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Conway–Coxeter friezes and mutation: a survey

Karin Baur, Eleonore Faber, Sira Gratz, Khrystyna Serhiyenko, and Gordana Todorov

Abstract In this survey article we explain the intricate links between Conway-Coxeter friezes and cluster com-

binatorics. More precisely, we provide a formula, relying solely on the shape of the frieze, describing how each

individual entry in the frieze changes under cluster mutation. Moreover, we provide a combinatorial formula for the

number of submodules of a string module, and with that a simple way to compute the frieze associated to a fixed

cluster tilting object in a cluster category of Dynkin type A in the sense of Caldero and Chapoton.

Key words: AR-quiver, Cluster category, cluster mutation, cluster-tilted algebra, frieze pattern, Caldero-Chapoton

map, string module.

1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [13]. A key motivation was to provide an algebraic

framework for phenomena observed in the study of dual canonical bases for quantised enveloping algebras and in

total positivity for reductive groups.

Cluster categories were introduced in 2005, [4], [7] to give a categorical interpretation of cluster algebras. The

following table shows the beautiful interplay and correspondences between cluster algebras and cluster categories in

type A. Note that the correspondences between the first and second column hold more generally, not only in type A:

Caldero and Chapoton [6] have provided a formal link between cluster categories and cluster algebras by introduc-

ing what is now most commonly known as the Caldero Chapoton map (short: CC-map) or cluster character. Fixing

a cluster tilting object (which takes on the role of the initial cluster), it associates to each indecomposable in the
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cluster category a unique cluster variable in the associated cluster algebra, sending the indecomposable summands

of the cluster tilting object to the initial cluster.

Cluster algebra ← Cluster category Polygon

cluster variables CC-map indecomposable objects diagonals

clusters cluster tilting objects triangulations

mutations mutations flip

In the 70s, Coxeter and Conway first studied frieze patterns of numbers ([9] and [8]). When these numbers are

positive integers, they showed that the frieze patterns arise from triangulations of polygons. Thus we can extend

this table by a further column:

. . . Polygon Frieze

diagonals integers

triangulations sequences of 1’s

flip ??

Here the last entry is missing: the meaning of mutation or flip on the level of frieze patterns was not known

until now. The purpose of this survey article is to show how to complete the picture of cluster combinatorics in the

context of friezes. It is based on the paper [2] where more background on cluster categories can be found and where

the proofs are included. More precisely, we determine how mutation of a cluster affects the associated frieze, thus

effectively introducing the notion of a mutation of friezes that is compatible with mutation in the associated cluster

algebra. This provides a useful new tool to study cluster combinatorics of Dynkin type A.

In order to deal with the mutations for friezes we will use cluster categories and generalized cluster categories

as introduced by Buan, Marsh, Reineke, Reiten and Todorov [4] for hereditary algebras and by Amiot [1] more

generally. In both cases, cluster categories are triangulated categories in which the combinatorics of cluster alge-

bras receives a categorical interpretation: cluster variables correspond to rigid indecomposable objects and clusters

correspond to cluster tilting objects. One of the essential features in the definition of cluster algebras is the pro-

cess of mutation, which replaces one element of the cluster by another unique element such that a new cluster is

created. The corresponding categorical mutation replaces an indecomposable summand of a cluster tilting object

by another unique indecomposable object using approximations in the triangulated categories; this process creates

another cluster tilting object which corresponds to the mutated cluster.

We now explain the different players appearing in the table above.

1.1 Frieze patterns

The notion of friezes was introduced by Coxeter [10]; it was Gauss’s pentagramma mirificum which was the original

inspiration. We recall that a frieze is a grid of positive integers consisting of a finite number of infinite rows: the top

and bottom rows are infinite rows of 0s and the second to top and second to bottom are infinite rows of 1s as one

can see on the following diagram

. . . 0 0 0 0 . . .

1 1 1 1 1

. . . m−1,−1 m00 m11 m22 . . .

m−2,−1 m−1,0 m01 m12 m23

. . . . . . . . . . . . . . . . . .

1 1 1 1 1

. . . 0 0 0 0 . . .

The entries of the frieze satisfy the frieze rule: for every set of adjacent numbers arranged in a diamond
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b

a d

c

we have

ad−bc = 1.

The sequence of integers in the first non-trivial row, (mii)i∈Z, is called a quiddity sequence. This sequence

completely determines the frieze. Each frieze is also periodic, since it is invariant under glide reflection. The order

of the frieze is defined to be the number of rows minus one. It follows that each frieze of order n is n-periodic.

Among the famous results about friezes is the bijection between the friezes of order n and triangulations of a

convex n-gon, which was proved by Conway and Coxeter in [9] and [8]. This was used to set the first link with

cluster combinatorics using [7] and [6] by Caldero and Chapoton. Recently, frieze patterns have been generalized

in several directions and found applications in various areas of mathematics, for an overview see [17].

