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On the Minimum of a Positive Definite Quadratic Form over

Non–Zero Lattice points. Theory and Applications.

Faustin Adiceama,1,✝, Evgeniy Zorina

aDepartment of Mathematics, University of York, York, YO10 5DD, UK

Abstract

Let Σ��
d be the set of positive definite matrices with determinant 1 in dimension d ➙ 2.

Identifying any two SLd♣Zq–congruent elements in Σ��
d gives rise to the space of reduced

quadratic forms of determinant one, which in turn can be identified with the locally sym-
metric space Xd :✏ SLd♣Zq③SLd♣Rq④SOd♣Rq. Equip the latter space with its natural
probability measure coming from a Haar measure on SLd♣Rq. In 1998, Kleinbock and
Margulis established sharp estimates for the probability that an element of Xd takes a
value less than a given real number δ → 0 over the non–zero lattice points Z

d③t0✉.
In this article, these estimates are extended to a large class of probability measures

arising either from the spectral or the Cholesky decomposition of an element of Σ��
d . The

sharpness of the bounds thus obtained are also established (up to multiplicative constants)
for a subclass of these measures.

Although of an independent interest, this theory is partly developed here with a view
towards application to Information Theory. More precisely, after providing a concise in-
troduction to this topic fitted to our needs, we lay the theoretical foundations of the study
of some manifolds frequently appearing in the theory of Signal Processing. This is then
applied to the recently introduced Integer–Forcing Receiver Architecture channel whose
importance stems from its expected high performance. Here, we give sharp estimates for
the probabilistic distribution of the so–called Effective Signal–to–Noise Ratio, which is an
essential quantity in the evaluation of the performance of this model.

Soit Σ��
d l’ensemble des matrices définies positives de déterminant 1 en dimension

d ➙ 2. L’espace des formes quadratiques réduites de déterminant 1 s’en déduit en identifi-
ant les matrices SLd♣Zq–congruentes. Cet espace peut à son tour être identifié à l’ensemble
localement symétrique Xd :✏ SLd♣Zq③SLd♣Rq④SOd♣Rq sur lequel peut être définie une

✝Corresponding author.
Email addresses: fadiceam@gmail.com (Faustin Adiceam), evgeniy.zorin@york.ac.uk (Evgeniy

Zorin)
1Present address: Department of Pure Mathematics, University of Waterloo, 200 University Avenue

West, Waterloo, ON., Canada N2L3G1
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mesure de probabilité obtenue à partir d’une mesure de Haar de SLd♣Rq. En 1998, Klein-
bock et Margulis estimèrent de manière optimale la probabilité qu’un élément de Xd prenne
une valeur inférieure à un réel δ → 0 sur l’ensemble des points non nuls du réseau Z

d.

Dans cet article, ces estimations sont étendues à une large classe de mesures de probabi-
lité définies, soit à partir de la décomposition spectrale d’un élément de Σ��d , soit à partir de
sa décomposition de Cholesky. L’optimalité des bornes ainsi obtenues est également établie
(à une constante multiplicative près) pour une sous–classe des mesures considérées.

Bien qu’intéressante en soi, cette théorie est en partie développée ici en considération
de ses applications à la théorie de l’information. Plus précisément, à la suite d’une
présentation concise et adaptée à nos besoins du sujet en question, nous posons les fonde-
ments théoriques de l’étude de quelques variétés apparaissant fréquemment en théorie du
traitement du signal. Ceci est ensuite utilisé pour décrire l’architecture du réseau à forçage
aux entiers auprès du receveur récemment élaboré et dont l’importance réside dans les
hautes performances qui en sont attendues. Nous estimons ici de manière optimale la
distribution probabilistique dudit rapport signal sur bruit effectif, qui est une grandeur
fondamentale dans l’évaluation de la performance de ce modèle.
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Quadratic Forms, Lattice Points, Information Theory.
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In honorem Henriettae Dickinsonis apud Manutium in Hibernia.

Contents

1 Introduction 3

2 An Approach via the Spectral Decomposition. 6

2.1 Definition of a Suitable Class of Measures . . . . . . . . . . . . . . . . . . 7

2.2 Estimation of the Probability that a Non–Zero Integer Vector should lie in
a Random Ellipsoid Centered at the Origin. . . . . . . . . . . . . . . . . . 9

2.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 An Approach via the Cholesky Decomposition. 24

2



3.1 Definition of a Suitable Class of Measures . . . . . . . . . . . . . . . . . . 25

3.2 The Main Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 A Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Application to Signal Processing 32

4.1 Position of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Channels with Integer–Forcing Receiver Architecture . . . . . . . . . . . . 35

4.3 Formalisation of the Concept of a “Uniformly” Distributed Measure on the
Set Hm,n ♣C0, SNRq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Estimation of the Cumulative Distribution Function of the Effective Signal–
to–Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1. Introduction

Fix once and for all an integer d ➙ 2. Let Q be a non–degenerate symmetric matrix in
dimension d. Throughout, the matrix Q will be identified with the corresponding quadratic
form x P R

d ÞÑ t
x ☎ Q ☎ x.

If Q is indefinite, the Oppenheim conjecture solved by Margulis states that the set of
values taken by this quadratic form at non–zero integral points, viz.✥

t
a ☎ Q ☎ a : a P Z

d③t0✉✭ ,

is dense in the real line whenever d ➙ 3. When d ✏ 2 however (i.e. for indefinite binary
quadratic forms), this set may exhibit very different structures : it may be dense or else
closed and discrete, but it may also be not closed and/or not dense. For further details on
the theory of values taken by an indefinite quadratic form, the reader is referred to [6, 7]
and to the references therein.

In the case that Q is definite, say positive definite without loss of generality, it is easy
to see that the quantity

Md♣Qq :✏ min
aPZd③t0✉

t
a ☎ Q ☎ a (1)

is well–defined. It is a result due to Hermite (see [2, p.43] for a proof) that one has always

Md♣Qq ↕
✂

4

3

✡♣d✁1q④2
⑤Q⑤1④d , (2)
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where ⑤Q⑤ denotes the determinant of Q. It is known that the constant ♣4④3q♣d✁1q④2 on the
right–hand side of (2) is optimal only when d ✏ 2. Denoting by S��

d the set of positive
definite matrices in dimension d ➙ 2, this leads one to the definition of the Hermite constant
γd :

γd :✏
supQPS

��
d

Md♣Qq
⑤Q⑤1④d ☎

The supremum in this definition can actually be replaced with a maximum. Only the
values of γd for d ✏ 2, 3, 4, 5, 6, 7, 8 and d ✏ 24 are exactly known. For other d’s, several
estimates have been established. See, e.g., [5] for proofs and further details on the Hermite
constants. See also [4] for an algorithm to approximate Md♣Qq for a given Q P S��

d .

It should be noted that the study of the quantity Md♣Qq for a generic Q P S��
d underpins

the more general problem of determining the minimum of such a quadratic form over non–
zero elements of any full rank lattice Λ. Indeed, as such a lattice can be written in the form
Λ ✏ L ☎ Zd for some L P GLd♣Rq, the minimum of Q over the elements of Λ③t0✉ is given
by Md ♣t

LQLq. Also, if L✶ P GLd♣Rq is another matrix such that Λ ✏ L✶ ☎ Zd, then there
exists Z P SLd♣Zq such that L✶ ✏ LZ. This implies in particular that Md♣Qq ✏ Md ♣t

ZQZq
for any Q P S��

d and any Z P SLd♣Zq , i.e. that the quantity Md♣Qq is invariant under
SLd♣Zq–congruent matrices.

The problem of estimating Md♣Qq is here considered from a probabilistic point of view.
Given an estimate such as (2), even if it means renormalising in an obvious way the
matrices under consideration, it is natural to focus on the case of positive definite matrices
with determinant one. Let therefore

Σ��
d :✏ ✥

Σ P S��
d : det♣Σq ✏ 1

✭
denote such a set. In full generality, the main problem addressed in this work can loosely
be summarised this way :

Problem 1 (Main Problem). For a given probability measure µ on the set Σ��
d , estimate

the probability µ ♣Md♣Σq ↕ δq as a function of δ → 0.

In order to take into account the SLd♣Zq–invariance of the problem, identify any two
SLd♣Zq–congruent matrices in Σ��

d . This defines the space of reduced quadratic forms
with determinant one, which is henceforth denoted by Σ��

d,red. It is easy to see that the map

φ : g P Xd ÞÑ g ☎ t
g P Σ��

d,red (3)

is well–defined and bijective, where Xd denotes the locally symmetric space

Xd :✏ SLd♣Zq③SLd♣Rq④SOd♣Rq
and where g :✏ SLd♣Zq ☎ g ☎ SOd♣Rq is the equivalence class in Xd of any g P SLd♣Rq
(the surjectivity of the map φ follows for instance from the Cholesky decomposition of an
element of Σ��

d ). From now on, let

Γ :✏ SLd♣Zq, G :✏ SLd♣Rq and H :✏ SOd♣Rq

4



(which are all unimodular groups) in such a way that Xd :✏ Γ③G④H.

The set Xd seen as a double coset space can be equipped with a natural G–invariant
probability measure µXd

arising from the G–invariant probability measure µΓ③G on the
space of lattices Γ③G. If one denotes by µH the Haar probability measure on H, the
invariant measure µXd

is characterised by the fact that for any Borel measurable function
f P L

1♣µΓ③Gq, the following equation holds :➺
Xd

✂➺
H

f♣ghq ☎ dµH♣hq
✡
☎ dµXd

♣gHq ✏
➺

Γ③G
f♣gq ☎ dµΓ③G♣gq

(see [13] for proofs and details). The probability measure µΓ③G is itself obtained from any
suitably normalised Haar measure µG on G. One can furthermore explicitly express the
volume element dµG♣Mq in terms of the Iwasawa decomposition of M P G — see [17, §2]
for details.

With the help of the bijective map (3), the measure µXd
can be pushed forward to a

probability measure φ✝µXd
on the space Σ��

d,red. In view of Problem 1, one is then concerned
with the estimate of the probability

pXd
♣δq ✏ ♣φ✝µXd

q �✥Σ P Σ��
d,red : Md♣Σq ↕ δ

✭✟
✏ µXd

♣tg P Xd : Md♣φ♣gqq ↕ δ✉q

for any fixed δ → 0 which may be assumed to be less than the Hermite constant γd for
obvious reasons (note that the above equations are direct consequences of the change of
variables formula for pushforward measures). This problem was emphatically solved by
Kleinbock–Margulis who proved in [11, §7] the following result (see also [12, Theorem
1.3.5]). Before stating it, and in view of the statement of our own results, let from now

Vd ✏ πd④2

Γ
�

d
2
� 1

✟ and Ad ✏ 2πd④2

Γ
�

d
2

✟ (4)

denote respectively the volume and the area of the unit Euclidean ball in dimension d ➙ 2
(here, Γ♣ . q denotes the usual Euler Gamma function).

Theorem 1 (Kleinbock & Margulis, 1998). The following inequalities hold for any δ → 0 :

Vd

2ζ♣dqδ
d④2 ✁ cd

V 2
d

4
δd ↕ pXd

♣δq ↕ Vd

2ζ♣dqδ
d④2☎ (5)

Here, ζ denotes the Riemann zeta function and cd a strictly positive constant which, when
d ➙ 3, can be taken to be

cd ✏ 1

ζ♣dq ☎ ζ♣d ✁ 1q ☎

5



The implicit presence of the square root of δ on both sides of (5) is due to this easily
verified equivalence valid for any g P G :

♣Md♣φ♣gqq ↕ δq ðñ
✁

g ☎ Zd ❳B2♣0,
❄

δq ✘ t0✉
✠

,

where, given x P R
d and r → 0, B2♣x, rq is the closed Euclidean ball with radius r centered

at x.

Theorem 1 suggests that, as δ → 0 tends to zero, one should expect the probability of
the event Md♣Σq ↕ δ to grow like δd④2 when the space Σ��

d is equipped with a “typical”
probability measure defined from the invariant measure µXd

. For the applications we have
in mind however (see §4), the choice of any such measure is neither natural nor convenient.
The primary theoretical goal of this work is thus to establish estimates in the likes of (5)
for a larger class of probability measures on the space Σ��

d . These probability measures
will be defined from the spectral (§2) and then the Cholesky decomposition (§3) of an
element of Σ��

d .

Note that, although the problem of estimating the probability of the event Md♣Σq ↕ δ

is well–defined in the space Σ��
d,red of reduced quadratic forms, there is no loss of infor-

mation in working instead in the space Σ��
d . Indeed, any probability measure on Σ��

d

defines a probability measure on Σ��
d,red after periodisation modulo SLd♣Zq–congruent ma-

trices. Conversely, any probability measure on Σ��
d,red defines a probability measure on Σ��

d

supported on a fundamental domain of Σ��
d,red in Σ��

d .

Before stating the main results, we mention that the latter may also be used to tackle
the following less natural but nevertheless still relevant variant of the main problem stated
above (namely, when the probability space is S��

d instead of Σ��
d ) :

Problem 2 (Variant of the Main Problem). For a given probability measure µ✶ on the set
S��

d , estimate the probability µ✶ ♣Md♣Qq ↕ δq as a function of δ → 0.

The changes to make to the results dealing with Problem 1 in order to obtain their
analogues for Problem 2 are straightforward when considering the approach via the spectral
decomposition (§2). They will therefore not be explicitly stated. When considering the
approach via the Cholesky decomposition however (§3), these changes will induce some
technical difficulties and will therefore be explicitly stated.

Throughout, in order not interrupt the thread of the exposition, the lengthy proofs are
postponed until the end of each section. They may be skipped at a first reading.

2. An Approach via the Spectral Decomposition.

Denote by D��
d the set of diagonal matrices in dimension d with strictly positive entries.

Let ∆��
d be the subgroup of D��

d consisting of all those matrices with determinant one :

∆��
d :✏ D��

d ❳ SLd♣Rq.

6



Throughout, D��
d (resp. ∆��

d ) will be identified with ♣R→0qd (resp. with ♣R→0qd✁1 — in
this case, one only considers the d✁ 1 first diagonal entries of an element of ∆��

d to define
the identification). It will sometimes be more convenient to see an element of ∆��

d as an
element of D��

d , in which case it will also be represented as a d–tuple. This should not
cause any confusion.

Let
Od :✏ Od♣Rq

denote the orthogonal group in dimension d. We first seek to equip the set Σ��
d with a

special class of probability measures defined from the spectral decomposition of an element
therein. This class will play an important role in the forthcoming considerations : in short,
Problem 1 will be addressed for probability measures lying in this class.

