

in the b̂  direction.  In the absence of any reradiation from the line, the solution for the electric 
field between the wires is given by the aperture field )(xE aperture

y  in Equation 10 with 

gyyb lh =−= . 

 
 

incE  

incH  

b 

pR  

RHSILHSI

radI  

lx  
hx  

ly  

hy

Figure 3.  Transmission line with radiation resistance pR , irradiated by plane wave. 

 
We wish to calculate the field on the line in the presence of pR , the radiation resistance that 

enables energy to be lost from the line by the process of reradiation.  Following the method in 
Section 2.2, we can write the solution for the voltages on the left hand side (LHS) and the right 
hand side (RHS) of pR  as 
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with corresponding solutions for the LHS and RHS currents given by 
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Here sZ0  is the characteristic impedance of the transmission line (which we will eventually take 

to be Ω= 377FSZ ) and 
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Here lC  is the capacitance per unit length of the line.  In fact H ′  is irrelevant in the analysis that 

follows, so that we do not need to know the value of lC  explicitly .  H is given by Equation 6 as 

before.  The coefficients LA , LB , RA  and RB  need to be determined by four independent 
boundary conditions for the circuit in Figure 3.  These four boundary conditions are as follows: 
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The coefficients LA , LB , RA  and RB  can now be found by a simple matrix inversion, and the 
solution for the voltage on the two wire line in Figure 3 is defined by Equations 14 and 15.  The 
field )(xE aperture

y  in the two-wire line is given by )/()(/ lhRHSL yyxV −− .  As before, this field is 

multiplied by a factor )/( lh yyb −  to account for the extended vertical height b of the box in 

Figure 1.  The field in the aperture, in the absence of the rest of the box in the region 0>z , is 
thus given by 
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This aperture field is of course modified by the reaction of energy that enters and exits the rest of 
the box in the region 0>z  in Figure 1.  Sections 4 and 5 explain how this is dealt with in terms 
of modal analogous transmission line theory, and how this leads to the entire field problem being 
expressed in terms of an equivalent circuit problem. 
 
 

4  Excitation of modes in infinitely long waveguide by aperture field.  
Equivalent circuit representation and the principle of reciprocity 
 
4.1  Excitation of modes by aperture field 
 
For an infinitely long waveguide, or alternatively an absorbing wall in the plane dz =  in Figure 
1, the fields yE  and xE  inside the waveguide can be expressed as a sum of forward travelling 

TE and TM modes i.e. 
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where mnγ  is given by 

 

( )22
00 ωωεµγ −= cmn         (28) 
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The individual coefficients C are as yet unknown, but as we shall see below, with some 
approximations they can ultimately be expressed in terms of the aperture field.   
 

If we evaluate 
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zyy EE r  from Equation 26 in the plane 0=z , multiply by 
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where ,....2,1,0=u  and integrate with respect to y from 0=y  to by =  we obtain 
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where 0uδ  is the Kronecker-delta symbol, equal to unity for 0=u  and zero for 1≥u . 

 

We now require 
0=zyE  to equal zero for lyy ≤≤0  and byyh ≤≤  (zero tangential electric field 

at a metal surface).  We further assume that 
0=zyE  in the aperture is in fact independent of y.  

This wil l be a very good approximation if the slot is narrow, or at least if the width lh yyg −=  

of the slot is small compared to a wavelength of radiation.  Under these assumptions, we can 
evaluate the left hand side of Equation 30 to give 
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Combining Equations 31 and 30, we obtain 
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Equation 33 holds for each value of u.  Hence putting 0=u  results in 
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Putting 1≥= nu  into Equation 33 results in 
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Clearly the aperture field )(_ xE actualap

y  has a unique Fourier series expansion involving only sine 

functions, so that we can equate the coefficients of 






a

xmπ
sin  in Equations 34 and 35.  Thus, for 

,....3,2,1=m  and ,....3,2,1=n  
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This provides one linear relationship between the coefficients C.  A second linearly independent 
relationship can be found by considering the slot as a transmission line, supporting transverse 
electromagnetic (TEM) waves.  Once again, this is a good assumption providing the gap g is 
small compared to a wavelength.  In this case, we can approximate the field xE  in the aperture to 

be zero, since it becomes a longitudinal component of field as far as the slot/transmission line is 
concerned.  Combined with the boundary condition of zero tangential field xE  everywhere else 

on the plane 0=z  (due to the presence of the metal box), we can require the field xE  to equal 

zero everywhere in the plane 0=z .  This is only possible in Equation 27 if we set each 
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Requiring 
 