1.2 Cluster algebras

Fomin and Zelevinsky introduced the notion of cluster algebras in [13]. Cluster algebras are commutative algebras

generated by cluster variables; cluster variables are obtained from an initial cluster (of variables) by replacing

one element at a time according to a prescribed rule, where the rule is given either by a skew-symmetric (or more

generally skew-symmetrizable) matrix or, equivalently by a quiver with no loops nor 2-cycles. The process of

replacing one element of a cluster by another unique element in order to obtain another cluster, together with the

prescribed change of the quiver, is called mutation. Finite sequences of iterated mutations create new clusters and

new cluster variables; all cluster variables are obtained in such a way.

The process of such mutations may never stop, however if the quiver is of Dynkin type, then by a theorem of

Fomin and Zelevinsky, this process stops and one obtains a finite number of cluster variables [14]. Among those

cluster algebras, the best behaved and understood are the cluster algebras of type A. The clusters of the cluster

algebra of type An−3 are in bijection with the triangulations of a convex n-gon, for n ≥ 3. This is exactly what

is employed in this work in order to relate and use cluster categories, via triangulations of an n-gon, so that we

can describe the mutations of friezes of order n. Since we will also be dealing with quivers Q′ which are mutation

equivalent to the quivers of type An and may have nontrivial potential, we need to consider generalized cluster

categories C(Q′,W ), which are shown to be triangle equivalent to CQ [1].

1.3 Cluster categories

Let Q be an acyclic quiver with n vertices, over an algebraically closed field. We consider the category modkQ of

(finitely generated) modules over kQ, or, equivalently, the category repQ of representations of the quiver Q. The

bounded derived category Db(kQ) can be viewed as ∪i∈Z mod(kQ)[i], with connecting morphisms.

As an example, consider the quiver

Q : 1 2oo 3oo

The module category of the path algebra kQ has six indecomposable objects up to isomorphisms, with irreducible

maps between them as follows:
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P3

��
P2

��

??

I2

��
P1

??

S2

??

I3

The modules Pi are indecomposable projective, the Ii are indecomposable injectives and the Si are the simple

modules, with I1 = P3, S1 = P1 and S3 = I3. The bounded derived category then looks as follows (the arrows

indicate the connecting morphisms):

mod kQ

mod kQ[1]mod kQ[−1]
: : : : : :

Let Q be a Dynkin quiver of type A. Let C be the associate cluster category, which by definition is C = CQ =
Db(kQ)/τ−1[1] where Db(kQ) is the bounded derived category of the path algebra kQ with the suspension functor

[1] and the Auslander-Reiten functor τ . In this case, the specialized CC map gives a direct connection between the

Auslander-Reiten quiver of the cluster category C with a fixed cluster tilting object T , and the associated frieze

F(T ) in the following way: recall that each vertex of the Auslander-Reiten quiver corresponds to an isomorphism

class of an indecomposable object in the cluster category. When the specialized CC map is applied to a represen-

tative of each isomorphism class and the vertex is labeled by that value, one only needs to complete those rows by

the rows of 1s and 0s at the top and bottom in order to obtain a frieze, cf. [6, Proposition 5.2].

2 From cluster categories to frieze patterns

Let C be a cluster category, let T be a cluster tilting object and let BT = EndC (T ) be the endomorphism algebra,

which is also called a cluster-tilted algebra. The module category mod(BT ) is shown to be equivalent to the quotient

category C
/

add(T [1]) of the cluster category. This result by Buan, Marsh and Reiten is used in a very essential

way: each indecomposable object in C , which is not isomorphic to a summand of T [1] corresponds to an indecom-

posable BT -module, preserving the structure of the corresponding Auslander-Reiten quivers; at the same time the

indecomposable summands of T [1] correspond to the suspensions of the indecomposable projective BT -modules in

the generalized cluster category of the algebra BT .

When C is the cluster category associated to a Dynkin quiver of type A, for each cluster tilting object T , the

associated specialized CC-map sends each indecomposable summand of T [1] to 1 and each indecomposable BT -

module M to the number of its submodules, as we explain now. In the actual Caldero-Chapoton formula for cluster

variable xM in terms of the initial cluster variables, the coefficients are given as the Euler-Poincaré characteristics

of the Grassmannians of submodules of the module M. In this expression the sum is being taken over the dimension

vectors of the submodules of M. However in this set-up, since all indecomposable BT -modules are string modules

that have dimension at most one at every vertex, all the Grassmannians are just points. The specialized Caldero-

Chapoton map is the map we get from postcomposing the CC-map associated to T with the specialization of the

initial cluster variables to one. It will be denoted by ρT throughout the paper. It is given by the following formula:

ρT (M) =

{

1 if M = Ti[1] ,

∑e χ(Gre(M)) if M is a BT -module.