2.1. Definition of a Suitable Class of Measures

Let Σ P Σ��
d be decomposed as Σ ✏ t

P∆P with P P Od and ∆ P ∆��
d . Given x P R

d,
one has clearly t

x☎Σ☎x ✏ t
y ☎y with y ✏ ❄

∆Px. This shows that the following equivalence
holds for any δ → 0 :

♣Md♣Σq ↕ δq ðñ
✁

P ☎ Zd ❳ ∆✁1④2 ☎B2♣0,
❄

δq ✘ t0✉
✠

. (6)

This motivates the introduction of the surjective map

Ψ : ♣P, ∆q P Od ✂∆��
d ÞÑ t

P∆✁2P P Σ��
d (7)

which we now use to push forward to Σ��
d a given measure defined on Od✂∆��

d (the expo-
nent “-2” is just meant to simplify the formulae hereafter). It is important to keep in mind
for what follows that the orthogonal matrix P appearing in the Spectral Decomposition of
Σ as above is well–defined in the quotient Od④Id, where Id is the subgroup of Od consisting
of all those diagonal matrices with entries ✟1. The equivalence (6) then still holds when
P is seen as an element of Od④Id in view of the fact that P ☎ I ☎Zd ✏ P ☎Zd for any I P Id.

Let µd be the Haar probability measure on the compact group Od. Given P P Od, the
volume element dµd♣P q is explicitly described for instance in [20] in terms of d♣d ✁ 1q④2
independent coordinates on Od. Let furthermore νd be a probability measure on ∆��

d .
Define then a measure on the product space Od ✂∆��

d by setting

τd :✏ µd ❜ νd. (8)

This can be pushed forward to a probability measure Ψ✝τd on Σ��
d . Of course, the relevance

of such a measure strongly relies on the properties of the map Ψ and of the measure τd. In
this respect, the following lemma establishes a crucial property satisfied by Ψ :

Lemma 1. Let ∆��
d,sub be the subset of ∆��

d consisting of all those elements in ∆��
d whose

entries are pairewise distinct :

∆��
d,sub :✏ ✥

∆ ✏ ♣α1, ☎ ☎ ☎ , αdq P ∆��
d : ❅i ✘ j, αi ✘ αj

✭
.
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Then, the restriction of the map Ψ to the set Od ✂∆��
d,sub is 2d to 1.

More precisely, Ψ induces a bijection

Ψ✶ : ♣Od④Idq ✂∆��
d,sub ÞÑ Ψ

�
Od ✂∆��

d,sub

✟ ⑨ Σ��
d . (9)

Note that Ψ
�
Od ✂∆��

d,sub

✟
sits as a dense open set in Σ��

d .

Proof. Let Q P Σ��
d with spectral decomposition Q ✏ t

P∆✁2P for some P P Od and
some ∆ P ∆��

d,sub. The rows of the matrix P are then (normed) eigenvectors of Q. Since
eigenvectors associated to distinct eigenvalues are orthogonal, these rows are determined
up to their sign. The lemma follows.

Let ρd be the Haar probability measure on Od④Id, which satisfies the property that for
any function f P L

1♣µdq defined over Od,➺
Od

f♣P q ☎ dµd♣P q ✏ 1

2d
☎
➺

Od④Id

✄➳
IPId

f♣PIq
☛
☎ dρd♣PIdq. (10)

In view of Lemma 1, a dense open subset of Σ��
d can be identified with the product

space ♣Od④Idq ✂∆��
d,sub via the map Ψ✶ defined in (9). We will be interested in probability

measures supported on this dense open set. A natural class of such measures are obtained
by taking the pushforward by Ψ✶ of a measure of the form ρd ❜ νd under the following
assumption on νd which will be made throughout :

Assumption 1. The complement of ∆��
d,sub in ∆��

d has zero νd–measure, i.e.

νd

�
∆��

d,sub

✟ ✏ 1.

Thus, under this assumption, Ψ✶ establishes a bijection between a set of full ρd ❜ νd–
measure in ♣Od④Idq ✂∆��

d and its image in Σ��
d .

Note also that under Assumption 1, the two pushforward measures Ψ✶
✝♣ρd ❜ νdq and

Ψ✝τd (with τd defined in (8)) are exactly the same on Σ��
d . Indeed, if Σ P Σ��

d lies in the
image of the restriction of the map Ψ to Od ✂ ∆��

d,sub, Lemma 1 implies that the preimage
Ψ✁1 ♣tΣ✉q of Σ by Ψ is of the form Ψ✁1 ♣tΣ✉q ✏ t♣PI, ∆q : I P Id✉ for some P P Od and
∆ P ∆��

d . Since the orthogonal matrix P appearing in the the equivalence stated in (6)
can be seen as an element of Od④Id, it follows from the definition of Ψ in (7) that either
all or none of the 2d elements ♣P, ∆q in this preimage satisfy/ies the relation

P ☎ Zd ❳ ∆ ☎B2♣0,
❄

δq ✘ t0✉ . (11)

Together with (10), this establishes the claim.
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Assumption 1 imposes a rather mild restriction on the measure νd, which is even allowed
to be fractal. A natural class of measures satisfying this assumption is given by those
probability measures which are absolutely continuous with respect to a Haar measure ξ on
∆��

d . Recall that, up to a multiplication constant, the volume element dξ♣∆q of any such
invariant measure is given by

dξ♣∆q ✏
d✁1➵
i✏1

dα✶i
α✶i

, (12)

where ∆ ✏ ♣α✶1, . . . , α✶d✁1q P ∆��
d .

2.2. Estimation of the Probability that a Non–Zero Integer Vector should lie in a Random
Ellipsoid Centered at the Origin.

We adopt here a geometric approach in order to address Problem 1 within the framework
developed thus far. Part of the ideas behind this approach have been applied in [17] to
problems in mathematical physics. However, unlike here, the focus in the latter work was
rather on the probability that a large convex set should contain a non–zero lattice point.
Furthermore, the multiplicative constants appearing in the formulae proved in [17] are not
explicit while it will be one of our objectives to obtain fully explicit estimates.

From the change of variables formula for pushforward measures and in view of (6), (7)
and (11), the objective boils down to estimating, for a given δ → 0, the quantity

♣Ψ✝τdq
�✥

Σ P Σ��
d : Md♣Σq ↕ δ

✭✟ ✏ τd ♣Fd♣δqq ,

where
Fd♣δq :✏

✦
♣P, ∆q P Od ✂ ∆��

d : P ☎ Zd ❳ ∆ ☎ B2♣0,
❄

δq ✘ t0✉
✮

.

To avoid cumbersome notation, the set Fd♣δq will from now on be denoted by F♣δq whenever
there is no risk of confusion.

In order to state the results regarding the estimate of the probability τd ♣F♣δqq, a good
deal of notation is first introduced.

Throughout, a vector in R
d will be seen as the datum of a d–tuple represented in

column (that is, we consider the right action of d–dimensional matrices on R
d). Whenever

this does not induce any ambiguity, such a vector shall indifferently be written in row for
convenience. Given a vector α :✏ ♣α1, . . . , αdq P ♣R→0qd, Ed ♣αq will denote the full ellipsoid

Ed ♣αq :✏
★
x P R

d :
d➳

i✏1

✂
xi

αi

✡2

↕ 1

✰
(13)

(α1, . . . , αd are thus the lengths of the semi–principal axes of this ellipsoid). If there is no
risk of confusion, one shall also write more simply E♣αq for Ed ♣αq.
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Let S
d✁1 denote the unit sphere in dimension d. Let also σd✁1 be the spherical proba-

bility measure on S
d✁1. This measure is given by a volume element denoted by dv which

is such that for any σd✁1–measurable surface A ⑨ S
d✁1,

σd✁1 ♣Aq :✏ 1

Ad

➺
A

dv

(we have chosen not to include the factor Ad in the volume element as otherwise any
use of our results will unavoidably involve the computation of constants involving this
factor). If A is any subset of Rd such that its intersection A ❳ S

d✁1 with the unit sphere
is σd✁1–measurable, set rσd✁1 ♣Aq :✏ σd✁1

�
A❳ S

d✁1
✟

.

Given a vector v P S
d✁1, v❑ shall denote the hyperplane in R

d passing through the origin
with unit normal vector v. Also, the notation ⑥ . ⑥2 and ⑥ . ⑥✽ shall refer to the usual
Euclidean and sup norms in R

d. The set of points in Z
d visible from the origin shall be

denoted by P♣Zdq :
P♣Zdq :✏ ✥

a P Z
d : gcd♣aq ✏ 1

✭
.

Finally, given a closed convex set C ⑨ R
d centered at the origin, define

pd♣Cq :✏ µd

�✥
P P Od : P ☎ Zd ❳ C ✘ t0✉✭✟ .

Note that in the case d ✏ 1, O1 ✏ t✟1✉, the convex body C is an interval J and

p1♣J q ✏
✧

1 if λ ♣J q ➙ 2
0 if λ ♣J q ➔ 2,

(14)

where λ ♣J q denotes the length of J .

The main result in this section can now be stated as follows.

Theorem 2. Let δ → 0. Then,

τd ♣F♣δqq ✏
➺

∆��
d

pd

✁
E♣
❄

δ∆q
✠
☎ dνd♣∆q. (15)

Furthermore, the quantity pd

�
E♣❄δ∆q✟ satisfies the estimates

gd♣∆, δq ↕ pd

✁
E♣
❄

δ∆q
✠
↕ fd♣∆, δq, (16)

where

gd♣∆, δq :✏ max

✧rσd✁1

✁
Ed♣

❄
δ∆q

✠
,

➺
Sd✁1

pd✁1

✁
Ed♣

❄
δ∆q ❳ v❑

✠
☎ dv

Ad

✯

10



and

fd♣∆, δq :✏ min

✩✬✬✫✬✬✪1,
➳

nPP♣Zdq
⑥n⑥2 ↕

❄
δ⑥∆⑥✽

rσd✁1

✂
Ed

✂ ❄
δ

⑥n⑥2

∆

✡✡✱✴✴✳✴✴✲ .

Here, the base case for the recursive formula induced by the integral in gd♣∆, δq is given
by (14) and the sum in fd♣∆, δq is to be seen as equal to zero when

❄
δ ⑥∆⑥✽ ➔ 1.

In view of such a statement, we now seek to determine, one the one hand the inter-
section of an ellipsoid with a hyperplane and on the other the spherical measure of the
intersection of a (full) ellipsoid with the unit sphere. The former question is addressed in
this proposition :

Proposition 1. Let α ✏ ♣α1, . . . , αdq P ♣R→0qd and v ✏ ♣v1, . . . , vdq P S
d✁1. Assume that

vd ✘ 0.

Then, the intersection Ed ♣αq ❳ v❑ of the d–dimensional ellipsoid Ed ♣αq with the hy-
perplane v❑ is a ♣d✁ 1q–dimensional ellipsoid Ed✁1 ♣α,vq. Furthermore, one has

Ed✁1 ♣α,vq ✏ ✥
y P R

d✁1 : t
y ☎Q ☎ y ↕ 1

✭
, (17)

where
Q :✏ D ♣Id✁1 � u ☎ t

uqD P S��
d (18)

with Id✁1 the identity matrix in dimension d✁ 1,

D :✏ �
α✁1

1 , ☎ ☎ ☎ , α✁1
d

✟ P D��
d and t

u :✏
✂

αivi

αdvd

✡
1↕i↕d✁1

P R
d✁1.

Also, if the lengths of the semi–principal axes of Ed ♣αq are ordered increasingly in
the sense that α1 ↕ ☎ ☎ ☎ ↕ αd, then the lengths β1, . . . , βd✁1 of the semi–principal axes of
Ed✁1 ♣α,vq ordered increasingly satisfy the inequalities

α1 ↕ β1 ↕ α2 ↕ . . . ↕ αd✁1 ↕ βd✁1 ↕ αd.

Note that, even if it means relabelling the axes, there is no loss of generality in assuming
that the lengths of the semi–principal axes of Ed ♣αq are ordered increasingly. Also, the
condition vd ✘ 0 is not restrictive at all as formula (17) holds mutatis mutandis with any
other non–zero coordinate vj in place of vd — see the proof in §2.4 for details.

We now turn to the estimate of the spherical measure of the intersection of the ellipsoid
Ed ♣αq with the unit sphere (where α ✏ ♣α1, . . . , αdq P ♣R→0qd). To this end, it may be
assumed, without loss of generality in view of Assumption 1, that

0 ➔ α1 ➔ α2 ➔ . . . ➔ αd✁1 ➔ αd. (19)
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Whenever αd → 1, define then

αr :✏ �
αr1, . . . , αrd✁1

✟ P D��
d✁1, (20)

where for i ✏ 1, . . . , d ✁ 1,

αri :✏
❞

α2
i ☎

α2
d ✁ 1

α2
d ✁ α2

i

.

The following statement provides an inductive formula for rσd✁1 ♣Ed ♣αqq. The quantity

Wk ✏
➺ π④2

0

sink θ ☎ dθ ✏
❄

π

2
☎ Γ

�
k�1

2

✟
Γ
�

k�2
2

✟ (21)

appearing therein denotes the Wallis integral of order k ➙ 0.

Proposition 2. Assuming (19), one has

rσd✁1 ♣Ed ♣αqq ✏
✧

1 if α1 ➙ 1
0 if αd ↕ 1.

(22)

Moreover, if α1 ➔ 1 ➔ αd, then

rσd✁1 ♣Ed ♣αqq ✏ 1

2Wd✁2

☎
➺ π

0

rσd✁2

✁
Ed✁1

✁ αr
sin θ

✠✠
☎ ♣sin θqd✁2 ☎ dθ (23)

with base case rσ0 ♣E1 ♣αqq ✏
✧

1 if α ➙ 1
0 if α ➔ 1

for any α → 0.

Although providing an exact theoretical formula, equation (23) may lead to lengthy
calculations for a given ellipsoid. In order to overcome this difficulty, the next proposition
provides rather accurate estimates for the quantity rσd✁1 ♣Ed ♣αqq when α1 ➔ 1 ➔ αd. Before
stating it, we introduce some additional notation : given x ➙ 0, let

b♣xq :✏ arccos ♣min t1, x✉q ✏
✧

arccos♣xq P r0, π④2s if x P r0, 1s,
0 if x ➙ 1.