00 =TE
nfC   for ,....3,2,1=n       (38) 
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(This is also an intuitive result for a slot illuminated by a field inc

yE ).  For ,....3,2,1=m  and 

,....3,2,1=n  we must also have 
 

0=




+





−

a

m
C

b

n
C TM

fmn
TE
fmn

ππ
       (39) 

 
Equations 39 and 36 are two linearly independent relationships which allow each of TE

fmnC  and 
TM
fmnC  to be expressed in terms of TE

fmC 0  i.e. 
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Finally, given the actual aperture field )(_ xE actualap

y , the coefficients TE
fmC 0  may be found from 

Equation 34, by multiplying by 






a

xuπ
sin  and integrating with respect to x from 0=x  to ax = .  

The result is (on replacing the dummy integer u by m), 
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Equations 41 and 40 allow all coefficients TE

fmnC , TM
fmnC  to be deduced.  These may then be 

inserted into Equations 26 and 27 to yield the entire field structure for yE  and xE  inside the 

waveguide of Figure 1, in the presence of an absorbing wall at dz = .  It remains to find a 
method for estimating the field )(_ xE actualap

y  in the aperture. 

 
4.2  Equivalent circuit representation and the principle of reciprocity 
 
It is tempting at this point to set the unknown aperture field )(_ xE actualap

y  in Equation 41 to the 

previously calculated )(xE aperture
y  of Equations 24 and 25.  However, this will not yield correct 

results since the field )(xE aperture
y  is calculated on the basis that the front panel in Figure 1 is in 

free space.  In the presence of an enclosure in the region 0>z  in Figure 1 (even an infinitely 
long enclosure), some energy will enter the enclosure and be reflected out again via the aperture, 
thus altering the field )(xE aperture

y  from its free space value.  This is true even for an infinitely 

long waveguide, since many modes will be evanescent (particularly at low frequencies), 
eventually reflecting their energy back towards the aperture. 
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We can however use the field )(xE aperture
y  of Equations 24 and 25 as a starting point to estimate 

the excitation of the different modes by a plane wave incident on the box from free space.  We 
can then use the principle of reciprocity to estimate the reaction of the modes back on to free 
space, and at the same time get some measure of the extent of mode coupling that would take 
place if a particular mode i were incident on the aperture from within the box, resulting in a 
multitude of modes being reflected back into the box.  The procedure is implemented by an 
equivalent circuit where each waveguide mode is represented by an analogous transmission line 
with a characteristic impedance equal to the impedance of the transverse ratio of E and H fields 
for the mode.  The connection between the mode amplitude and the amplitude of the 
voltage/current waves on the analogous transmission line is made quantitative by insisting that 
the power flow down the analogous transmission line is equal to the power flow down the 
waveguide. 
 

 

Ω377  

FSI  

sourceV

)1(
loopε

)2(
loopε

)( N
loopε

+ 

+ 

+ 

+ 

_ 

_ 

_ 

_ )1(
wgV  

)2(
wgV  

)1(
wgI  

)2(
wgI

)1()1()1( )tanh( Tc ZdZ =γ  

)2()2()2( )tanh( Tc ZdZ =γ  

+ 

+ 

_ 

_ 

  
Figure 4.  Equivalent circuit for experimental set up in Figure 1. 