Here Gre(M)) is the Grassmannian of submodules of M with dimension vector e. Hence the sum is equal to the

number of submodules and the values of the specialized CC-map are positive integers. The values of the specialized

CC-map are now entered in the AR-quiver of the cluster category C at the places of the corresponding indecompos-

able objects. The image of this generalized CC-map only needs to be completed with the rows of 1s and 0s above

and below in order to obtain the frieze associated to the cluster tilting object T , denoted by F(T ).
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Since the generalized CC-map for cluster categories of Dynkin type A is given in terms of the number of sub-

modules of BT -modules, the first goal of the paper is to give a formula for the number of submodules. This is

determined by the following result, hence providing a combinatorial formula for the number of submodules of any

given indecomposable BT -module. Its proof can be found in [2, Section 4]. We recall that each BT -module is a

string module and hence has a description in terms of the lengths of the individual legs. Let (k1, . . . ,km) denote

these lengths, cf. Figure 1. We further denote by s(M) the number of submodules of a BT -module M. In order to

state the formula for the number of submodules, we say that a subset I of {1, . . . ,m} is admissible if, assuming

that I = {i1, . . . , il} is ordered by i1 < .. . < il , any two consecutive numbers i j, i j+1 are either of parity even-odd or

odd-even.

Sℓ

Sℓ+1Sℓ−1

Sm+1S1

Nℓ−1 Nℓ

Fig. 1 A string module M = (k1, . . . ,km) with legs Nl .

Theorem 2.1. Let M be an indecomposable BT -module, of shape (k1, . . . ,km). Then the number of submodules of

M is given as:

s(M) = 1+
m

∑
j=0

∑
|I|=m− j

∏
i∈I

ki ,

where the second sum runs over all admissible subsets I of {1, . . . ,m}.

Using the position of the module in the AR-quiver and the information about the positions of the indecomposable

projective BT -modules, the procedure for finding the numerical invariants (k1, . . . ,km) of the module is given in [2,

Section 2]. This purely combinatorial way of computing the numbers of submodules is the basis for computing the

associated friezes, and eventually, mutations of friezes.

Remark 2.2. Let C is the cluster category associated to a Dynkin quiver of type A and let T be a cluster tilting

object in C . Then for each indecomposable BT -module M we have ρT (M) = s(M). Theorem 2.1 thus gives us a

combinatorial way to compute the specialized Caldero-Chapoton map.

We end this section by giving an example illustrating the frieze pattern obtained through the specialized CC-map.

Example 2.3. We now illustrate several notions on the example of the cluster category CA11
: the Auslander-Reiten

quiver of CA11
, a cluster tilting object T , the cluster-tilted algebra BT and the Auslander-Reiten quiver of the gen-

eralized cluster category of BT where the modules are given by their composition factors. The Auslander-Reiten

quiver of CA11
is the quotient of the Auslander-Reiten quiver of Db(kA11) by the action of τ−1[1], a fundamental

domain which is depicted in black below. We pick the cluster tilting object T =
⊕11

i=1 Ti whose indecomposable

summands are marked with circles:
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• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

Consider the cluster-tilted algebra BT = EndCA11
(T ). Then BT = kQ

/

I, where Q is the quiver

8

��

9

��
Q : 7

??

3oo

��

2oo

??

10oo

��
1

??

��

11

6 5oo // 4

__

and I is the ideal generated by the directed paths of length 2 which are part of the same 3-cycle. We refer the reader

to [5] for a detailed description of cluster-tilted algebras of Dynkin type A.

We can view mod(BT ) as a subcategory of CA11
and label the indecomposable objects in CA11

by modules and

shifts of projective modules respectively:

8
3
1
5
6

P6[1] 6 5
4 P4[1]

4
1
2
9

P9[1]
9

10
11

P11[1] 11
10
2
3
7

P7[1]

8
3
1
5

P5[1] 5
6 4 5

1
2
9

4
1
2

10
11

9
10 P10[1]

10
2 11
3
7

10
2
3

3
1
5

8
3
1

4 5
6

1
2 5
9

1
2

4
10 1

11 2
10 9

2
3
7

10
2 11
3

10
8 2

3

3
1

8
4 3

1
P1[1]

1
2 5
9 6

1
2 5

10 1
11 2

4
10 1

2
P2[1]

2
9 3

7

2
3

10
8 2 11

3

3
1 7

4 3
1

8
3

2
9

1
2 5

6

10 1
11 2 5

10 1
2

4
1

3
7

2
9 3

8 2
3

10
2 11

4 3
1 7 3 2 8

9 3 2
10 1
11 2 5

6

10 1
2 5 1 4 3

1 7 3 2 8
9 3 2

4
1

3
7

2
9 3

8 2
3

10
2 11

10 1
2 5

6

1
5

3
1 7

4 3
1

8
3

2
9

1
2 5

6

P2[1]
2

9 3
7

2
3

10
8 2 11

3

10
2

1
5
6

3
1 7
5

3
1

8
4 3

1
P1[1]

1
2 5
9 6

10 9
2
3
7

10
2 11
3

10
8 2

3
P3[1]

3
1 7
5
6

3
1
5

8
3
1

4 5
6

1
2 5
9

9
10 P10[1]