Under (19), define

Id♣αq :✏ 2d

Ad

☎
d➵

i✏2

➺ π④2

b♣αd✁i�1q
sini✁2 θ ☎ dθ whenever αd ➙ 1. (24)

We leave this quantity undefined when αd ➔ 1. For i ✏ 1, . . . , d ✁ 1, assuming αd ➙ 1, set
furthermore

αr✝i :✏ min
✥
1, αri

✭ ✏
✧

αri if αi ↕ 1,

1 if αi ➙ 1

and let αr✝ ✏ �
αr✝1 , . . . , αr✝d✁1

✟
.
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Proposition 3. Assume that (19) holds and that α1 ➔ 1 ➔ αd. Then, with the notation
above, one has

Id

✂
αr✝❄
d ✁ 1

, 1

✡
↕ rσd✁1 ♣Ed ♣αqq ↕ Id

�
αr✝, 1

✟
.

The following cruder but easier–to–estimate inequalities also hold :

Id

✂
α❄
d

✡
↕ rσd✁1 ♣Ed ♣αqq ↕ Id ♣αq ,

where the lower bound is defined whenever αd ➙
❄

d.

Here, given a generic vector α P ♣R→0qd satisfying (19) and αd ➙ 1, the quantity Id♣αq
can be estimated as follows :

a♣dq ☎
d✁1➵
j✏1

min tαj, 1✉ ↕ Id ♣αq ↕ a✶♣dq ☎
d✁1➵
j✏1

min tαj, 1✉

with

a♣dq ✏ 2d

♣d ✁ 1q! ☎ Ad

☎
✁π

2

✠♣d✁2q♣d✁3q④2
and a✶♣dq ✏ 2d

Ad

☎
✁π

2

✠d♣d✁1q④2
.

With the help of Propositions 1, 2 and 3, one may now answer the question as to
whether Theorem 2 leads to sharp estimates for the probability τd ♣F♣δqq as expressed
in (15). To this end, one must focus on a relevant subclass of probability measures νd.
A natural choice is to restrict the attention to compactly supported measures. Indeed,
such measures can approximate a large class of measures and appear naturally in practical
problems (see §4). Assume therefore without loss of generality that νd seen as a measure
on ♣R→0qd✁1 is absolutely continuous with respect to the Haar measure (12) with density
supported on the hypercube rǫ, ǫ✁1sd✁1. Denote by χ♣dq

ǫ : Rd✁1 Ñ R the characteristic
function of the latter set.

To simplify the calculations, we will further require that the density of νd with respect
to the Haar measure ξ is uniform, i.e. that ξ–almost everywhere, the density dνd④dξ is
proportional to χ♣dq

ǫ . In view of (12), given α✶ ✏ ♣α✶
1, . . . , α✶

d✁1q P ∆��
d , one has explicitly

dν
♣ǫq
d ♣α✶q ✏ 1

⑤2 log ǫ⑤d✁1 ☎ χ♣dq
ǫ ♣α✶q ☎

d✁1➵
i✏1

dα✶
i

α✶
i

, (25)

where ν
♣ǫq
d ✏ νd. Inasmuch as one is working up to multiplicative constants, one can reduce

to this case any measure whose density with respect to ν
♣ǫq
d is almost everywhere bounded

above on the hypercube Kε♣dq ✏ rǫ, ǫ✁1sd✁1 and almost everywhere bounded below by a
strictly positive constant on a sub–hypercube of Kε♣dq.

The next proposition shows that, for any given ǫ → 0, the estimates of the probability
τ
♣ǫq
d ♣F♣δqq :✏ τd ♣F♣δqq obtained from Theorem 2 are essentially sharp in δ.
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Theorem 3. Fix ǫ → 0 and assume that δ P ♣0, 1q. Let τ
♣ǫq
d be the probability measure

defined as in (8) from the measure ν
♣ǫq
d given by (25).

Then,
τ
♣ǫq
d ♣F♣δqq ✏ 0 if δ ↕ ǫ2♣d✁1q. (26)

Moreover, if δ → ǫ2♣d✁1q, then

cd♣ǫq ☎ sd ♣ǫ, δq ↕ τ
♣ǫq
d ♣F♣δqq ↕ Cd♣ǫq ☎ Sd ♣ǫ, δq (27)

for some constants cd♣ǫq, Cd♣ǫq → 0. Here,

sd ♣ǫ, δq :✏
➺

Jd♣ǫ,δq

d✁1➵
i✏1

min

✧❄
δ,

1

αi

✯
☎ dαi

and

Sd ♣ǫ, δq :✏ δd④2 ☎
➺

Jd♣ǫ,δq

d✁1➵
i✏1

dαi

αi

,

where the domain of integration Jd♣ǫ, δq is defined by the set of inequalities

ǫ ↕ α1 ➔ ☎ ☎ ☎ ➔ αd✁1 ↕ ǫ✁1 and max
✥
δ✁1④2, αd✁1

✭ ➔ ♣α1 . . . αd✁1q✁1
.

These quantities sd ♣ǫ, δq and Sd ♣ǫ, δq satisfy the estimates

sd ♣ǫ, δq ➙ min
✦❄

δ, ǫ
✮d✁1

☎ ⑤2 log ǫ⑤d✁2

♣d✁ 2q! ☎
✁

min
✦❄

δ, ǫ
✮
✁ ǫd✁1

✠
. (28)

and

Sd ♣ǫ, δq ↕ δd④2 ☎ log

✂ ❄
δ

ǫd✁1

✡
☎ ⑤2 log ǫ⑤d✁2

♣d✁ 2q! ☎ (29)

One can furthermore choose

cd♣ǫq ✏ a♣dq ☎ ♣d✁ 1q!
♣d ☎ ⑤2 log ǫ⑤qd✁1

and

Cd♣ǫq ✏ 3d✁1 ☎ a✶♣dq ☎ d! ☎ d
⑤2 ☎ log ǫ⑤d✁1 ,

where a♣dq and a✶♣dq are defined in Proposition 3.

Theorem 3 implies for instance the existence of two positive constants κ♣dq and K♣dq
depending only on the dimension d such that for any δ lying in the interval

✏
ǫ2♣d✁1q, ǫ2

✘
,

κ♣dq ☎ δd④2

⑤log ǫ⑤ ☎
✂

1✁ ǫd✁1

❄
δ

✡
↕ τ

♣ǫq
d ♣F♣δqq ↕ K♣dq ☎ δd④2

⑤log ǫ⑤ ☎
✂ ❄

δ

ǫd✁1
✁ 1

✡
(the upper bound is a direct consequence of the convexity inequality log♣1 � xq ↕ x valid
for all x ➙ 0). We thus recover in this case also the growth in δd④2 appearing in Theorem 1.

The remainder of this section is devoted to the proofs of the various results stated
above.
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2.3. Proof of Theorem 2

Note that equation (15) follows immediately from Fubini’s Theorem applied to the
probability measure τd. The upper and lower bounds in (16) will now be established
separately. To this end, we first make the following crucial remark : if A ⑨ S

d✁1 is a
σd✁1–measurable set and x0 P S

d✁1, then

σd✁1 ♣Aq ✏ µd ♣tG P Od : Gx0 P A✉q . (30)

Indeed, each of the measures involved in this equation is clearly Borelian and uniformly
distributed on the unit sphere (in the sense that the measure of a ball on the sphere
depends only on the radius of the ball but not on the position of its centre). Now, a
result of Christensen [3] states that two Borelian measures uniformly distributed in a
separable metric space must be proportional. As the measures under consideration have
been normalised to become probability measures, they must be equal — see [14, Chap. 3]
for details.

Proof of the upper bound in (16). Let δ → 0 and ∆ P ∆��
d . The symmetry with respect of

the origin and the convexity of the ellipsoid Ed

�❄
δ∆
✟

imply that✦
P P Od : P ☎ Zd ❳ Ed

✁❄
δ∆
✠
✘ t0✉

✮
✏
✦

P P Od : P ☎ P �
Z

d
✟ ❳ Ed

✁❄
δ∆
✠
✘ ❍

✮
.

Given an event E, let χE denote the Boolean function

χrEs ✏
✧

1 if E holds
0 if E does not holds.

Then, denoting by #S the cardinality of a finite set S, one has

pd

✁
E♣
❄

δ∆q
✠
✏
➺

Od

dµd♣P q ☎ χrP ☎P♣Zdq ❳ Ed♣❄δ∆q✘❍s (31)

↕
➺

Od

dµd♣P q ☎#
✁

P ☎ P �
Z

d
✟ ❳ Ed

✁❄
δ∆
✠✠

✏
➺

Od

dµd♣P q ☎
☎✆ ➳

nPP♣Zdq
χrPn P Ed♣❄δ∆qs

☞✌.

Now, given P P Od and n P P♣Zdq, it should be clear that

Pn P Ed

✁❄
δ∆
✠

ðñ P
n

⑥n⑥2

P Ed

✂ ❄
δ

⑥n⑥2

☎∆
✡
❳ S

d✁1.

For either of these statements to be true, it is furthermore necessary that

⑥n⑥2 ↕
❄

δ ☎ ⑥∆⑥✽ .
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Therefore,

pd

✁
E♣
❄

δ∆q
✠
↕

➳
nPP♣Zdq

⑥n⑥2 ↕
❄

δ⑥∆⑥✽

µd

✂✧
P P Od : P

n

⑥n⑥2

P Ed

✂ ❄
δ

⑥n⑥2

☎∆
✡
❳ S

d✁1

✯✡

✏
(30)

➳
nPP♣Zdq

⑥n⑥2 ↕
❄

δ⑥∆⑥✽

rσd✁1

✂
Ed

✂ ❄
δ

⑥n⑥2

☎∆
✡✡

,

hence the claim.

Proof of the lower bound in (16). Let e1 ✏ t♣1, 0, . . . , 0q P R
d be the first element of the

standard vector basis in R
d. It then follows from (31) that

pd

✁
E♣
❄

δ∆q
✠
➙ µd

✁✦
P P Od : Pe1 P Ed

✁❄
δ∆
✠✮✠

✏
(30)

rσd✁1

✁
Ed

✁❄
δ∆
✠✠

,

which establishes the first of the two inequalities to be proved.

The proof of the second one is more involved. Let ed ✏ t♣0, . . . , 0, 1q P R
d denote the

last element of the standard vector basis in R
d. Letting the group Od act on the sphere

S
d✁1, the stabiliser of ed is isomorphic to Od✁1 identified with the subgroup✂

Od✁1 0
t
0 1

✡
⑨ Od.

With this identification, given R, S P Od, the product S✁1R lies in Od✁1 if, and only if the
last columns of R and S are the same, i.e.

S✁1R P Od✁1 ðñ Red ✏ Sed P S
d✁1.

This implies the well–known fact that the quotient Od④Od✁1 is isomorphic to the sphere
S

d✁1. Fix now a measurable function f : Sd✁1 Ñ Od such that

❅v P S
d✁1, f♣vq ☎ ed ✏ v. (32)

Any S P Od can then be written uniquely in the form

S ✏ f♣vq ☎
✂

S ✶
0

t
0 1

✡
, (33)

where S ✶ P Od✁1 and v P S
d✁1 (in particular, the last column of S is then v).

Furthermore, if R, S P Od are respectively represented by ♣R✶,uq and ♣S ✶,vq in these
coordinates (where R✶, S✶ P Od✁1 and u,v P S

d✁1), then RS is represented by ♣T ✶S ✶, Rvq
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for some T ✶ P Od✁1 depending only on R and v. Indeed, this follows from the uniqueness
of the representation (33) together with (32) which implies that the last column of R ☎f♣vq
is Rv. Thus, identifying Od with Od✁1 ✂ S

d✁1, left multiplication on Od by some R P Od

induces a left multiplication on Od✁1 by some T ✶ P Od✁1 (depending only on R and v) and
the orthogonal transformation on S

d✁1 induced by the action of R. This implies (see, e.g.,
[20] for details) that for any S P Od, the volume element dµd♣Sq is given in the coordinates
♣S ✶,vq by

dµd♣Sq ✏ dv

Ad

☎ dµd✁1♣S ✶q (34)

(recall that dv④Ad is the volume element of the uniform probability measure on the unit
sphere).

Consider now the immersion

ι : x P R
d✁1 ÞÑ t♣t

x, 0q P R
d.

Let P ✏ ♣P ✶,wq P Od (with P ✶ P Od✁1 and w P S
d✁1). It is then easily seen that

P ☎ Zd ✏ Zw � f♣wq ☎ ι �P ✶ ☎ Zd✁1
✟ ⑩ f♣wq ☎ ι �P ✶ ☎ Zd✁1

✟
.

This implies that

pd

✁
E♣
❄

δ∆q
✠

✏
(34)

1

Ad

☎
➺
Sd✁1

dw ☎ µd✁1

✁✦
P ✶ P Od✁1 :

�
Zw � f♣wq ☎ ι �P ✶ ☎ Zd✁1

✟✟❳ Ed

✁❄
δ∆

✠
✘ t0✉

✮✠
➙ 1

Ad

☎
➺
Sd✁1

dw ☎ µd✁1

✁✦
P ✶ P Od✁1 :

�
f♣wq ☎ ι �P ✶ ☎ Zd✁1

✟✟❳ Ed

✁❄
δ∆

✠
✘ t0✉

✮✠
✏ 1

Ad

☎
➺
Sd✁1

dw ☎ µd✁1

✁✦
P ✶ P Od✁1 : P ✶ ☎ Zd✁1 ❳ E

♣wq
d

✁❄
δ∆

✠
✘ t0✉

✮✠
,

where
E
♣wq
d

✁❄
δ∆

✠
:✏ ι✁1

✁
f♣wq✁1 ☎ Ed

✁❄
δ∆

✠✠
.

Since the set Ed

�❄
δ∆

✟❳w❑ is sent to E
♣wq
d

�❄
δ∆

✟
by the linear isomorphism x P w❑ ÞÑ

ι✁1 ♣f♣wq✁1 ☎ xq which preserves µd✁1–volumes, one obtains that

pd

✁
E♣
❄

δ∆q
✠
➙

➺
Sd✁1

dv

Ad

☎ pd✁1

✁
Ed♣

❄
δ∆q ❳ v❑

✠
.

This concludes the proof of Theorem 2.

2.4. Proof of Proposition 1

The proof of Proposition 1 is rather elementary and will be done in two steps.
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We first seek to prove (17). To this end, it will be convenient to use the Kronecker
symbol δij which is equal to 1 if the integers i and j are equal and zero otherwise. Then,
with the notation of Proposition 1, given x ✏ ♣x1, . . . , xdq P R

d,

x P Ed✁1 ♣α,vq ðñ
✄

d➳
i✏1

✂
x1

αi

✡2

↕ 1

☛
❫
✄

xd ✏ ✁1

vd

☎
d✁1➳
i✏1

xivi

☛

ðñ 1

♣vd ☎ αdq2
☎
✄

d✁1➳
i✏1

xivi

☛2

�
d✁1➳
i✏1

✂
xi

αi

✡2

↕ 1

ðñ
➳

1↕i,j↕d✁1

✂
δij

α2
i

� vivj

♣vd ☎ αdq2
✡

xixj ↕ 1

ðñ t
y ☎Q ☎ y ↕ 1,

where y ✏ t♣x1, . . . , xd✁1q P R
d✁1 and where the matrix Q is defined in (18). Since Q is

clearly definite positive, this establishes the first claim in Proposition 1.