 
 
Figure 4 shows the equivalent circuit model representing the physical problem of Figure 1.  For 
simplicity, only two waveguide modes are shown.  The incident electric field in Figure 1 is 
represented by sourceV , which is responsible for the main part of the current FSI  flowing through 

the 377Ω  resistor (representing the impedance FSZ  of free space).  Each of the voltage sources 
)(n

wgV  at the start of the analogous transmission lines is made to depend on the current FSI , such 

that in the absence of any reaction from the box (i.e. for an infinitely long transmission line), 
only forward travelling waves are induced on the analogous transmission lines.  The precise 
amplitudes of these voltage waves are derived in Section 4.3.  The dependence of )(n

wgV  on FSI  is 
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via a transimpedance )(n
TransZ  such that FS

n
Trans

n
wg IZV )()( = .  The value of this transimpedance is also 

derived in Section 4.3.  This type of coupling can also be described in terms of a mutual 
inductance M such that )(n

TransZMj =ω , and is the magnetic analogue of electric field coupling in 

terms of a mutual capacitance C [14].  The problem is formulated in terms of contolled voltage 
sources (as opposed to controlled current sources) because in the absence of any mode coupling, 
the slot or aperture appears as a short circuit to any modes or voltage waves incident on the slot 
from within the waveguide.  This is a reasonable approximation to make if the slot is narrow.  If 
controlled current sources were used, the slot would appear as an open circuit, which is not what 
the physical problem looks like (except possibly for very large apertures). 
 
The principle of reciprocity can be taken into account by including reactive e.m.f.s )(n

loopε  in the 

‘fr ee space’ circuit, where each e.m.f. represents the reaction of a particular mode into free space.  
Thus if FSTranswg IZV )1()1( = , we can take the principle of reciprocity into account by setting 

)1()1()1(
wgTransloop IZ=ε , where )1(

wgI  is the current through )1(
wgV .  Note that this mechanism guarantees 

that mode coupling wil l take place in the aperture:  An incident mode i from within the cavity 
wil l excite )(i

loopε , causing current to flow through the 377Ω  resistor and exciting all other 

forward travelling modes (including mode i itself). 
 
 
The following sections outline the derivation of the expressions for )(n

TransZ  (TE and TM modes) 

and sourceV , and describe how the fields internal to the box may be derived from knowledge of the 

terminal voltages )(n
wgV . 

 
 
4.3  Derivation of )(n

TransZ  and sourceV  
4.3.1  TE modes 
 
From Equation 26, the contribution of the forward travelling TEmn mode to the electric field yE  

in the plane 0=z  of Figure 1 is given by 
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By equating the power transferred by the TEmn mode with the power transferred down its 
analogous transmission line, the individual forward and reverse fields can be related to the 
individual forward ( 0

fV ) and reverse ( 0
rV ) voltages on the analogous transmission line by 
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where [14] 
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Equating (42) and (43) in the plane 0=z  results in  
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Here TE

mnZ  is the characteristic impedance )(n
cZ  (see Figure 4) of the analogous transmission line 

and is given by 
 

mn

TE
mn

j
Z

γ
ωµ0=           (49) 

 
We first separate out the forward and reverse waves by assuming that the plane dz =  in Figure 
1 is perfectly absorbing, or alternatively that the waveguide dimension d is infinite.  This results 
in forward travelling waves only, and for the case of an infinitely long waveguide effectively 
means that we have terminated each of the analogous transmission lines in its characteristic 
impedance )(n

cZ .  Later we shall reintroduce the short circuit in the plane dz =  and let the 

circuit we have derived deal naturally with any reflections that occur from the back wall.  The 
advantage of this approach is that the rectangular cavity can then indeed be treated as a 
superposition of analogous transmission lines, allowing existing ILCM techniques to model the 
presence of a monopole or loop inside the cavity (e.g. [13][14]). 
 
For the experimental set up in Figure 1, 0== yx ββ .  From Equations 4-7, 23-25, 32, 40 and 41 

it is evident that TE
fmnC  and TM

fmnC  can ultimately be related to the incident field inc
yE , if we make 
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the initial assumption that )()(_ xExE aperture
y

actualap
y = , in the absence of any box in the region 

0>z  in Figure 1.  We note here that for an incident plane wave travelling in a given direction b̂  
with a given polarization, the field inc

zH  in Equation 6 is directly proportional to inc
yE  with a 

known constant of proportionality.  We can therefore write 
 

inc
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where 1k  and 2k  are known constants. 
 