10
2 11
3
7

10
2
3

8 7
3
1
5
6

8
3
1
5

P5[1] 5
6 4 5

9
10
11

P11[1] 11
10
2
3
7

P7[1] 7
8 P8[1]

8
3
1
5
6

P6[1] 6 5
4 P4[1]

In this picture the direct summands of T correspond to the indecomposable projective modules Pi of BT (which lie

on the right of the Pi[1] in the picture). The specialized CC-map replaces each vertex labelled by a module, by the

number of its submodules and the shifts of projectives by 1s. Adding in the first two and last two rows of 0s and 1s

gives rise to the associated frieze F(T ):
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0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

6 1 2 3 1 5 1 4 1 2 5 1

5 1 5 2 4 4 3 3 1 9 4 2

4 4 2 3 7 3 11 2 2 4 7 7

3 7 1 10 5 8 7 1 7 3 12 3

5 5 3 3 7 13 5 3 3 5 5 5

8 2 8 2 18 8 2 8 2 8 2 18

3 3 5 5 5 11 3 5 5 3 3 7

1 7 3 12 3 4 7 3 7 1 10 5

2 2 4 7 7 1 9 4 4 2 3 7

3 1 9 4 2 2 5 5 1 5 2 4

4 1 2 5 1 3 1 6 1 2 3 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

3 Description of the regions in the frieze

The quiver of a triangulation.

Let T be a triangulation of an (n+ 3)-gon, and let the diagonals be labeled by 1,2, . . . ,n. We recall that the

quiver QT of the triangulation T is defined as follows: the vertices of QT are the labels {1,2, . . . ,n}. There is

an arrow i→ j in case the diagonals share an endpoint and the diagonal i can be rotated clockwise to diagonal j

(without passing through another diagonal incident with the common vertex). This is illustrated in Example 3.2 and

Figure 5 below.

Let B = BT be the path algebra of QT modulo the relations arising from triangles in QT : whenever α,β are two

successive arrows in an oriented triangle in QT , their composition is 0. Let Px be the indecomposable projective

B-module associated to the vertex x and Sx its simple top. Let

T =⊕x∈T Px.

We considered T as an object of the generalized cluster category C =CB. Then T is a cluster tilting object in C and

B∼= EndC (T ). Hence B is a cluster-tilted algebra, called the cluster-tilted algebra associated to the triangulation T .

We can extend this to an object in the Frobenius category C f by adding the n+ 3 projective-injective summands

associated to the boundary segments [12], [23] , . . . , [n+ 3,1] of the polygon, with irreducible maps between the

objects corresponding to diagonals/edges as follows: [i−1, i+1]→ [i, i+1], [i, i+1]→ [i, i+2] ([16, 3, 11]). We

denote the projective-injective associated to [i, i+1] by Qxi
. Let

Tf = (⊕x∈T Px)⊕
(

Qx1
⊕·· ·⊕Qxn+3

)

This is a cluster tilting object of C f in the sense of [15, Section 3]. Given a B-module M, by abuse of notation, we

denote the corresponding objects in C and C f by M, that is HomC (T,M) = M. In other words, an indecomposable

object of C f is either an indecomposable B-module or Qxi
for some i ∈ {1, . . . ,n+3} or of the form Px[1] for some

x ∈T .
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The frieze F(T ) of the triangulation T is the frieze pattern F(T ) for T the cluster tilting object associated to

T .

3.1 Diagonal defines a quadrilateral

Let a be a diagonal in the triangulation, a ∈ {1,2, . . . ,n}. This diagonal uniquely defines a quadrilateral formed

by diagonals or boundary segments. Label them b,c,d,e as in Figure 3.

a

b e

c d

Qb
Qe

QdQc

Fig. 2 Regions in quiver.

b

c

d

e

a

Fig. 3 Triangulation around a.

3.2 Diagonal defines two rays

Consider the entry 1 of the frieze corresponding to a. There are two rays passing through it. We go along these

rays forwards and backwards until we reach the first entry 1. As the frieze has two rows of ones bounding it, we

will always reach an entry 1 in each of these four directions. Going forwards and upwards: the first occurrence of 1

corresponds to the diagonal b. Down and forwards: diagonal d. Backwards down from the entry corresponding to

1: diagonal c and backwards up: diagonal e. If we compare with the coordinate system for friezes of Section 1.1,

the two rays through the object corresponding to the diagonal a = [kl] are the entries mi,l (with i varying) and mk, j

(with j varying).