To prove the second claim, denote by Rv P SOd♣Rq a rotation in R
d which maps the first

vector e1 in the standard basis of Rd to v. Let furthermore Qα :✏ ♣α✁2
1 , . . . , α✁2

d q P D��
d .

Then, the d–dimensional ellipsoid Ed ♣αq is congruent to the ellipsoidrE ♣vqd ♣αq :✏ ✥
x P R

d : t
x ☎ ♣t

RvQαRvq ☎ x ↕ 1
✭

and the ♣d✁1q–dimensional ellipsoid Ed✁1 ♣α,vq becomes congruent to the ellipsoid rE ♣vqd ♣αq❳
tx1 ✏ 0✉ given by a positive definite matrix Q♣vq

α P S��
d✁1. This matrix Q♣vq

α is obtained by
stripping off the matrix t

RvQαRv from its first row and first column. Let β✁2
d✁1 ↕ ☎ ☎ ☎ ↕ β✁2

1

denote the eigenvalues of Q♣vq
α (in other words, β1, . . . , βd✁1 are the lengths of the semi–

principal axes of the ellipsoid rE ♣vqd ♣αq❳tx1 ✏ 0✉). It then follows from a direct application
of the Cauchy Interlacing Inequalities that

1

α2
d

↕ 1

β2
d✁1

↕ ☎ ☎ ☎ ↕ 1

β2
1

↕ 1

α2
1

,

which completes the proof of Proposition 1.

2.5. Proof of Proposition 2

Before proving Proposition 2, we make a crucial remark which will be used several times
hereafter. Fix α P R

d satisfying (19). Let

Ad♣αq :✏ Ed♣αq ❳ S
d✁1 (35)

and x :✏ ♣x1, . . . , xdq P R
d. Then,

x P Ad♣αq ðñ
✄

d➳
i✏1

✂
x1

αi

✡2

↕ 1

☛
❫
✄

d➳
i✏1

x2
i ✏ 1

☛

ðñ
✄

d✁1➳
i✏1

x2
i ☎

✂
1

α2
i

✁ 1

α2
d

✡
↕ 1✁ 1

α2
d

☛
❫
✄

d➳
i✏1

x2
i ✏ 1

☛
.
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Given µ P ♣R→0qd✁1, let Cd♣µq denote the full cylinder with axis spanned by ed whose
section with the hyperplane txd ✏ 0✉ is the ♣d ✁ 1q–dimensional ellipsoid Ed✁1♣µq. With
the notation of Proposition 2, the above chain of equivalences thus amounts to claiming
that

Ad♣αq ✏ Cd♣αrq ❳ S
d✁1. (36)

Proof of Proposition 2. Note first that the relations (22) are trivial. Indeed, under (19),
Ad♣αq ✏ S

d✁1 if α1 ➙ 1 and #Ad♣αq ↕ 2 if αd ↕ 1. Assume therefore that α1 ➔ 1 ➔ αd.
Parameter a dense open set in S

d✁1 as follows :

v ✏ ♣u ☎ sin θ, cos θq ,

where u P S
d✁2 and θ P ♣0, πq (θ is thus the angle between u and ed). A standard

calculation shows that, in these coordinates, the volume element dv reads dv ✏ ♣sin θqd✁2 ☎
dθ ☎ du (if d ✏ 2, du is the counting probability measure on S

0 ✏ t✟1✉). Therefore,

rσd✁1 ♣Ed♣αqq ✏ 1

Ad

➺ π

0

dθ ☎ ♣sin θqd✁2

➺
Sd✁2

χr♣u☎sin θ, cos θq PAd♣αqs ☎ du.

In view of (35) and (36), the intersection of Ad♣αq with the hyperplane txd ✏ cos θ✉ is
obtained as the intersection of the ♣d✁ 1q–dimensional ellipsoid Ed✁1♣αrq with the ♣d✁ 1q–
dimensional unit sphere centred at the origin with radius sin θ :

x P Ad♣αq ❳ txd ✏ cos θ✉ ðñ
✄

d✁1➳
i✏1

✂
x1

αri

✡2

↕ 1

☛
❫
✄

d✁1➳
i✏1

x2
i ✏ sin2 θ

☛
❫ ♣xd ✏ cos θq .

This implies that, given u P S
d✁2 and θ P ♣0, πq,

♣u ☎ sin θ, cos θq P Ad♣αq ðñ u P Ed✁1

✁ αr
sin θ

✠
.

Thus :

rσd✁1 ♣Ed♣αqq ✏ 1

Ad

➺ π

0

dθ ☎ ♣sin θqd✁2

➺
Sd✁2

χ✓
u P Ed✁1

✄
αrsin θ

☛✛ ☎ du

✏ Ad✁1

Ad

☎
➺ π

0

dθ ☎ ♣sin θqd✁2 ☎ rσd✁2

✂
Ed✁1

✂ αr
sin θ

✡✡
.

The result then follows from (4) and (21).

2.6. Proof of Proposition 3

The proof of Proposition 3 rests on the following lemma. Throughout, we adopt the
notation introduced before the statement of Proposition 3 and fix α P R

d satisfying (19)
and the inequalities α1 ➔ 1 ➔ αd. Let furthermore

Kd♣αq :✏
d➵

i✏1

r✁αi, αis .
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Lemma 2. The following equation holds :

rσd✁1 ♣Kd♣αqq ✏ Id ♣αq .

Furthermore, one has also the estimates

Ld ♣αq ☎
✂

2

π

✡d✁2

↕ Id ♣αq ↕ Ld ♣αq

with

Ld ♣αq :✏ 2d

♣d ✁ 1q! ☎ Ad

☎
d✁1➵
j✏1

✂✁π

2

✠j

✁ b ♣αd✁jqj

✡
.

Proof. Parametrise the unit sphere in spherical coordinates by defining the coordinates of
v :✏ vd P S

d✁1 by induction in the following way :

vd ✏ ♣cos θ1, vd✁1 ☎ sin θ1q ,

where vk P S
k✁1 for k ✏ 2, . . . , d ✁ 1. Here, the base case is v2 ✏ ♣cos θd✁1, sin θd✁1q P S

1.
Thus, given i ✏ 1, . . . , d✁1, the real number θi is the angle between v and the ith standard
vector basis ei of R

d. These angles θi are unique upon requiring that θi P r0, πs for
i ✏ 1, . . . , d ✁ 2 and θd✁1 P r0, 2πq. Upon taking into account the notation convention
adopted here to label the angles, the volume element dv is then given by the usual formula

dv ✏ 1

Ad

☎
d➵

i✏2

sini✁2 θd✁i�1 ☎ dθd✁i�1.

Thus, given v P R
d with (cartesian) coordinates ♣x1, . . . , xdq,

v P Kd♣αq ❳ S
d✁1 ðñ ❅i P ❏1, d❑, ⑤xi⑤ ✏ ⑤cos θi⑤ ↕ αi

ðñ
♣αd→1q

❅i P ❏1, d ✁ 1❑, ⑤cos θi⑤ ↕ αi

ðñ
✧ ❅i P ❏1, d ✁ 2❑, θi P rb♣αiq, π ✁ b♣αiqs ,

θd✁1 P rb♣αd✁1q, π ✁ b♣αd✁1qs ❨ rπ � b♣αd✁1q, 2π ✁ b♣αd✁1qs
(with obvious changes for the bounds of the latter intervals when b♣αd✁1q ✏ 0). Therefore,

rσd✁1 ♣Kd ♣αqq ✏ 1

Ad

☎ 2♣π ✁ 2b♣αd✁1qq ☎
d➵

i✏3

➺ π✁b♣αd✁i�1q

b♣αd✁i�1q
sini✁2 θ ☎ dθ

✏ 2d

Ad

☎
✁π

2
✁ b♣αd✁1q

✠
☎

d➵
i✏3

➺ π④2

b♣αd✁i�1q
sini✁2 θ ☎ dθ

✏
(24)

Id♣αq.

The estimates involving Ld♣αq follow now straightforwardly from the definition of Id♣αq
and from the convexity inequalities ♣2④πq ☎ t ↕ sin t ↕ t valid for any t P r0, π④2s.
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Proof of Proposition 3. It plainly follows from the definition of the ellipsoid Ed ♣αq in (13)
that

d➵
i✏1

✒
✁ αi❄

d
,

αi❄
d

✚
⑨ Ed ♣αq ⑨

d➵
i✏1

r✁αi, αis . (37)

Also, relations (35) and (36) imply that✄
d✁1➵
i✏1

✒
✁ αr✝i❄

d ✁ 1
,

αr✝i❄
d ✁ 1

✚☛
✂ r✁1, 1s ⑨ Ad ♣αq ⑨

✄
d✁1➵
i✏1

✏✁αr✝i , αr✝i ✘
☛
✂ r✁1, 1s (38)

(this is because the basis of the cylinder Cd

�
αr✟ is the ellipsoid Ed✁1

�
αr✟).

Thus, the estimates for rσd✁1 ♣Ed ♣αqq in Proposition 3 become straightforward conse-
quences of relations (37) and (38) and of Lemma 2. As for the bounds for Id ♣αq therein,
they also follow from Lemma 2 and from the inequalities✁π

2

✠j✁1

☎ min t1, αd✁j✉ ↕
✁π

2

✠j

✁ b♣αd✁jqj ↕ j ☎
✁π

2

✠j

☎ min t1, αd✁j✉ .

The latter is a direct consequence of the convexity inequalities

x ↕ π

2
✁ arccos x ↕ π

2
x

valid for all x P r0, 1s and of the factorisation identity

✁π

2

✠j

✁ b♣αd✁jqj ✏
✁π

2
✁ b♣αd✁jq

✠
☎

j✁1➳
k✏0

✁π

2

✠j✁1✁k

b♣αd✁jqk.

2.7. Proof of Theorem 3

Let ǫ → 0 and let ∆ :✏ ♣α1, . . . , αdq P ∆��
d be such that the vector α✶ :✏ ♣α1, . . . , αd✁1q

lies in the support of the measure ν
♣ǫq
d as defined in (25) (i.e. ǫ ↕ αi ↕ ǫ✁1 for all i ✏

1, . . . , d ✁ 1). This clearly implies that ⑥∆⑥✽ ↕ ǫ✁d�1. In particular, in view of the upper

bound in (16), the probability τ
♣ǫq
d ♣F♣δqq vanishes whenever

❄
δ ☎ ǫ✁d�1 ➔ 1, i.e. whenever

δ ➔ ǫ2☎♣d✁1q. Since ν
♣ǫq
d

�
∆��

d ③∆��
d,sub

✟ ✏ 0, the same conclusion holds if δ ✏ ǫ2☎♣d✁1q. This
establishes (26).

Assume from now on that δ → ǫ2♣d✁1q. The goal is to bound from below and above the
probability

τ
♣ǫq
d ♣Fd♣δqq ✏ 1

⑤2 log ǫ⑤d✁1 ☎
➺
rǫ, ǫ✁1sd✁1

d✁1➵
i✏1

dαi

αi

☎ pd

✁
E
✁❄

δ∆
✠✠

.
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Upon reordering the coordinates of the vector ∆ as defined above, it follows from the
invariance of the quantity pd

�
E
�❄

δ∆
✟✟

under such permutation that

♣d ✁ 1q!
⑤2 log ǫ⑤d✁1 ☎

➺
ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

αd✁1➔αd:✏♣α1...αd✁1q✁1

d✁1➵
i✏1

dαi

αi

☎ pd

✁
E
✁❄

δ∆
✠✠

↕ τ
♣ǫq
d ♣Fd♣δqq

↕ d!

⑤2 log ǫ⑤d✁1 ☎
➺

ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

αd✁1➔αd:✏♣α1...αd✁1q✁1

d✁1➵
i✏1

dαi

αi

☎ pd

✁
E
✁❄

δ∆
✠✠

.

Here, we are using two facts to obtain the upper bound : on the one hand, if σ is a
permutation of ❏1, d❑ such that, given a d–tuple ♣α1, . . . , αdq, ασ♣1q ↕ ☎ ☎ ☎ ↕ ασ♣dq, then➧d✁1

i✏1 α✁1
i ↕➧d✁1

i✏i α✁1
σ♣iq; on the other, given a d-tuple ♣β1, . . . , βdq such that β1 ➔ ☎ ☎ ☎ ➔ βd,

there are d! d–tuples ♣α1, . . . , αdq for which there exists a permutation σ such that ασ♣1q ✏
β1, . . . , ασ♣dq ✏ βd. The lower bound follows from a similar argument : given a d-tuple
♣β1, . . . , βdq such that β1 ➔ ☎ ☎ ☎ ➔ βd, there are ♣d ✁ 1q! d–tuples ♣α1, . . . , αdq for which
there exists a permutation σ of ❏1, d ✁ 1❑ such that ασ♣1q ✏ β1, . . . , ασ♣d✁1q ✏ βd✁1 and
αd ✏ βd ✏ max1↕i↕d βi.

Note that in the domain of integration,

⑥∆⑥✽ ✏ αd ✏ ♣α1 . . . αd✁1q✁1
. (39)

Since from Proposition 2, pd

�
E
�❄

δ∆
✟✟ ✏ 0 whenever

❄
δ ☎ αd ↕ 1, one has also

♣d ✁ 1q!
⑤2 log ǫ⑤d✁1 ☎

➺
ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

maxtδ✁1④2, αd✁1✉➔♣α1...αd✁1q✁1

d✁1➵
i✏1

dαi

αi

☎ pd

✁
E
✁❄

δ∆
✠✠

↕ τ
♣ǫq
d ♣Fd♣δqq (40)

↕ d!