Combining Equations 48 and 50, we obtain 
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It remains to relate inc

yE  to FSI , in the absence of any reaction from the analogous transmission 

lines into free space (i.e. we set all the e.m.f.s 0)( =n
loopε  in Figure 4).  In this case, the peak power 

in the incident wave that impinges on the box for a ŷ  polarised wave travelling in the ẑ  
direction is given by 
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Clearly this requires a source voltage (in the absence of any reactive e.m.f.s) 
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Finally, from Equations 54 and 52 we can write our forward travelling voltage wave in an 
infinitely long waveguide/analogous transmission line as 
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0
fV  is of course equal to one of the voltage sources )(n

wgV  in Figure 4, and represents the excitation 

of the forward travelling TEmn mode. 
 
Equation 56 defines our transimpedance )(n

TransZ  for TE modes. It is given by 
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The value of sourceV  is given by Equation 55. 

 
4.3.2  TM modes 
 
A similar treatment for TM modes results in a transimpedance 
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mnγ  and 2k  are defined in Equations 28 and 51 respectively.  The forward travelling voltage for 

a TM mode in the presence of an infinitely long waveguide is therefore given by 
 

FS
n

Transf IZV )(0 =           (62) 

 
where )(n

TransZ  is given by Equation 58.  0
fV  is of course set equal to one of the voltage sources 

)(n
wgV  in Figure 4, and represents the excitation of the forward travelling TMmn mode. 
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5  Completion of the circuit and the reintroduction of the reflecting 
back wall.  Reconstruction of field in cavity. 
 
5.1  Reintroduction of reflecting back wall 
 
Having obtained our values of )(n

TransZ  for TE modes (Equation 57) and TM modes (Equation 58), 

and knowing what value to assign to sourceV  for a given inc
yE  (Equation 55), we can complete our 

circuit so as to model the original problem of Figure 1.  As indicated in Section 4.2, the principle 
of reciprocity is taken into account by including a reaction e.m.f. )(n

loopε  in the ‘free space’ circuit 

of Figure 4 for every mode excitation voltage )(n
wgV , such that 
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The conducting wall in the plane dz =  can easily be reintroduced.  All that is required is to alter 
the ‘absorbing’ terminating characteristic impedances )(n

cZ  for the analogous transmission lines 

(which have been implicitly assumed in the derivations of Section 4.1) to the impedances of the 
short-circuited sections of transmission line seen by the various )(n

wgV .  These impedances are 

given by )tanh( )()()( dZZ nn
c

n
T γ= , as indicated in Figure 4.  The effect of this is to reflect current 

into the dependent voltage sources )(n
wgV , causing additional excitation of the e.m.f.s )(n

loopε , via 

Equation 64.  This in turn alters FSI  and causes )(n
wgV  itself to change via Equation 63.  The 

circuit solution of Figure 4 effectively describes what happens under steady state conditions, 
once all these transient effects have died down.  Note that the resulting actual field )(_ xE actualap

y  

in the aperture is no longer equal to the initial field )(xE aperture
y  of Equations 24 and 25, since the 

modes have been allowed to couple and therefore influence each other. 
 
5.2  Reconstruction of the field inside the cavity 
 
The circuit of Figure 4 may be solved for the voltages )(n

wgV  using modified nodal analysis [21], 

noting that simple nodal analysis is inadequate because of the presence of dependent voltage 
sources.  Alternatively, a simple algebraic manipulation of the circuit equations for Figure 4 with 
N modes yields the result, 
 

NnIZV FS
n

Trans
n
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where 
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In the presence of a conducting wall in the plane dz = , it is a simple matter to decompose the 
terminal voltages )(n

wgV  into forward ( 0
fV ) and reverse ( 0

rV ) travelling waves: 
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For TE modes these values of 0

fV  and 0
rV  may be used in conjunction with Equations 43 and 44 

to reconstruct the total field yE  at any point inside the box due to TE modes only.  For TM 

modes, the field yE  at any point inside the box can be found from 
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(The quantity u ′  is defined in Equations 59-61).  By summing the total fields due to forward and 
reverse waves for TE and TM modes, the overall total field )(rTot

yE  at any point inside the box 

may be calculated.  The shielding effectiveness SE at that point is then given by 
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(N.B.  Other definitions for SE may be used since we are totally ignoring xE  and zE , though 

this definition will suffi ce for comparison with experiment and TLM). 
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6  Results 
 
In this section the results of the ILCM model presented in Sections 2-5 are compared with results 
of numerical modelling using the transmission line matrix (TLM) method.  The TLM simulations 
were performed using a 5mm grid.  Various cases of apertures in boxes are considered, and these 
appear in Table 1.  The aim was to consider a reasonably varied assortment of box sizes, aperture 
sizes and positions and field observation points, without producing an excessive amount of data.  
In all cases the incident field consists of a ŷ  polarized wave travelling in the ẑ  direction, as in 
Figure 1. 