In the frieze or in the AR quiver, we give the four segments between the entry 1 corresponding to a and the

entries corresponding to b,c,d and e names (see Figure 4 for a larger example containing these paths). Whereas a is

always a diagonal, b,c,d,e may be boundary segments. If b is a diagonal, the ray through Pa[1] goes through Pb[1],
and if b is a boundary segment, say b = [i, i+1] (with a = [i j]) this ray goes through Qxi

. By abuse of notation, it

will be more convenient to write this projective-injective as Pb[1] or as Pxi
[1] (if we want to emphasize that it is an

object of the Frobenius category C f that does not live in C ).

Let e and c denote the unique sectional paths in C f starting at Pa[1] and ending at Pb[1] and Pd [1] respectively,

but not containing Pb[1] or Pd [1]. Similarly, let b and d denote the sectional paths in C f starting at Pe[1] and Pc[1]
respectively and ending at Pa[1], not containing Pe[1], Pc[1], see Figure 4.

Note that b and d are opposite sides of the quadrilateral determined by a. In particular, the corresponding diag-

onals do not share endpoints. In other words, Pb[1] and Pd [1] do not lie on a common ray in the AR quiver. So by

the combinatorics of C f there exist two distinct sectional paths starting at Pb[1],Pd [1]. These sectional paths both

go through Sa. Let ca,ea denote these paths starting at Pb[1] and at Pd [1], up to Sa, but not including Pb[1],Pd [1]
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respectively. Observe that the composition of e with c
a and the composition of c with e

a are not sectional, see Fig-

ure 4. Similarly, let da,ba denote the two distinct sectional paths starting at Sa and ending at Pe[1],Pc[1] respectively

but not including Pe[1],Pc[1]. Note that the composition of ca with ba and the composition of ea with da are not

sectional.

3.3 Diagonal defines subsets of indecomposables

For x a diagonal in the triangulation T and Px the corresponding projective indecomposable, we write X for

the set of indecomposable B-modules having a non-zero homomorphism from Px into them, X = {M ∈ indB |
Hom(Px,M) 6= 0}. Given a B-module M, its support is the full subquiver supp(M) of QT generated by all vertices

x of QT such that M ∈X . It is well known that the support of an indecomposable module is connected.

If x is a boundary segment, we set X to be the empty set (there is no projective indecomposable associated to

x, so there are no indecomposables reached).

We use the notation above to describe the regions in the frieze. Thus, if x,y are diagonals or boundary segments,

we write X ∩Y for the indecomposable objects in C that have x and y in their support.

Pd [1]

��

Pe[1]

��

Pb[1]

��

Pc[1]?? ?? ??

�� �� ��
Sa

??

��

Pa[1]

??

��

Sa

??

��

?? ?? ??

�� �� ��
Pb[1]

??

Pc[1]

??

Pd [1]

??

Pe[1]

B∩D C ∩E

C ∩D

B∩E
B∩C

D ∩EB∩C

D ∩E

B∩DC ∩E

b
e

d
c

ba

ba

da

da
c

a

c
ae

a

e
a

Fig. 4 Regions in the AR quiver determined by Pa[1].

Remark 3.1. Let M be an indecomposable B-module in X ∩Y such that there exists a (unique) arrow α : x→ y in

the quiver. It follows that the right action of the element α ∈ B on M is nonzero, that is Mα 6= 0.

By the remark above we have the following equalities. Note that none of the modules below are supported at a,

because the same remark would imply that such modules are supported on the entire 3-cycle in QT containing a.

However, this is impossible as the composition of any two arrows in a 3-cycles is zero in B. We have
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B∩E = {M ∈ indB |M is supported on e→ b}

C ∩D = {M ∈ indB |M is supported on c→ d}

Moreover, since the support of an indecomposable B-module forms a connected subquiver of Q, we also have

the following equalities.

B∩C = {M ∈ indB |M is supported on b→ a→ c}

D ∩E = {M ∈ indB |M is supported on d→ a→ e}

B∩D = {M ∈ indB |M is supported on b→ a← d}

C ∩E = {M ∈ indB |M is supported on c← a→ e}

Finally, using similar reasoning it is easy to see that the sets described above are disjoint. Next we describe

modules lying on sectional paths defined in section 3.2. First, consider sectional paths starting or ending in Pa[1],
then we claim that

i= {M ∈ indB | i ∈ supp(M)⊂ Qi}∪{Pa[1]}

for all i ∈ {b,c,d,e}, for Qi the subquiver of Q containing i, as in Figure 2. We show that the claim holds for

i = b, but similar arguments can be used to justify the remaining cases. Note, that it suffices to show that a module

M ∈ b is supported on b but it is not supported on e or a. By construction the sectional path b starts at Pe[1], so

0 = Hom(τ−1Pe[1],M) = Hom(Pe,M). On the other hand, b ends at Pa[1], so 0 = Hom(M,τPa[1]) = Hom(M, Ia),
where Ia is the injective B-module at a. This shows that M is not supported at e or a. Finally, we can see from

Figure 4 that M has a nonzero morphism into τPb[1] = Ib, provided that b is not a boundary segment. However, if b

is a boundary segment, then b∩Ob(modB) = /0 and we have b= {Pa[1]}. Conversely, it also follows from Figure 4

that every module M supported on b and some other vertices of Qb lies on b. This shows the claim.