⑤2 log ǫ⑤d✁1 ☎
➺

ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

maxtδ✁1④2, αd✁1✉➔♣α1...αd✁1q✁1

d✁1➵
i✏1

dαi

αi

☎ pd

✁
E
✁❄

δ∆
✠✠

. (41)

We now call on Theorem 2 to bound the probability pd

�
E
�❄

δ∆
✟✟

as follows :

rσd✁1

✁
Ed♣

❄
δ∆q

✠
↕ pd

✁
E
✁❄

δ∆
✠✠

↕
➳

nPZd③t0✉
⑥n⑥✽↕

❄
δ☎⑥∆⑥✽

rσd✁1

✂
E

✂ ❄
δ

⑥n⑥2

☎ ∆

✡✡
. (42)

Furthermore, from Proposition 3,

rσd✁1

✁
Ed♣

❄
δ∆q

✠
➙ a♣dq ☎

d✁1➵
i✏1

min

✧❄
δ ☎ αi

d
, 1

✯
➙ a♣dq

dd✁1
☎

d✁1➵
i✏1

min
✦❄

δ ☎ αi, 1
✮

. (43)
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Given the domain of integration of the integrals above, one has also

➳
nPZd③t0✉

⑥n⑥✽↕
❄

δ☎⑥∆⑥✽

rσd✁1

✂
E

✂ ❄
δ

⑥n⑥2

☎ ∆

✡✡
↕

➳
nPZd③t0✉

⑥n⑥✽↕
❄

δ☎⑥∆⑥✽

a✶♣dq ☎
d✁1➵
i✏1

min

✧❄
δ ☎ αi

⑥n⑥2

, 1

✯

↕ a✶♣dq ☎ δ♣d✁1q④2 ☎
✄

d✁1➵
i✏1

αi

☛
☎

☎✝✝✆ ➳
nPZd③t0✉

⑥n⑥✽↕
❄

δ☎⑥∆⑥✽

1

⑥n⑥d✁1
✽

☞✍✍✌
↕ a✶♣dq ☎ δ♣d✁1q④2 ☎

✄
d✁1➵
i✏1

αi

☛
☎
☎✆❄

δ☎⑥∆⑥✽➳
k✏1

d ☎ ♣2k � 1qd✁1

kd✁1

☞✌
↕ a✶♣dq ☎ δ♣d✁1q④2 ☎

✄
d✁1➵
i✏1

αi

☛
☎
✁

3d✁1 ☎ d ☎
❄

δ ☎ ⑥∆⑥✽
✠

↕
(39)

3d✁1 ☎ a✶♣dq ☎ d ☎ δd④2. (44)

Inequalities (27) thus turn out to be a rephrasing of the relations (40)—(44) with the
constants cd♣ǫq and Cd♣ǫq stated in the theorem.

As for inequalities (28) and (29), note first that, on the one hand,

sd♣ǫ, δq ➙ min
✦❄

δ, ǫ
✮d✁1

☎
➺

ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

maxtǫ✁1,δ✁1④2✉➔♣α1...αd✁1q✁1

dα1 . . . dαd✁1

and that, on the other,

Sd♣ǫ, δq ↕ δd④2 ☎
➺

ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

δ✁1④2➔♣α1...αd✁1q✁1

d✁1➵
i✏1

dαi

αi

☎

Now, given any c → 0, the change of variables yi ✏ αi for 1 ↕ i ↕ d ✁ 2 and yd✁1 ✏➧d✁1
i✏1 αi shows that➺

ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

c➔♣α1...αd✁1q✁1

dα1 . . . dαd✁1 ✏
➺

ǫ↕y1➔☎☎☎➔yd✁2↕ǫ✁1

ǫd✁1➔yd✁1➔c✁1

dyd✁1 ☎
d✁2➵
i✏1

dyi

yi

✏ ⑤2 log ǫ⑤d✁2

♣d ✁ 2q! ☎ �c✁1 ✁ ǫd✁1
✟
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and that ➺
ǫ↕α1➔☎☎☎➔αd✁1↕ǫ✁1

c➔♣α1...αd✁1q✁1

d✁1➵
i✏1

dαi

αi

✏
➺

ǫ↕y1➔☎☎☎➔yd✁2↕ǫ✁1

ǫd✁1➔yd✁1➔c✁1

d✁1➵
i✏1

dyi

yi

✏ ⑤2 log ǫ⑤d✁2

♣d ✁ 2q! ☎ log

✂
c✁1

ǫd✁1

✡
.

This completes the proof of Theorem 3.

3. An Approach via the Cholesky Decomposition.

The probabilistic approach via the spectral decomposition exposed in §2 requires that
the probability measures under consideration be essentially defined from the set of eigen-
values of a given element in Σ��

d . While this should not be seen as a big restriction in
view of the spectral decomposition and of the fact that the orthogonal group is compact,
the determination of the eigenvalues of a matrix is known to be a hard task. We therefore
adopt here an alternative approach based on the Cholesky decomposition of a quadratic
form in Σ��

d or, in view of Problem 2, on the Cholesky decomposition of a quadratic form
in S��

d .

Let T ��
d be the group of upper triangular matrices with strictly positive diagonal

entries. Let Θ��
d be the subgroup of T ��

d consisting of all those matrices with determinant
one :

Θ��
d :✏ T ��

d ❳ SLd♣Rq. (45)

Let

p :✏ d♣d ✁ 1q
2

☎ (46)

The set T ��
d shall be identified with ♣R→0qd ✂R

p by splitting a matrix therein between its
d diagonal terms and the remaining p off–diagonal upper coefficients. A generic element
in T ��

d shall thus be represented as ♣β,uq with β P ♣R→0qd and u P R
p, in which case it

will be convenient to adopt the notation

β :✏ ♣β1, βrq
with β1 P R and βr P R

d✁1 (this notation is independent from (20)). In the same way, the

set Θ��
d shall be identified with ♣R→0qd✁1 ✂ R

p. A generic element of Θ��
d shall thus be

represented as ♣β✶,uq with β✶ P ♣R→0qd✁1 and u P R
p, in which case it will be convenient

to adopt the notation
β✶ :✏ ♣β✶

1, βr ✶q
with β✶

1 P R and β✶r P R
d✁2. When a matrix in Θ��

d is seen as an element of T ��
d , it shall

also be given as a vector from ♣R→0qd ✂ R
p. This should not cause any confusion.
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The Cholesky decomposition of a positive definite matrix amounts to claiming that the
map

ϕchol : L P T ��
d ÞÑ t

LL P S��
d (47)

is bijective. This implies in particular that the map

rϕchol : L P Θ��
d ÞÑ t

LL P Σ��
d (48)

is also bijective. Determining the Cholesky decomposition of a given positive definite
matrix is a problem which has been extensively studied from an algorithmic point of view
and which can be implemented in a very efficient way — see, e.g., [19] for details.

3.1. Definition of a Suitable Class of Measures

Note that S��
d sits as an open cone in the space of symmetric matrices in dimension d.

It is a ♣p�dq–dimensional manifold (with p as defined in (46)) and any matrix therein can
be identified with a vector in R

p�d by considering its upper triangular part. Similarly, Σ��
d

sits as a ♣p � d ✁ 1q–dimensional manifold in S��
d which can be identified with a subset

of Rp�d✁1 by considering the upper triangular part of a matrix therein minus the bottom
right coefficient. For a rigorous justification of the fact that this indeed gives a system of
independent coordinates, see (the proof of) Lemma 3 in §3.4 below.

With the help of these identifications, we will be concerned with measures supported on
S��

d (resp. on Σ��
d ) absolutely continuous with respect to the ♣p�dq–dimensional Lebesgue

measure λp�d (resp. with respect to the ♣p�d✁1q–dimensional Lebesgue measure λp�d✁1).

Let then f : S��
d Ñ R� (resp. rf : Σ��

d Ñ R�) be a density function supported on
S��

d (resp. on Σ��
d ). The corresponding measure is denoted by νf (resp. by rν rf ).

3.2. The Main Estimates

Given δ → 0, the quantities of interest are

mf ♣δq :✏ νf

�✥
Q P S��

d : Md♣Qq ↕ δ
✭✟

(49)

and rm rf ♣δq :✏ rν rf �✥Σ P Σ��
d : Md♣Σq ↕ δ

✭✟
.

Given any β P ♣R→0qd, define

Gf ♣βq :✏ 2d ☎
d➵

i✏1

βd✁i�1
i ☎

➺
Rp

♣f ✆ ϕcholq ♣β,uq ☎ dλp♣uq

and, given any β1 → 0, let

gf ♣β1q :✏
➺
♣R→0qd✁1

Gf ♣β1, βrq ☎ dλd✁1♣βrq. (50)
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Similarly, given any β✶ P ♣R→0qd✁1, define

rG rf ♣β✶q :✏ 2d✁1 ☎
d✁1➵
i✏1

βd✁i�1
i ☎

➺
Rp

✁ rf ✆ rϕchol

✠
♣β✶,uq ☎ dλp♣uq

and, given any β✶1 → 0, let

rg rf ♣β✶1q :✏
➺
♣R→0qd✁2

rG rf ♣β✶1, β✶r q ☎ dλd✁2♣β✶r q.
With these definitions, the main theorem in this section reads as follows :

Theorem 4. Let δ P ♣0, 1q. Then,

0 ↕ 1✁
➺ ✽
❄

δ

gf ↕ mf ♣δq ↕ 1✁
➺

Id♣δq
Gf ↕ 1, (51)

where

Id♣δq :✏
✁❄

δ, �✽
✠d

.

Furthermore, one has also the estimates

0 ↕ 1✁
➺ ✽
❄

δ

rg rf ↕ rm rf ♣δq ↕ 1✁
➺

∆d✁1♣δq
rG rf ↕ 1, (52)

where

∆d✁1♣δq :✏
★
β✶ P ♣R→0qd✁1 :

✁
❅i P ❏1, d✁ 1❑, βi →

❄
δ
✠
❫
✄

d✁1➵
i✏1

βi ➔ 1❄
δ

☛✰
.

Both sets of inequalities (51) and (52) provide non–trivial lower and upper bounds for
the probabilities mf ♣δq and rm rf ♣δq, although the former bounds are doomed to be cruder
than the latter (see the proof in §3.4 for details). In fact, we will mostly be interested
in obtaining accurate upper bounds. In this respect, it is worth pointing out that those
obtained above amount to finding short lattice vectors in a ball with respect to the sup–
norm in R

d centered at the origin rather than in the largest Euclidean ball contained in it
(see the proof of Lemma 4 below for details). For “not too wild” density functions, the loss
of accuracy in doing so should be seen as involving a multiplicative constant depending
only on the dimension d.

3.3. A Numerical Example.

A most standard distribution supported on the set of positive definite matrices is the
so–called Wishart distribution. It is used in various fields such as the spectral theory
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of random matrices, multidimensional bayesian analysis and more generally in statistics,
where its importance stems from the fact that it is a multidimensional generalisation of the
chi–squared distribution which appears naturally in the likelihood–test ratio. The Wishart
distribution is also commonly used to analyse the problem of wave fading in wireless
communication, which is of particular interest to us in view of the results presented in §4
below. For further details on this probability distribution, see, e.g., [8]. We only mention
here the few definitions and properties needed for our purpose.

Let X be a random n ✂ d matrix. Assume that the rows xi (1 ↕ i ↕ n) of X

are independent random vectors distributed according to a d–variate normal distribution
Nd ♣0, V q with zero mean and covariance matrix V P S��

d . The Wishart distribution in
dimension d ➙ 1 with n degrees of freedom with respect to the scale matrix V is then the
probability distribution of the matrix t

XX. It is usually denoted by Wd♣V, nq. Whenever
n ➙ d, the matrix t

XX is invertible with probability one and the Wishart distribution
admits a density function given by

fWd♣V,nq♣Qq ✏ 1

2nd④2 ☎ ⑤V ⑤n④2 ☎ Γd

�
n
2

✟ ☎ ⑤Q⑤♣n✁d✁1q④2 ☎ exp

✂
✁1

2
☎ Tr

�
V ✁1Q

✟✡
.

Here, Q P S��
d , ⑤V ⑤ and ⑤Q⑤ are shorthand notation for the determinant of V and Q

respectively, Tr♣ . q is the usual trace operator over the space of matrices and

Γd

✁n

2

✠
:✏ πd♣d✁1q④4

d➵
j✏1

Γ

✂
n

2
� 1✁ j

2

✡
is the multivariate Gamma function.

Let δ → 0. Denote by mWd♣V,nq♣δq the probability corresponding to the Wishart distri-
bution defined as in (49). With the notation of Theorem 4, one has then the estimates

1✁
➺ ✽
❄

δ

gWd♣V,nq ↕ mWd♣V,nq♣δq ↕ 1✁
➺

Id♣δq
GWd♣V,nq, (53)

where the function GWd♣V,nq is explicitly given for any β P ♣R→0qd by

GWd♣V,nq♣βq ✏
➧d

i✏1 βn✁i
i

2d♣n④2✁1q ☎ ⑤V ⑤n④2 ☎ Γd

�
n
2

✟ ☎ ➺
Rp

exp

✂
✁1

2
☎ Tr

�
V ✁1 ☎ ϕchol ♣β,uq

✟✡
dλp♣uq

and where the function gWd♣V,nq is defined as in (50).

For the sake of concreteness, assume from now on that

n ✏ d ✏ 2 and V ✏ I2.

Then,

ϕchol :

✂
β1 u

0 β2

✡
ÞÑ

✂
β2

1 uβ1

uβ1 u2 � β2
2

✡
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and, after calculations,

GW2♣I2,2q♣β1, β2q ✏
❝

2

π
☎ β1 ☎ exp

✂
✁1

2

�
β2

1 � β2
2

✟✡
and

gW2♣I2,2q ♣β1q ✏ β1 ☎ exp

✂
✁1

2
β2

1

✡
.

Inequalities (53) now read :

J1♣δq :✏ 1 ✁
➺ �✽
❄

δ

β1 ☎ exp

✂
✁1

2
β2

1

✡
☎ dβ1 ↕ mW2♣I2,2q♣δq

↕ 1 ✁
❝

2

π
☎
✂➺ �✽

❄
δ

β1 ☎ exp

✂
✁1

2
β2

1

✡
☎ dβ1

✡
☎
✂➺ �✽

❄
δ

exp

✂
✁1

2
β2

2

✡
☎ dβ2

✡
:✏ J2♣δq.

Some values taken by the functions J1 and J2 are represented in the following table :

δ 0.2 0.1 0.01 0.001

J1♣δq 0.095 0.049 4.99 ☎ 10✁3 5.0 ☎ 10✁4

J2♣δq 0.41 0.28 8.42 ☎ 10✁2 2.6 ☎ 10✁2

If the space of two dimensional positive definite matrices is equipped with the proba-
bility distribution W2♣I2, 2q, the numerical values above imply for instance that at most
8.42% of these matrices admit a minimum over Z

2③t0✉ less than 0.01. Conversely, such a
minimum is bigger than 0.2 for at least 9.5% of these matrices.

The remainder of this section is devoted to the proof of Theorem 4.