 
Case 
No. 

a 
(cm) 

b 
(cm) 

d 
(cm) 

lx  

(cm) 
ly  

(cm) 

Slot 
length 

lh xx −
(cm) 

Slot 
height 

lh yy −
(cm) 

),,( zyxobsr  (cm) Comments on 
slot 

1 48.5 12.0 48.5 1.5 10.0 45.5 1.0 (24.25,11.75,42.25) Near lid 
2 30.0 12.0 30.0 0.0 5.75 30.0 0.5 (15.0,12.0,14.75) Full width 
3 30.0 12.0 30.0 0.0 11.5 30.0 0.5 (15.0,12.0,15.25) Near lid 
4 30.0 12.0 30.0 10.0 6.0 10.0 0.5 (14.75,11.75,15.25) Central 
5 30.0 12.0 30.0 0.0 6.0 15.0 0.5 (14.75,11.75,15.25) Off centre 
6 20.0 10.0 30.0 2.0 1.0 8.0 1.0 (4.75,4.75,22.25) Off centre 
7 20.0 16.0 20.0 10.0 4.0 8.0 8.0 (4.75,8.25,14.75) Square 
8 20.0 16.0 20.0 10.0 4.0 8.0 1.0 (4.75,8.25,14.75) Off centre 
9 30.0 12.0 30.0 10.0 6.0 10.0 0.5 (22.25,6.75,28.25) Central (as 4) 
10 30.0 12.0 30.0 10.0 6.0 10.0 0.5 (22.25,6.75,15.25) Central (as 4) 
Table 1.  The various cases considered for comparison of the ILCM circuit model with TLM.  

 a, b and d are the box dimensions, while the aperture dimensions and position are determined by 

lx , hx , ly  and hy  (see Figure 1).  ),,( zyxobsr  is the position inside the box where the field yE  

is sampled in both the circuit model and TLM. 
 
The circuit model and TLM values for SE as defined in Equation 72 are compared for the ten 
different cases in Figures 5-14.  With the exception of case 7 in Figure 11, the agreement is 
generally seen to be excellent, both qualitatively and quantitatively.  The upper frequency range 
considered is 3GHz, where many higher order modes are present.  Simple TE10 models such as 
[8] and [9] would be totally inadequate at such frequencies (see for example the result of the 
model in [8] plotted in Figure 8).  In contrast, there is seen to be littl e deterioration in accuracy 
even at such high frequencies for the current model.  Moreover, the model is able to cope with 
significantly off centre slots, something not possible with other models. 
 
It is seen in Figure 11 (case 7) that the agreement with TLM is relatively poor (though curiously 
this is not true at high frequencies).  This might be expected for this particular aperture since the 
aperture is in fact square, and cannot therefore be considered ‘slot’ like.  The concept of the 
aperture forming a transmission line is likely to break down in this case, and the initial 
assumption of zero xE  field in the aperture (see Figure 1) is unlikely to be a good 

approximation. 
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In Figures 6-14 all modes up to 5=m , 5=n  are considered, a total of 55 modes (ignoring TE0n 
modes where 00 =TE

nfC  from Equation 38).  Many of the higher order modes will be evanescent 

for much of the frequency range below 3GHz, and this is reflected by the fact that mnγ  is real.  