Now consider sectional paths starting or ending in Sa. Using similar arguments as above we see that

i
a = {M ∈ indB | a ∈ supp(M)⊂ Qa

i }

for i ∈ {c,e} and

ia = {M ∈ indB | a ∈ supp(M)⊂ Qa
i }

for i ∈ {b,d}, where Qa
i is the full subquiver of Q on vertices of Qi and the vertex a.

Finally, we define F to be the set of indecomposable objects of C f that do not belong to

A ∪B∪C ∪D ∪E ∪{Pa[1]}.

The region F is a succession of wings in the AR quiver of C f , with peaks at the Px[1] for x ∈ {b,c,d,e}. That is,

in the AR quiver of C f consider two neighboured copies of Pa[1] with the four vertices Pb[1], Pc[1], Pd [1], Pe[1].
Then the indecomposables of F are the vertices in the triangular regions below these four vertices, including them

(as their peaks). By the glide symmetry, we also have these regions at the top of the frieze. In Figure 4, the wings

are the shaded unlabelled regions at the boundary. It corresponds to the diagonals inside and bounding the shaded

regions in Figure 5. We will see in the next section that objects in F do not change under mutation of Tf at Pa[1].

Example 3.2. We consider the triangulation T of a 14-gon, see the left hand of Figure 5 and the triangulation

T ′ = µ1(T ) obtained by flipping diagonal 1.

The quivers of T and of T ′ are given below. Note that the quiver Q is the same as in Example 2.3.
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Figure 6 shows the Auslander-Reiten quiver of the cluster category C f for Q.

In Figure 7 (Section 4.2), the frieze patterns of T and of T ′ are given.
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Fig. 5 Triangulations T and T ′ = µ1(T )

4 Mutating friezes

Assume now that our cluster tilting object T in C is of the form T =
⊕n

i=1 Ti, where the Ti are mutually non-

isomorphic indecomposable objects. Mutating T at Ti for some 1 ≤ i ≤ n yields a new cluster tilting object T ′ =
T/Ti⊕T ′i , to which we can associate a new frieze F(T ′). In terms of the frieze, we can think of this mutation as a

mutation at an entry of value 1, namely the one sitting in the position of the indecomposable object Ti[1].
We describe how, using graphic calculus, we can obtain each entry of the frieze F(T ′) independently and directly

from the frieze F(T ), thus effectively introducing the concept of mutations of friezes at entries of value 1 that do

not lie in one of the two constant rows of 1s bounding the frieze pattern.

We are able to give an explicit formula of how each entry in the frieze F(T ) changes under mutation at the

entry corresponding to Ti, see Theorem 4.7 below. We observe that each frieze can be divided into four separate

regions, relative to the entry of value 1 at which we want to mutate. Each of these regions gets affected differently

by mutation. The formula of the theorem relies solely on the shape of the frieze and the entry at which we mutate.

It determines how each entry of the frieze individually changes under mutation.

In Section 4.2 we will describe the four separate regions in and introduce the necessary notation before stating

the theorem.
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Fig. 6 AR quiver of the category C f arising from Q

4.1 Frieze category

We extend indC by adding an indecomposable for each boundary segment of the polygon and denote the resulting

category by C f . Then C f is the Frobenius category of maximal CM-modules categorifying the cluster algebra

structure of the coordinate ring of the (affine cone of the) Grassmannian Gr(2,n) as studied in [11] and for general

Grassmannians in [16, 3]. The stable category of C f is equivalent to C . We then extend the definition of ρT to C f

by setting

ρT (M) = 1 if M corresponds to a boundary segment.

This agrees with the extension of the cluster character to Frobenius category given by Fu and Keller, cf. Theo-

rem [15, Theorem 3.3].

4.2 The effect of flips on friezes

The goal of this section is to describe the effect of the flip of a diagonal or equivalently the mutation at an inde-

composable projective on the associated frieze. We give a formula for computing the effect of the mutation using

the specialised Caldero Chapoton map. Let T be a triangulation of a polygon with associated quiver Q (see Sec-
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Fig. 7 Frieze pattern of Example 3.2. Red entries: after flip of diagonal 1

tion 3). The quiver Q looks as in Figure 2, where the subquivers Qb, Qc, Qd , Qe may be empty. Let T = ⊕x∈T Px

and B = EndC T be the associated cluster-tilted algebra.