3.4. Proof of Theorem 4

We first prove two preliminary lemmata. The first one is presented in a context slightly
more general than the one imposed by Theorem 4 : this more general statement will be
needed in §4 below. It involves the set

M✝
d ♣γ, cq :✏ ✥

H P T ��
d : det ♣γId � t

H ☎ Hq ✏ c
✭

. (54)

Here, Id is the identity matrix in dimension d and γ and c are non–negative real numbers.
It is easily seen (with the help of the spectral decomposition for instance) that the set
M✝

d ♣γ, cq is non–empty if, and only if, c → γd.

Lemma 3. The map ϕchol as defined in (47) is a C1–diffeomorphism with Jacobian deter-
minant

JacL ♣ϕcholq ✏ 2d ☎
d➵

i✏1

ld✁i�1
ii (55)
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for any L P T ��
d with diagonal entries ♣l11, . . . , lddq.

Also, assuming c → γd, the map

Ψ
♣dq
♣γ,cq : H P M✝

d ♣γ, cq ÞÑ c✁1④d ☎ ♣γId � t
H ☎ Hq P Σ��

d

is a C1–diffeomorphism between M✝
d ♣γ, cq and its image with Jacobian determinant

JacH

✁
Ψ
♣dq
♣γ,cq

✠
✏ 2d✁1 ☎ c✁♣d✁1q♣d�2q④♣2dq ☎

d✁1➵
i✏1

hd✁i�1
ii (56)

for any H P M✝
d ♣γ, cq with diagonal entries ♣h11, . . . , hddq.

Proof. Only equation (56) will be established hereafter as equation (55) can be deduced
(in an easier way) from the argument presented below.

We first seek to determine a system of independent coordinates in M✝
d ♣γ, cq and in its

image Ψ
♣dq
♣γ,cq ♣M✝

d ♣γ, cqq. To this end, given c → γd, define the auxiliary polynomial map

rΨ♣dq
γ : H P T ��

d ÞÑ det ♣γId � t
H ☎ Hq

is such a way that M✝
d ♣γ, cq ✏

✁rΨ♣dq
γ

✠✁1

♣tc✉q. Since the differential of the determinant

map at a square matrix A is the map X ÞÑ Tr ♣tcom♣Aq ☎ Xq (where com♣Aq is the comatrix

of A), an elementary calculation shows that, at any H P M✝
d ♣γ, cq, the differential dH

rΨ♣dq
γ

of rΨ♣dq
γ is the linear map

dH
rΨ♣dq

γ : X P T ��
d ÞÑ 2 ☎ Tr

✏
c ☎ ♣γId � t

H ☎ Hq✁1 ☎ t
HX

✘
.

This map has clearly rank one. From the Regular Value Theorem (see [15, Lemma 1 p.11]),
the fibre M✝

d ♣γ, cq is therefore a manifold of dimension dim T ��
d ✁ 1 ✏ ♣d ✁ 1q♣d � 2q④2.

If H ✏ ♣hijq1↕i↕j↕d P M✝
d ♣γ, cq, choose for a system of coordinates in M✝

d ♣γ, cq the

♣d ✁ 1q♣d � 2q④2 variables rh :✏ ♣hijq1↕i↕j↕d✁1 (i.e. excluding hdd). Let Σ :✏ ♣σijq1↕i,j↕d
lie

in the image of M✝
d ♣γ, cq by Ψ

♣dq
♣γ,cq. Let rσ :✏ ♣σijq1↕i↕j↕d✁1 (this is the upper triangular

part of Σ excluding the term σdd). In order to show that rσ is a system of ♣d✁ 1q♣d� 2q④2
independent coordinates parametrised by rh, express Σ as Σ ✏ c✁1④d ☎ ♣γId � t

H ☎ Hq for
some H P M✝

d ♣γ, cq. Note then that when the elements of rσ are listed row by row, each
new entry

σij ✏ c✁1④d ☎
✄

γδij �
i➳

k✏1

hkihkj

☛
(57)

(1 ↕ i ↕ j ↕ d✁1) depends on an entry of H which has not appeared previously. However,

σdd ✏ c✁1④d☎
✁

γ � h2
dd �

➦d

k✏1 h2
kd

✠
can be expressed as a function of rh and hdd. For example,

29



when d ✏ 3,

Σ ✏ c✁1④dγId � c✁1④d ☎
☎✆h2

11 h11h12 h11h13

h2
12 � h2

22 h12h13 � h22h23

✝ h2
33 � h2

13 � h2
23

☞✌.

This legitimates rh and rσ as systems of coordinates respectively for M✝
d ♣γ, cq and for its

image by Ψ
♣dq
♣γ,cq.

In order to compute the Jacobian determinant in (56), we now adapt the argument
developed in [1, Chap. 7] to our purpose. Fix H ✏ ♣hijq1↕i↕j↕d P M✝

d ♣γ, cq and de-
note by

�
dΨ♣Hq σij

✟
i,j

(resp. by ♣dH hijqi,j
) the canonical basis of the tangent space to

Ψ
♣dq
♣γ,cq ♣M✝

d ♣γ, cqq at Ψ
♣dq
♣γ,cq♣Hq with respect to the system of coordinates rσ (resp. of the

tangent space to M✝
d ♣γ, cq at H with respect to the system of coordinates rh). For the

sake of simplicity of notation, set further dσij :✏ dΨ♣Hq σij and dhij :✏ dH hij. The latter
tangent vectors then satisfy the property that for any i, j,

dhij ❫ dhij ✏ 0. (58)

Moreover, the change of coordinates induced by Ψ
♣dq
♣γ,cq implies that➞

1↕i,j↕d✁1

dσij ✏ JacH

✁
Ψ
♣dq
♣γ,cq
✠
☎
➞

1↕i,j↕d✁1

dhij

(see [1, Chap. 7] for details). In view of (57), one has

dσij ✏ c✁1④d
i➳

k✏1

♣hkj ☎ dhki � hki ☎ dhkjq ,

i.e.

c1④ddσ11 ✏ 2h11 ☎ dh11,

c1④ddσ12 ✏ h11 ☎ dh12 � . . . , . . . ,

c1④ddσ1d ✏ h11 ☎ dh1d � . . . ,

c1④ddσ22 ✏ 2h22 ☎ dh22 � . . . , . . . ,

c1④ddσ2d ✏ h22 ☎ dh2d � . . . , . . . ,

...

c1④ddσd✁1,d✁1 ✏ 2hd✁1,d✁1 ☎ dhd✁1,d✁1 � . . .

The point to write these expressions this way is that, in view of (58), as soon as dhij

appears in one of the terms in dσij, it may be ignored in all the others. All in all, this
leads to

c♣d✁1q♣d�2q④♣2dq ➞
1↕i,j↕d✁1

dσij ✏
✄

2d✁1 ☎
d✁1➵
i✏1

hd✁i�1
ii

☛
☎
➞

1↕i,j↕d✁1

dhij,

which completes the proof of the lemma.
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The second lemma needed to prove Theorem 4 is more elementary.

Lemma 4. Let L ✏ ♣β,uq P T ��
d and η → 0. Write β ✏ ♣β1, . . . , βdq P ♣R→0qd. The

following holds :

• if βi → η for all i ✏ 1, . . . , d, then

L ☎ Zd ❳B2 ♣0, ηq ✏ t0✉ ; (59)

• conversely, if L ☎ Zd ❳B2 ♣0, ηq ✏ t0✉, then β1 → η.

Proof. The second claim is immediate upon noticing that β1 ✏ ⑥Le1⑥2. Assume therefore
that βi → η for all i ✏ 1, . . . , d and note that conclusion (59) is trivial when d ✏ 1. Let
d ➙ 2. Decompose the matrix L :✏ Ld in the following way :

Ld ✏
✂

Ld✁1 ud✁1

0 βd

✡
.

Here, Ld✁1 P T ��
d✁1 and ud✁1 P R

d✁1. It is then readily seen that

L ☎ Zd ✏
↕
nPZ

ALd
♣nq, where ALd

♣nq ✏
✂

Ld✁1 ☎ Zd✁1 � nud✁1

nβd

✡
.

Proceeding by induction on d ➙ 2, given x P ALd
♣nq, the inequality ⑥x⑥✽ → η follows by

the induction hypothesis if n ✏ 0 and is otherwise a direct consequence of the fact that
⑥x⑥✽ ➙ βd → η. This completes the proof of the lemma.

Proof of Theorem 4. Only the estimates (52) will be established hereafter as inequali-
ties (51) follow from the argument presented below in a similar way.

Let Σ P Σ��
d decomposed in its Cholesky form as Σ ✏ t

LL, where L ✏ ♣β✶,uq P Θ��
d

with β✶ ✏ ♣β✶1, . . . , β✶d✁1q P ♣R→0qd✁1 and u P R
p. Set furthermore

β✶d ✏
✄

d✁1➵
k✏1

β✶k

☛✁1

.

It should be clear that, given δ → 0,

♣Md♣Σq → δq ðñ
✁

L ☎ Zd ❳B2

✁
0,
❄

δ
✠
✏ t0✉

✠
.

From Lemma 4, if either statement in this equivalence holds, then β✶1 → δ. Conversely, it
also follows from Lemma 4 that if min1↕i↕d β✶i →

❄
δ, that is, if β✶ P ∆d✁1♣δq, then any of

the statements in this equivalence holds.
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Since

1 ✁ rm rf ♣δq ✏
➺

Σ��
d

rf♣Σq ☎ χrMd♣Σq→δs ☎ dΣ

✏
➺

Θ��
d

✁ rf ✆ rϕchol

✠
♣Lq ☎ ⑤JacL ♣rϕcholq⑤ ☎ χrL☎Zd❳B2♣0,

❄
δq✏t0✉s ☎ dL,

one thus obtains the estimates➺
∆d✁1♣δq

dλd✁1♣β✶q
➺
Rp

✁ rf ✆ rϕchol

✠
♣β✶,uq ☎ ✞✞Jac♣β✶,uq ♣rϕcholq

✞✞ ☎ dλp♣uq

↕ 1✁rm rf ♣δq ↕➺ �✽
❄

δ

dλ♣β✶
1q
➺
♣R→0qd✁2

dλd✁2♣β✶r q
➺
Rp

✁ rf ✆ rϕchol

✠
♣β✶

1, βr ✶,uq ☎
✞✞✞✞Jac♣β✶

1
,βr✶,uq ♣rϕcholq

✞✞✞✞ ☎ dλp♣uq

(recall that β✶ ✏
✁

β✶
1, βr ✶

✠
). The upper and lower bounds for rm rf ♣δq in (52) now follow

directly from Lemma 3 (with γ ✏ 0 and c ✏ 1). Furthermore, to prove that these bounds
always lie in the interval r0, 1s, it is enough to notice that, from the definitions of the

functions rG rf and rg rf , ➺
♣R→0qd✁1

rG rf ✏
➺ �✽

0

rg rf ✏
➺

Σ��
d

rf♣Σq ☎ dΣ ✏ 1.

4. Application to Signal Processing

The initial motivation of this work was to address a fundamental problem that emerged
very recently in Information Theory. The latter is related to a new model of communication
channel (the so called Integer–Forcing Architecture) which has been receiving considerable
attention in the literature due to its expected high performance. The precise estimation
of this performance involves the probability that a quadratic form admits a minimum over
non–zero lattice points less than a given constant.

In what follows, we first present the very basic tools from Information Theory that will
enable one to understand the importance and the position of the problem under conside-
ration — for a deeper introduction to the topic, see [18], especially Chapter 5. The theory
developed in the previous sections will then allow one to bound accurately the probability
to estimate.

4.1. Position of the Problem

Assume that two users (or transmitters) S1 and S2 want to transmit messages (or
signals) x1 (for S1) and x2 (for S2) along a communication channel (e.g., a cable or a radio
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channel) simultaneously to two receivers R1 and R2 (2). Independently of the familiar
concept of noise, the signal is distorted during transmission up to a certain degree of fading.
This may be due for instance to the distance between the users and the receivers or else
to reflections on obstacles such as buildings in the path of the signals. This phenomenon
is modelled by the so–called channel coefficients. For the message sent by Si to Rj (i, j P
t1, 2✉) the corresponding channel coefficient is denoted by hij. Thus, in the simplest case
of an additive channel, the message yi received by Ri (i P t1, 2✉) is represented by the
system of equations ✧

y1 ✏ h11x1 � h12x2 � z1

y2 ✏ h21x1 � h22x2 � z2,
(60)

where z1 and z2 are the noise — see also the figure below.

❅❅��

x1

❅❅��

y1

❅❅��
x2

❅❅��
y2

�
�

�
��✒

�
�

�
��

❅
❅

❅
❅❅

❅
❅

❅
❅❅❘

✲

✲

S1

S2

R1

R2

h11

h22

h12

h21

Figure 1: Channel of communication corresponding to the configuration in (60)

. Matricially, the system of equations (60) reads

y ✏ Hx� z (61)

with

y ✏
✂

y1

y2

✡
, H ✏

✂
h11 h12

h21 h22

✡
, x ✏

✂
x1

x2

✡
and z ✏

✂
z1

z2

✡
.

Of course, it is obvious to generalise this model to the case when there are m ➙ 1 users
and n ➙ 1 receivers. Then, the matrix H in (61) is rectangular with dimensions n✂m, the
vectors y and z are n–dimensional and the vector x is m–dimensional. From the receiver’s
point of view, it is natural to consider x and z as random vectors, in which case the entries
of the noise vector z are often taken as independent with Gaussian distribution with zero
mean and unit variance. As for the input x, it satisfies a power constraint of the form

E ♣t
x ☎ xq ↕ m ☎ SNR, (62)

2This configuration, widely studied in Information Theory, is known as an “X–Channel” with a reference
to the shape of Figure 4.1 below.
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where E♣ . q denotes the expectation and where SNR stands for the Signal–to–Noise Ratio,
a fundamental strictly positive quantity which will be discussed later. In the standard case
when each entry of x is a sum of binary digits (bits), the power constraint (62) reflects the
fact that the number of bits that can be sent through the channel is limited by some of its
physical properties.

It is important to point out here that the seemingly simple model with two users and
two receivers exposed above underpins some of the most fundamental features of the more
general model with m users and n receivers. Thus, some channel architectures with m ✏ 2
users and n ✏ 2 receivers have been at the heart of deep theoretical problems in Information
Theory — see, e.g., [18, §5.4.3].

The most basic problem when considering a channel of communication is to determine
whether the received information is reliable; that is, to what extent the noise affects the
quality of the signal. In order to make the probability error small, an obvious guess is that
one has to reduce the rate of new data sent by the users (for instance, by repeating each
string of message several times). In 1948, Shannon proved that this intuition is surprisingly
incorrect : it is actually possible to exchange information at a strictly positive data rate
keeping at the same time the error probability as small as desired. There is nevertheless
a maximal rate, the capacity of the channel, above which this cannot be done any more.
The latter quantity is usually expressed in bits.