This does not however cause any difficulties with the theory, which can readily accommodate 
evanescent modes.  The choice of 5=m , 5=n  for the upper limit on modes ensures that all 
propagating modes below 3GHz are included in the ILCM model in Figures 6-14.  For larger 
boxes and/or higher frequencies it is necessary to increase the limits on m and n, and this is 
easily implemented in the ILCM model presented here.  For example, for the large box in case 1 
of Figure 5, all propagating modes below 3GHz (and a lot of extra evanescent modes) are taken 
into account by setting an upper limit of 9=m , 9=n .  As a general rule, it is best to at least 
include all propagating modes up to the highest frequency of interest (in our case 3GHz), though 
the inclusion of some higher order evanescent modes can improve the results further (see for 
example [14]).   
 
Table 2 summarises the statistics for the agreement between the circuit model and TLM in 
Figures 5-14.  The normalised cross correlation coefficient )0(dBρ  is defined here as 
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and is always less than or equal to unity.  1S  and 2S  are the SE responses in dB.  If )(1 ωS and 

)(2 ωS  are identical then 1)0(dB =ρ .  (Indeed, 1)0(dB =ρ  even if )()( 201 ωω SCS =  for some 

arbitrary constant 0C , so that )0(dBρ  gives some measure of the similarity of the shapes of the 

responses )(1 ωS and )(2 ωS  in dB).  Excluding case 7, the overall rms difference between the 
curves in Figures 5-14 is 7.70dB, with a mean absolute error of 5.55dB and a correlation 
coefficient 9440.0)0(dB =ρ .  On an intuitive visual examination of the curves, it is clear that the 

agreement is very good.  It is noted from Section 2.1 that the agreement in every single case in 
Table 2 is made worse by assuming the quasi-static impedance of [19] for the transmission line 
‘slot.’  The overall rms difference in the latter case is 9.59dB, with a mean absolute difference of 
7.08dB. 
 
Figure 15 illustrates the level of accuracy that can reasonably be expected from the TLM 
technique when compared to experimental measurements.  The experiment carried out here was 
for the scenario illustrated in case 1 of Table 1.  Irradiation was via a horn antenna inside an 
anechoic chamber, with a monopole of length 2.5cm and diameter 1mm acting as a detector 
inside the box.  The shielding effectiveness of the box at the location described in Table 1 was 
deduced from two measurements of 21s , with the network analyser output feeding the horn 
antenna and the monopole feeding the analyser input.  The first (no shielding) measurement was 
made with only the lid of the box present to act as a ground plane for the monopole, while the 
second (shielded) measurement was made with the rest of the box and aperture present.  A third 
noise floor measurement enabled an appropriate cut off point of about 500MHz to be chosen, 
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below which SE could not be reliably measured (i.e. the shielded measurement was below the 
noise floor).  The rms difference between the experimental results and TLM in Figure 15 is 
7.84dB, with a mean absolute error of 5.98dB and a correlation coefficient 5772.0)0(dB =ρ .  

Thus the agreement with experiment exhibited by TLM is of a similar (or worse) level to the 
agreement of TLM with the ILCM model in Table 2.  (The agreement of the ILCM model with 
this particular experiment is a littl e worse, being characterised by an rms difference of 10.10dB, 
mean absolute difference of 7.91dB and a correlation coefficient of just 2197.0)0(dB =ρ ).  Due 

to the highly resonant nature of the curves and the sensitivity of the measurements to position, an 
rms error of 7 or 8dB is not unreasonably high:  Two resonant curves which are slightly 
displaced will exhibit a large rms error whilst being both qualitatively and quantitatively in good 
agreement. 
 
The time taken for the circuit model to reach a solution is much smaller than that taken by the 
numerical method of TLM .  The data in each of Figures 5-14 consist of 750 frequency points 
separated by approximately 4MHz, with TLM taking four hours and twenty minutes to reach 
solution (Pentium III , 750MHz).  In contrast, on the same computer the circuit model running in 
MATLA B (a relatively slow interpreted language) took just 30 seconds to reach solution (except 
for Figure 5 with the extra modes), a factor of 500 times faster.  Indeed, when compiled in C++ 
the circuit model provides the same data in approximately 2 seconds.  Combined with the 2 
seconds or so required to run the subsidiary NEC simulation, this represents a speed of solution 
3900 times faster than TLM. 
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Figure 5. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 1 of 

Table 1. 
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Figure 6. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 2 of 

Table 1. 
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Figure 7. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 3 of 