Take a ∈ T and let T ′ = µa(T ) be the triangulation obtained from flipping a, with quiver Q′ = µa(Q) (Fig-

ure 8).

a

b e

c d

Qb
Qe

QdQc

Fig. 8 Quiver after flipping diagonal a
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Let B′ be the algebra obtained through this, it is the cluster-tilted algebra for T ′ =⊕x∈T ′Px. If M is an indecom-

posable B-module, we write M′ for µa(M) in the sense of [12]. If M is an indecomposable B-module, the entry of

M in the frieze F(T ) is the entry at the position of M in the frieze.

Definition 4.1. Let T be a triangulation of a polygon, a ∈ T and M an indecomposable object of C f . Then we

define the frieze difference (w.r.t. mutation at a) δa : indC f → Z by

δa(M) = ρT (M)−ρT ′(M
′) ∈ Z

In Section 4.3 we first describe the effect mutation has on the regions in the frieze. This gives us all the necessary

tools to compute the frieze difference δa (Section 4.4).

4.3 Mutation of regions

Here we describe how mutation affects the regions (Section 3.3) of the frieze F(T ). Let T ,a,B and T ′,B′ be

as above. When mutating at a, the change in support of the indecomposable modules can be described explicitly in

terms of the local quiver around a. This is what we will do here. We first describe the regions in the AR quiver of

C f for B′.

If x is a diagonal or a boundary segment, we write

X
′ = {M ∈ indB′ | Hom(Px,M) 6= 0}

for the indecomposable modules supported on x.

After mutating a, the regions in the AR quiver are still determined by the projective indecomposables cor-

responding to the framing diagonals (or edges) b,c,d,e. The relative positions of a,b,c,d and e have changed,

however it follows from [12] that except for vertex a the support of an indecomposable module at all other vertices

remains the same. Therefore, the regions are now described as follows:

B
′∩E

′ = {M ∈ indB′ |M is supported on e→ a→ b}

C
′∩D

′ = {M ∈ indB′ |M is supported on c→ a→ d}

B
′∩C

′ = {M ∈ indB′ |M is supported on b→ c}

D
′∩E

′ = {M ∈ indB′ |M is supported on d→ e}

B
′∩D

′ = {M ∈ indB′ |M is supported on b← a→ d}

C
′∩E

′ = {M ∈ indB′ |M is supported on c→ a← e}

Under the mutation at a, if a module M lies on one of the rays ba, da c
a and e

a then M′ is obtained from M

by removing support at vertex a. The modules lying on the remaining four rays gain support at vertex a after the

mutation.
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4.4 Mutation of frieze

We next present the main result of this section, the effect of flip on the generalized Caldero Chapoton map, i.e.

the description of the frieze difference δa. We begin by introducing the necessary notation.

Depending on the position of an indecomposable object M we define several projection maps sending M to

objects on the eight rays from Section 3.2.

Let M ∈ indB, and let i be one of the sectional paths defined in section 3.2. Suppose M 6∈ i, then we denote by

Mi a module on i if there exists a sectional path Mi→ ·· · →M or M→ ·· · →Mi in C f , otherwise we let Mi = 0. If

M ∈ i then we let Mi = M. In the case when it is well-defined, we call Mi the projection of M onto the path i.

It will be convenient to write these projections in a uniform way.

Definition 4.2 (Projections). If (x,y) is one of the pairs {(b,c),(d,e),(b,e),(c,d)}, the region X ∩Y has two

paths along its boundary and two paths further backwards or forwards met along the two sectional paths through

any vertex M of X ∩Y . We call the backwards projection onto the first path π−1 (M) and the projection onto the

second path π−2 (M). The forwards projection onto the first path is denoted by π+
1 (M) and the one onto the second

path π+
2 (M).

Figure 9 illustrates these projections in the case (x,y) ∈ {(b,c),(d,e)}.

The remaining two regions will be treated together with the surrounding paths.

Definition 4.3. The closure of C ∩E is the Hom-hammock

C ∩E = ind(HomC f
(Pa[1],−)∩HomC f

(−,Sa))

in C f starting at Pa[1] and ending at Sa. Similarly, the closure of B∩D is the Hom-hammock

B∩D = ind(HomC f
(Sa,−)∩HomC f

(−,Pa[1]))

in C f starting at Sa and ending at Pa[1]. For (x,y) ∈ {(c,e),(b,d)}, the boundary of X ∩Y (or of X ∩Y ) is

X ∩Y \ (X ∩Y ).

Note that C ∩E is the union of C ∩ E with the surrounding rays and the shifted projectives {Pb[1],Pd [1]}.
Analogously, B∩D contains {Pc[1],Pe[1]}.