As the proof of the result established by Shannon is non–effective (i.e. it does not provide
a way to code the information in order to approach the capacity), from an engineering
standpoint, the problem to determine the capacity of a channel and then to provide a way
to get as close as possible to this capacity remains open.

There is no single expression for the capacity of a channel; rather, it depends on its
intrinsic architecture. It nevertheless always involves the Signal–to–Noise Ratio (SNR).
This quantity, often expressed in decibels, compares the level of a desired signal to the
level of background noise : the bigger this ratio, the better the quality of the signal. For
the model represented by the equations in (61) and (62) (with any m, n ➙ 1), it is shown
in [16] that the capacity C can be expressed as

C ✏ log det ♣Im � SNR ☎ t
H ☎ Hq . (63)

Note also the following important point : the performances of a channel depend heavily
on whether or not the transmitter knows the channel coefficients matrix H. Indeed, if such
information is available, they can for instance allocate more power to the stronger antennas
to minimise the effect of fading. In most cases however (for instance in wireless systems),
this information is not known to the transmitter, in which case a reasonable strategy is to
allocate equal power to each of the antennas. In the latter configuration, the capacity of
the channel is rather referred to as the mutual information.
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4.2. Channels with Integer–Forcing Receiver Architecture

Recently, an important breakthrough has been achieved in Information Theory. Indeed,
Zhan & alii introduced in [21] a new architecture of channel, the so–called Integer–Forcing
Receiver Architecture, which has been receiving considerable attention in the literature
(see [16] and the references therein for further details). It is not our goal to describe
the channel precisely : if interested, the reader is referred to [21]. Here is however the
main ingredient from which follow all the properties of this new model : in a standard
communication channel, the receivers obtain the message x sent to them by first eliminating
interferences from the vector y (especially the noise z) and then by decoding each individual
data stream (i.e. each component of the vector y). The idea introduced by Zhan & alii
is, first to decode integer linear combinations of data stream and, then, to eliminate the
interference.

The near optimality of this strategy has been verified by extensive ad hoc calculations
(see [16, §I.A.] for details). As for a theoretical proof of this fact, this task has been started
in [16] in the following general set–up which, as explained in the paper, appears in several
important communication scenarios.

Assume that each transmitter wishes to send the same message to all the receivers (this
is for instance the case for TV broadcast). They all are aware of the characteristics of the
channel, namely its SNR coefficient and also the mutual information C0. However, they
ignore the actual channel matrix H modelling the transmission as in (61). Without any
more information and in view of (63), this matrix H is considered as being randomly and
“uniformly” chosen3 from the set

Hm,n ♣C0, SNRq :✏ ✥
H P R

n✂m : log det ♣Im � SNR ☎ t
H ☎ Hq ✏ C0

✭
. (64)

It is proved in [16] that the performance of the channel under consideration after apply-
ing the integer–forcing technique is actually determined by the so–called Effective Signal–
to–Noise Ratio SNReff. We shall not be concerned with the actual definition of this quantity,
which is rather technical — for details, see [16, §II.B.]. The crucial point formulated with
our notation is the following estimates satisfied by the SNReff coefficient (see [16, Theorem
2] for a proof) :

1

4m2
☎ Mm ♣Im � SNR ☎ t

H ☎ Hq ➔ SNReff ↕ Mm ♣Im � SNR ☎ t
H ☎ Hq . (65)

For the quality of communication to be best possible, one wishes to obtain a SNReff

coefficient as large as possible. Inequalities (65) show that the order of magnitude of this
coefficient is dictated by the minimum of the positive definite quadratic form Im � SNR ☎
t
H ☎ H over non–zero elements of Zm. In view of the probabilistic model developed so far,
the main problem which emerges from this theory can be formulated as follows :

3As will be shown later, this concept of uniformity, understood here intuitively, needs to be clarified.
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Problem 3 (Main Problem of Application). Assume that the channel matrix H is chosen
randomly and “uniformly” from the set (64). Let κ P ♣0, 1q.

Find the best possible value of s ➙ 0 such that the event SNReff ➙ s is realised with
probability greater than κ; equivalently, determine the cumulative distribution function of
the quantity SNReff seen as a random variable.

It is worth noting that the techniques developed here in order to tackle this problem can
also be used to solve other questions appearing in the literature dealing with the Integer–
Forcing Architecture. An example of such questions is the estimate of the probability that
the so–called effective noise variance as defined in [21, §IV.E.] should be less than a given
constant. Another more general example is the estimate of the so–called probability of
outage of some channels — see [18, 21]. In all cases, the main ingredient is Theorem 4
(more precisely, the upper bounds appearing therein). Also, it must be pointed out that
the manifold (64) is ubiquitous in the literature related to Signal Processing. Some of
its topological properties playing a crucial role in the study of the performance of various
channels are established in §4.3 below.

4.3. Formalisation of the Concept of a “Uniformly” Distributed Measure on the Set Hm,n ♣C0, SNRq
For convenience, set from now on

γ :✏ ♣SNRq✁1 and c0 :✏ γmeC0 (66)

in such a way that

Hm,n ♣C0, SNRq ✏ ✥
H P R

n✂m : det ♣γIm � t
H ☎ Hq ✏ c0

✭
.

For the sake of simplicity of notation, the dependency of the various quantities on γ and
c0 will not be marked hereafter. The reader should however keep in mind that almost all
the constants, sets and functions introduced hereafter depend on these two parameters.

A crucial remark is that Sylvester’s determinant identity immediately implies that

det ♣γIm � t
H ☎ Hq ✏ det ♣γIn � H ☎ t

Hq .

Therefore, even if it means working throughout with t
H instead of H to obtain the ana-

logues in the case n ➙ m of the results stated below, it may be assumed without loss of
generality that

d :✏ min tm, n✉ ✏ m. (67)

In order to address Problem 3 as stated above, one needs first to formalise the idea of
a “uniform” measure on the set Hm,n ♣C0, SNRq. If one understands this concept in the
usual mathematical meaning of a Borelian measure in a complete metric space such that
the measure of a ball depends only on its radius but not on the position of its center, this
is problematic. Indeed, as shown in Lemma 5 below, the set Hm,n ♣C0, SNRq is compact.
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Now, it is proved in [10, Proposition 1.7] that a bounded subset of an Euclidean space
carries a uniform measure only if it is contained in a sphere. It is not hard to see that
this never happens for the set Hm,n ♣C0, SNRq as soon as d ➙ 2. In view of this and in
order to render this idea of uniform distribution in a different way, we first establish some
properties of the set Hm,n ♣C0, SNRq.

Given an integer k P ❏0, d❑, let R♣kq
m,n be the subset of Hm,n ♣C0, SNRq consisting of all

those matrices with rank k :

R♣kq
m,n :✏ tH P Hm,n ♣C0, SNRq : rank♣Hq ✏ k✉ .

Note that any of the sets R♣kq
m,n is invariant under a map of the form H ÞÑ U ☎ H, where

U P On is an orthogonal transformation. This legitimate the focus on a fundamental
domain for the left action of On on R♣kq

m,n. As shown in Lemma 5 below, such a fundamental
domain is naturally be related to the set

M
♣kq
d :✏ ✥

T P T �
d : rank♣T q ✏ k and det ♣γId � t

T ☎ T q ✏ c0

✭
,

where T �
d is the set of all those upper triangular d–dimensional square matrices with non–

negative diagonal entries. Note that when k ✏ d, the set M
♣kq
d coincides with the set

M✝
d ♣γ, c0q defined in (54). In what follows, we will adopt the simpler notation

M✝
d :✏ M✝

d ♣γ, c0q .

It is not hard to see that a necessary and sufficient condition for the subset M✝
d to be

non–empty is that
c0 → γd. (68)

In this case, the zero matrix cannot belong to the set

⑨Md :✏
d↕

k✏0

M
♣kq
d ✏ ✥

T P T �
d : det ♣γId � t

T ☎ T q ✏ c0

✭
(69)

(if c0 ✏ γd, the latter set only contains the zero matrix and if c0 ➔ γd, it is empty —
see §3.4 or the proof of Lemma 5 for details). The relation (68) will be assumed to hold
throughout.

Lemma 5. The following two points hold :

• The set Hm,n ♣C0, SNRq is compact.

• Given an integer k P ❏0, d❑, a fundamental domain for the left action of the orthogonal

group On on R♣kq
m,n can naturally be identified with a subset of M

♣kq
d . Furthermore,

when k ✏ d, a fundamental domain for the left action of the orthogonal group On on
R♣dq

m,n can naturally be identified with the set M✝
d itself.
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Proof. The second point is a direct consequence of the QR decomposition : any matrix
H P R♣kq

m,n can be decomposed as H ✏ QR, where Q P On and where the matrix R has
rank k and is of the form

R ✏
✂

T

0

✡
with T P T �

d . Furthermore, this decomposition is unique when R has full rank.

As for the first point, note that the set Hm,n ♣C0, SNRq is clearly closed. To show that
it is also bounded, we will adopt the following notation : given a n✂m rectangular matrix
M , ⑥M⑥✽ will denote the sup–norm of the vector in R

nm determined by its entries. Also,
⑦M⑦2 (resp. ⑦M⑦✽) will stand for the operator norm of M induced by the Euclidean
norms (resp. the sup–norms). Given two positive real numbers a and b, the Vinogradov
symbol a ✦ b will as usual indicate the existence of a positive constant c → 0 such that
a ↕ cb.

Let then H P Hm,n ♣C0, SNRq. By looking at the diagonal elements in t
H ☎H, it is plain

that

⑥H⑥✽ ↕
❜
⑥t

H ☎ H⑥✽.

Let t
H ☎ H ✏ t

P ☎ D ☎ P be the spectral decomposition of the positive matrix t
H ☎ H,

where P P Om and where D is a diagonal matrix with entries λ1, . . . , λm ➙ 0. From
the equivalence of norms in finite dimension and from the fact that ⑦P⑦2 ✏ 1, one thus
obtains :

⑥t
H ☎ H⑥✽ ✦ ⑦ t

H ☎ H⑦2 ✏ ⑦ t
PDP⑦2

↕ ⑦ t
P⑦2⑦D⑦2⑦P⑦2

✏ ⑦D⑦2

✦ ⑥D⑥✽ :✏ max Spect ♣t
H ☎ Hq ,

where Spect ♣t
H ☎ Hq denotes the spectrum of the matrix t

H ☎ H. From the definition of
the set Hm,n ♣C0, SNRq, one has furthermore that

c0 ✏ det ♣γIm � t
H ☎ Hq ✏ det ♣γIm � Dq ✏

m➵
i✏1

♣γ � λiq .

Since λi ➙ 0 for all i ✏ 1, . . . , m, this implies that Spect ♣t
H ☎ Hq ⑨ r0, γ ♣c0γ

✁m ✁ 1qs
(which set is empty if c0 ➔ γm). This completes the proof.

Remark 1. We would like to point out here that the first point in Lemma 5 rules out
an assumption often made in the literature related to Information Theory (see, among
many other examples, [22, Problem 13.12]); namely, the coefficients of a matrix H lying
in Hm,n ♣C0, SNRq cannot have a Gaussian distribution.

Remark 2. A much more involved argument presented in the proof of Lemma 6 below
implies that the Euclidean norm of a matrix lying in the set ⑨Md and viewed as a vector
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in R
d♣d�1q④2 is at most

❛♣c0 ✁ γdq④γd✁1 and at least

❜
c

1④d
0 ✁ γ — see the end of §4.5 for

details. From the QR decomposition, this also holds for a matrix lying in Hm,n ♣C0, SNRq.

If one understands the concept of a “uniform” measure as a measure “evenly” dis-
tributed (in some intuitive sense), in view of the invariance of the set Hm,n ♣C0, SNRq
under the left action of the orthogonal group, it is natural to define such a measure from a
fundamental domain of Hm,n ♣C0, SNRq for this action. Thus, if one is able to equip the set⑨Md as defined in (69) with a “uniform” probability measure rνd which satisfies furthermore
the property that rνd ♣M✝

dq ✏ 1 (70)

(that is, the measure rνd is only supported on those matrices of full rank), then, in view of
Lemma 5, rνd would be a relevant candidate for our purpose4.

A natural choice for rνd is a measure which takes into account the geometry of the
manifold ⑨Md. Setting

p✶ ✏ d♣d � 1q
2

✁ 1,

this leads one to define rνd from the infinitesimal volume element d volp✶♣T q on the hyper-

surface ⑨Md ⑨ R
p✶�1. More precisely, for any measurable subset B ⑨ ⑨Md,

rνd ♣Bq :✏
➩

B
d volp✶♣T q➩⑨Md
d volp✶♣T q ☎ (71)

Note that this is a well–defined probability measure as ⑨Md is compact.

Let
f : T P T �

d ÞÑ c
✁1④d
0 ☎ ♣γId � t

T ☎ T q
and

g :✏ det ✆f (72)

in such a way that ⑨Md ✏ g✁1 ♣t1✉q .

Given T ✏ ♣tijq1↕i,j,↕d
P T �

d and given indices i and j such that 1 ↕ i ↕ j ↕ d, set

❇ij :✏ ❇
❇tij

and define furthermore the charts

Bij :✏ ✥
T P T �

d : ♣❇ijgq ♣T q ✘ 0
✭

. (73)

The relevance of this definition follows from this lemma :

4It must be pointed out here that, from an engineering standpoint, it is often assumed that the channel
matrix has full rank not to have to deal with redundant information. Lemma 7 below shows that we will
not have to make such an assumption here.
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Lemma 6. Assume (68). Then :

• The gradient ∇g of g never vanishes on ⑨Md. In other words,

⑨Md ✏
↕

1↕i↕j↕d

✁
Bij ❳ ⑨Md

✠
.

• On each of the charts Bij, the volume element d volp✶♣T q can be expressed as follows :

d volp✶♣T q ✏
✂⑥∇g⑥2

⑤❇ijg⑤
✡
♣T q ☎ dt11 . . .②dtij . . . dtdd (74)

(as usual, the hat means that the corresponding index is removed from the list).

• The subset of matrices of full rank in ⑨Md is contained in Bdd :

M✝
d ⑨ Bdd.