Table 1. 
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Figure 8. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 4 of 

Table 1.  The prediction of the simple TE10 model of [8] i s also shown;  this is clearly seen to be 
inadequate at frequencies above 1GHz. 
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Figure 9. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 5 of 

Table 1. 
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Figure 10. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 6 of 

Table 1. 
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Figure 11. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 7 of 

Table 1. 
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Figure 12. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 8 of 

Table 1. 
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Figure 13. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 9 of 

Table 1. 
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Figure 14. Comparison of the shielding effectiveness predicted by the ILCM circuit model with 
the numerical prediction of TLM for the box, aperture size and position indicated in Case 10 of 

Table 1. 
 

 
 

Case No. Rms difference (dB) Mean absolute 
difference (dB) 

)0(dBρ  

1 8.10 5.84 0.8599 
2 6.62 4.59 0.9275 
3 7.58 5.36 0.9161 
4 8.49 6.41 0.9455 
5 7.69 5.61 0.9499 
6 7.70 4.85 0.9831 
7 11.52 8.90 0.9763 
8 7.08 5.12 0.9821 
9 7.63 5.80 0.9781 
10 8.24 6.38 0.9536 

Overall (Excluding 
case 7) 

7.70 5.55 0.9440 

Table 2.  Summary of agreement of circuit model with TLM.  The table shows the rms 
difference, mean absolute difference and correlation coefficient for the shielding effectiveness 
curve predictions of the circuit model and TLM between 4MHz and 3GHz for the ten different 

cases considered (see Table 1 and Figures 5-14). 
 



 29 

-20

0

20

40

60

0 500 1000 1500 2000 2500 3000

S
hi

el
di

ng
 E

ffe
ct

iv
en

es
s 

(d
B

)

Frequency (MHz)

Experiment
TLM

 
Figure 15.  Comparison of the shielding effectiveness predicted by TLM with experimental 

results for the box, aperture size and position and observation point indicated in Case 1 
 of Table 1. 

 
 

7  Conclusions 
 
An intermediate level circuit model (ILCM) has been developed to model the plane wave 
excitation of a rectangular box containing a rectangular aperture.  The model has been developed 
in such a way that existing ILCM techniques for modeling the presence of elements such as 
dipoles, monopoles, loops and transmission lines inside the box can easily be incorporated into 
the circuit (though for simplicity we have been concerned only with an empty box here).  The 
ILCM model can incorporate as many higher order modes as are necessary to adequately 
describe the box excitation at the highest frequency of interest.  Both propagating and evanescent 
modes are permitted.  Although the model is best suited to ‘slot’ type apertures, where the slot 
height is a small fraction of the slot length (e.g. less than 12%), the aperture may be positioned 
anywhere in the front face of the box, and is not limited to the central position in height and 
width.  The model takes into account both inter-mode coupling and reradiation into free space. 
 
Solution times for the ILCM model are significantly less than those exhibited by traditional 
numerical techniques, with significantly less computer resources being required.  At the same 
time, accuracy of the solution is not greatly affected, even at high frequencies.  In our 
simulations, covering a variety of box and aperture sizes and positions, the ILCM model coded 
in MATLAB was over 500 times faster than TLM at providing a solution at 750 frequency points 
up to 3GHz, whilst exhibiting an rms difference of 7.70dB and mean absolute difference of 
5.55dB over nine data sets.  When coded in C++ the ILCM model was found to run 3900 times 
faster than TLM.  Visual examination of the curves in Section 6 shows that the circuit model 
successfully predicts the vast majority of the features in the TLM simulations of shielding 
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effectiveness.  Indeed, it is known that the latter features can be highly sensitive to position and 
therefore to the spatial resolution used in the TLM simulations.  An rms difference of 7 or 8 dB 
between the ILCM model and TLM is therefore not unreasonably high.  Indeed, this is the level 
of agreement that can be expected between a numerical TLM simulation and an experimental 
measurement, as illustrated in Figure 15.  The main problem lies in the fact that two resonant 
peaks that are slightly displaced can lead to a large rms difference, when in realit y there is good 
qualitative and quantitative agreement between the two curves, which is evident from visual 
inspection. 
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