M

B \ C

π
+
1 (M)

π
-
1(M)

Sa

π
-
2(M)

π
+
2 (M)

D \ Eπ
-
1(N)

π
-
2(N) π

+
2 (N)

π
+
1 (N)

N

Pa[1]Pa[1]

Fig. 9 Projections for B∩C , D ∩E



16 K. Baur, E. Faber, S. Gratz, K. Serhiyenko, G. Todorov

C \ E

B \ D

Pb[1]

Pd[1]

Pe[1]

Pc[1]

Pa[1] Pa[1]
Sa

π
"
p(N)

π
#
p(N)

π
"
s(N)

π
#
s(N)

π
"
s(M)

π
#
s(M) π

#
p(M)

π
"
p(M)

M

N

Fig. 10 Projections for B∩D , C ∩E

Definition 4.4 (Projections, continued). If M is a vertex of one of the two closures, we define four projections

for M onto the four different “edges” of the boundary of its region: We denote the projections onto the paths

starting or ending next to Pa[1] by π
↑
p , π

↓
p and the projections onto the paths starting or ending next to Sa by π

↑
s

and π
↓
s respectively. We choose the upwards arrow to refer to the paths ending/starting near Pb[1] or Pc[1] and the

downwards arrow to refer to paths ending/starting near Pd [1] or Pe[1]. See Figure 10.

Remark 4.5. The statement of Theorem 4.7 is independent of the choice of ↑ (paths near Pb[1] or Pc[1]) and ↓ in

Definition 4.4 as the formula is symmetric in these expressions.

Example 4.6. If M ∈ e, we have π
↑
p(M) = M, π

↑
s (M) = Pb[1], π

↓
p(M) = Pa[1] and π

↓
s (M) = Me

a .

For Sa we have π
↑
s (Sa) = π

↓
s (Sa) = Sa whereas the two modules π

↑
p(Sa) and π

↓
p(Sa) are {Pb[1],Pd [1]} or

{Pc[1],Pe[1]} depending on whether Sa is viewed as an element of C ∩E or of B∩D .

For Pa[1], we have π
↑
p(Pa[1]) = π

↓
p(Pa[1]) = Pa[1] whereas the two modules π

↑
s (Pa[1]) and π

↓
s (Pa[1]) are

{Pb[1],Pd [1]} or {Pc[1],Pe[1]} These four shifted projectives evaluate to 1 under s, and so in Theorem 4.7, this

ambiguity does not play a role.

With this notation we are ready to state the theorem, proved in [2, Section 6]. Recall that s(M) denotes the

number of submodules of a module M, cf. also Theorem 2.1.

Theorem 4.7. Consider a frieze associated to a triangulation of a polygon. Let a be a diagonal in the triangula-

tion. Consider the mutation of the frieze at a. Then the frieze difference δa(M) at the point corresponding to the

indecomposable object M in the associated Frobenius category C f is given by:

If M ∈ (B∩C )∪ (D ∩E ) then

δa(M) = (s(π+
1 (M))− s(π+

2 (M)))(s(π−1 (M))− s(π−2 (M));

If M ∈ (B∩E )∪ (C ∩D) then

δa(M) =−(s(π+
2 (M))−2s(π+

1 (M)))(s(π−2 (M))−2s(π−1 (M));

If M ∈ C ∩E ∪B∩D then

δa(M) = s(π↓s (M))s(π↓p(M))+ s(π↑s (M))s(π↑p(M))−3s(π↓p(M))s(π↑p(M));

If M ∈F then

δa(M) = 0.
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Note, that given a frieze and an indecomposable M in one of the six regions X ∩Y , it is easy to locate the

entries required to compute the frieze difference δa(M). We simply need to find projections onto the appropriate

rays in the frieze. In this way, we do not need to know the precise shape of the modules appearing in the formulas

of Theorem 4.7.

Example 4.8. Let C f be the category given in Example 3.2. We consider three possibilities for M below.

If M =
4

10 1
11 2

then we know by Figure 7 that s(M) = 11 and s(M′) = 8. On the other hand, we see from Figure 6

that M ∈B∩C . Theorem 4.7 implies that

δa(M) = s(M)− s(M′) = (s(Mba
)− s(Mb))(s(Mca)− s(Mc))

= (s( 4
1)− s( 4))(s( 10 1

11 2 )− s( 10
11 2))

= (3−2)(8−5) = 3.

Similarly, if M = 8 2
3 , then M ∈ C ∩D with s(M) = 5 and s(M′) = 7. The same theorem implies that

δa(M) = s(M)− s(M′) =−(s(Mca)−2s(Mc))(s(Mda)−2s(Md))

=−(s( 1
2)−2s( 2))(s(

8
3
1
)−2s( 8

3))

=−(3−4)(4−6) =−2.

Finally, if M =
10 1

2 5
6

, then M ∈C ∩E . We also know that s(M)= s(M′)= 11. By the third formula in Theorem 4.7,

we have

δa(M) = s(M)− s(M′) = s(Mea)s(Mc)+ s(Mca)s(Me)−3s(Me)s(Mc)

= s(
1
5
6
)s( 10

2 )+ s( 10 1
2 )s( 5

6)−3s( 5
6)s(

10
2 )

= 4 ·3+5 ·3−3 ·3 ·3 = 0.
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