With the help of this lemma, one can now prove that the measure rνd defined in (71)
satisfies (70) :

Lemma 7. Let k P ❏0, d ✁ 1❑. Then, under (68),

rνd

✁
M

♣kq
d

✠
✏ 0

Proof. It follows from Lemma 6 that ⑨Md can be covered by a finite number of subsets�
B✶

ij

✟
1↕i↕j↕d

such that, within each B✶
ij, the function ❇ijg never vanishes. Also, within each

B✶
ij, the measure determined by the volume element d volp✶♣T q is absolutely continuous

with respect to the p✶–dimensional Lebesgue measure λp✶ . In order to prove the lemma, it
is therefore enough to establish that for all 0 ↕ k ↕ d ✁ 1 and all 1 ↕ i ↕ j ↕ d,

λp✶

✁
M

♣kq
d ❳ B✶

ij

✠
✏ 0. (75)

To this end, note that
➈d✁1

k✏0 M
♣kq
d sits as an algebraic subvariety in ⑨Md ⑨ T �

d ; it is defined

as the intersection of ⑨Md with the hypersurface

L :✏ ✥
T P T �

d : det♣T q ✏ 0
✭

.

Since the hypersurface L defines an irreducible variety, any variety intersects it properly
(with the possibility of an empty intersection) or is contained in it. It is easily seen (with the
help of the spectral decomposition for instance) that the set M✝

d is non–empty under (68);

in other words, that there are points in ⑨Md not contained in L. Thus, the intersection⑨Md ❳L has codimension at least one in ⑨Md, which readily implies (75) and completes the
proof.
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4.4. Estimation of the Cumulative Distribution Function of the Effective Signal–to–Noise
Ratio

In view of (65), Problem 3 boils down to finding, for a given s ➙ 0, a lower bound
for the event Md ♣Id � SNR ☎ t

H ☎Hq ➙ 4sd2 when H is chosen randomly from the set
Hm,n ♣C0, SNRq according to the distribution of the probability measure rνd. From the
change of variables operated in (66) and from Lemma 7, this amounts to bounding from
below the quantity

md♣δq :✏ rνd

✁✦
H P M✝

d : Md

✁
c
✁1④d
0 ♣γId � t

H ☎Hq
✠
→ δ

✮✠
,

where we have set
δ :✏ 4d2sγdc

✁1④d
0 (76)

(note that the definitions of md♣δq above and of mf ♣δq in (49) differ inasmuch as the
inequalities defining each of these quantities are reversed. The definition of md♣δq is here
motivated by the statement of Problem 3). Note that when H P M✝

d,

c
✁1④d
0 ♣γId � t

H ☎Hq P Σ��
d .

It follows immediately from the definition of the the function Md in (1) that

Md

✁
c
✁1④d
0 ♣γId � t

H ☎Hq
✠
➙ γc

✁1④d
0 in such a way that

md♣δq ✏ 1 whenever δ ↕ γ

c
1④d
0

☎

In what follows, it will therefore be assumed without loss of generality that

δ → γ

c
1④d
0

:✏ δ✝d . (77)

In order to call on Theorem 4 under this assumption, one needs to push forward the
measure rνd from M✝

d to the space Θ��
d as defined in (45) via the maps

M✝
d

fÝÑ Σ��
d

rϕ✁1

cholÝÝÝÑ Θ��
d (78)

(cf. (48) for the definition of rϕchol). The main apparent difficulty in doing so is that the
Cholesky decomposition of the matrix γId�t

H ☎H cannot be straightforwardly deduced from
to the Cholesky form t

H ☎H when H P M✝
d. However, explicit expressions can be given from

the general Cholesky algorithm which, as mentioned in §3, can be implemented in an very
efficient way. Thus, given H ✏ ♣hijq1↕i↕j↕d

P M✝
d, if L ✏ ♣lijq1↕i↕j↕d

P Θ��
d is the Cholesky

form of the matrix c
✁1④d
0 ♣γId � t

H ☎Hq P Σ��
d (that is, if t

L ☎L ✏ c
✁1④d
0 ♣γId � t

H ☎Hq), one
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can express recursively the coefficients hij as functions of lij (which is what is needed to
apply Theorem 4) as follows : for all 1 ↕ i ↕ d,

hii ✏
❣❢❢❡ i➳

k✏1

c
1④d
0 l2

ki ✁ γ ✁
i✁1➳
k✏1

h2
ki (79)

and, for all 1 ↕ i ➔ j ↕ d,

hij ✏ 1

hii

✄
i➳

k✏1

c
1④d
0 lkilkj ✁

i✁1➳
k✏1

hkihkj

☛
(80)

(this is just the classical algorithm giving the Cholesky decomposition applied to the pos-

itive definite matrix c
1④d
0 ☎ t

L ☎ L ✁ γId — see [19] for details).

In order to transport the measure rνd to the space Θ��
d , one will also need to compute

the Jacobian Jd of the map f✁1 ✆ rϕchol : N ✝
d Ñ M✝

d obtained from (78), where

N ✝
d :✏ �rϕ✁1

chol ✆ f
✟ ♣M✝

dq . (81)

To this end, note that, with the notation of Lemma 3, one has rϕchol ✏ Ψ
♣dq
♣0,1q and f ✏ Ψ

♣dq
♣γ,c0q

in such a way that (56) implies that

Jd ✏ c
♣d✁1q♣d�2q④♣2dq
0

d✁1➵
i✏1

✂
lii

hii

✡d✁i�1

.

Also, it follows from Lemmata 6 and 7 that it is enough to consider the restriction
of the measure rνd to the chart Bdd defined from (73). It is given therein by the volume
element (74) with i ✏ j ✏ d.

In view of formulae (79) and (80), any expression involving the coefficients hij of a
matrix H P M✝

d can be viewed as a function of the coefficients lij of the matrix L as

defined above. With this in mind, define two auxiliary functions rJd and rΓd over the space
N ✝

d by setting rJd♣Lq :✏ Jd and rΓd♣Lq :✏
✂⑥∇g⑥2

⑤❇ddg⑤
✡
♣Hq. (82)

Furthermore, if L P Θ��
d is decomposed as L ✏ ♣β✶,uq with β✶ P ♣R→0qd✁1 and u P R

p as
in §3 (see Equation (45) sqq. for the notation), it will be convenient to set

rJd♣β✶,uq :✏ rJd♣Lq and rΓd♣β✶,uq :✏ rΓd♣Lq.

The main result of this section, which is a direct consequence of the upper bound
in (52), can now be stated as follows :
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Theorem 5. Assume (68), (77) and also that δ ➔ 1. Then,

md♣δq ➙ κ✁1
d ☎

➺
N✝

d
rδs
rJd♣β✶,uq ☎ rΓd♣β✶,uq ☎ dλp�d✁1 ♣β✶,uq . (83)

Here,
N ✝

d rδs :✏ t♣β✶,uq P N ✝
d : β✶ P ∆d✁1♣δq✉

is a subset of N ✝
d , ∆d✁1♣δq is defined as in (52) and

κd :✏
➺
⑨Md

d volp✶♣Hq

is the area of the hypersurface ⑨Md.

In view of Lemmata 6 and 7, the constant κd can also be computed with the help of
any of the following formulae :

κd ✏
➺

M✝
d

✂⑥∇g⑥2

⑤❇ddg⑤
✡
♣Hq ☎ dh11 . . . dhd,d✁1 (84)

✏
➺

N✝
d

rJd♣β✶,uq ☎ rΓd♣β✶,uq ☎ dλp�d✁1 ♣β✶,uq . (85)

A direct use of (84) requires that the coefficient hdd be expressed as a function of the
other entries of the matrix H. To this end, it should be mentioned that, as established in
the course of the proof of Lemma 6 below, the coefficient hdd appears only once (in the

form h2
dd) in the determinant defining the set ⑨Md in (69) — see §4.5 for details.

If one wants cruder but simpler–to–obtain estimates for the right–hand side of (83), it

should first be noted that the density function rΓd defined in (82) and appearing in (83)
and (85) as a function of L and in (84) as a function of H is clearly bounded below by
1. In order to bound it from above, one can bound the gradient therein from above with
the help of Remark 2. Also, the explicit formula given in Equation (93) below for the
partial derivative ♣❇ddgq ♣Hq can easily be used to bound the latter quantity from below as
a function of hdd, γ and c0.

The lower bound appearing in Theorem 5 involves the computation of the integral of
an algebraic function (more precisely : the square root of some rational function) over an
algebraic domain (which can be explicitly defined with the help of inequalities involving
polynomials). This can certainly be done numerically in such a way that Theorem 5 can
be seen as a way to obtain numerical values for the quantity md♣δq. A more theoretical
approach would necessarily require involved calculations which can nevertheless be carried
out for a fixed value of d.

As mentioned in §4.1, the case of d ✏ m ✏ 2 users and n ✏ 2 receivers is already of
interest in the theory of Signal Processing. We explicitly work out the estimates that can be
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obtained from Theorem 5 in this case. In order to put the emphasis on the behaviour of the
probability m2♣δq as a function of δ and in order not to introduce unnecessary cumbersome
definitions, we present the result in the following way, where an explicit expression for the
function χ follows immediately from the proof presented in §4.6 (see Equation (94) below) :

Corollary 1. Assume that c0 → γ2 and that δ✝2 :✏ γ④c1④2
0 ➔ δ ➔ 1. Then, there exists a

function χ such that

m2♣δq ➙ γ✁1c
✁1④2
0 ☎

➺ 1④
❄

δ

❄
δ

da❜
c

1④2
0 a2 ✁ γ

➺ θ♣aq

✁θ♣aq
db ☎ χ♣a, bq❛

θ♣aq2 ✁ b2
:✏ n2♣δq, (86)

where

θ♣aq :✏
❣❢❢❡ 1

γc
1④2
0

☎
✄

c
1④2
0

a2
✁ γ

☛
☎
✁

c
1④2
0 a2 ✁ γ

✠
(87)

and where the right–hand side is equal to 1 when δ ✏ δ✝2 .

Furthermore, the function χ takes its values in a interval of the form rω1, ω2s, where
the constants ω1 and ω2 are such that 0 ➔ ω1 ➔ ω2 ➔ �✽ and depend only on γ and c0.

The corollary implies that the probability m2♣δq tends to 1 as δ tends to the critical
value δ✝2 with an error term governed by the size of the difference n2♣δ✝2 q✁n2♣δq. Note that
upon bounding the function χ from above by the constant ω2, the inner integral in (86)
becomes independent of the variable a. This shows that the error term in the difference
1✁m2♣δq is, up to a multiplicative constant, bounded above by✄➺ 1④

❄
δ✝

2

❄
δ✝

2

✁
➺ 1④

❄
δ

❄
δ

☛
da❜

c
1④2
0 a2 ✁ γ

✏ O ♣δ ✁ δ✝2 q

(this relation follows from a direct evaluation of the integral in the left–hand side. Details
of the calculations are left as an exercise for the interested reader). We thus recover when
d ✏ 2 the growth in δd④2 as in Theorem 1.

Typical values for the capacity C0 of a channel and for the Signal–to–Noise Ratio
SNR can be taken as C0 ✏ 30 bits and SNR ✏ 5 dB. From the expression for the
function χ deduced from the proof of Corollary 1, one can find an explicit lower bound for
the probability that the Effective Signal–to–Noise Ratio SNReff should be bigger than
a given value s ➙ 0. From the discussion held at the beginning of §4.4, this amounts to
bounding from below the quantity m2♣δq when δ (hereafter denoted by δs) is viewed as a
function of s according to (76). Note that with such choices, γ ✏ 1④5 and c0 ✏ e30④25.
Furthermore, δ✝2 ✏ e✁15 ✓ 3.06 ☎ 10✁7 arises from the limit value s✝2 ✏ 5④16 ✏ 0.3125. Some
numerical values are recorded in the following table.
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s s✝2 ✏ 0.3125 1 1.5 2
δs ✓ 3.06 ☎ 10✁7 9.79 ☎ 10✁7 1.47 ☎ 10✁6 ☎ 10✁7 1.96 ☎ 10✁6 ☎ 10✁7

m2♣δsq ➙ 1 0.672723 0.560289 0.489859

s 5 10 30
δs 4.90 ☎ 10✁6 ☎ 10✁7 9.79 ☎ 10✁6 ☎ 10✁7 2.94 ☎ 10✁5

m2♣δsq ➙ 0.314961 0.223899 0.12972

Thus, for instance, to ensure that the event SNReff ➙ s occurs with probability at
least 45%, it is enough to choose s ✏ 2. Also, the initial value of SNR ✏ 5 is recovered
with probability at least 31%.

As a concluding remark, we would like to mention here that, from a numerical point
of view, the computation of the Cholesky transforms required to estimate the integrals
in Theorem 5 can be implemented in a much more efficient and stable way than using
Equations (79) and (80). For further details, the interested reader is referred to [19] and
to the references therein.

The rest of this section is devoted to the proofs of Lemma 6 and Corollary 1.

4.5. Proof of Lemma 6

The second point is proved in [9, Chap. 11, §C].

As for the first point, given T :✏ ♣tijq1↕i↕j↕d
P ⑨Md and β → 0, consider the homoge-

neous polynomial F of degree 2d defined as

F ♣T, βq :✏ det
�
β2Id � t

T ☎ T✟ .

Note that
F ♣T, γ1④2q ✏

(72)
c0 ☎ g♣T q (88)

and assume for a contradiction that

❇ijF ♣T, γ1④2q ✏ 0 (89)

for all 1 ↕ i ↕ j ↕ d.

It follows from Euler’s formula for the derivative of a homogeneous function that

2d ☎ F ♣T, βq ✏
➳

1↕i↕j↕d

tij ☎ ❇ijF ♣T, βq � β ☎ ❇βF ♣T, βq

(here, ❇β obviously denotes the partial derivative with respect to the last variable β).
Under (89), this implies that

2d ☎ F �T, γ1④2✟ ✏ γ1④2 ☎ ❇βF ♣T, γ1④2q. (90)
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Let ❏1, d❑ denote the interval of positive integers less than d. Given K ⑨ ❏1, d❑, denote
furthermore by ⑤K⑤ the cardinality of K and by mK the ⑤K⑤ ✂ ⑤K⑤ matrix obtained by
considering the rows and columns indexed by K in the matrix t

T ☎ T . Set conventionally

det m❍ :✏ 1.

As mK is the Gramian matrix of the columns of T indexed by K, det mK is non–negative.
Furthermore, the definition of the determinant readily implies that

F ♣T, βq ✏
➳

K⑨❏1,d❑

β2d✁2⑤K⑤ det mK . (91)

Differentiating with respect to β and multiplying throughout by β then yields

β ☎ ❇βF ♣T, βq ✏
➳

K⑨❏1,d❑

♣2d ✁ 2 ⑤K⑤qβ2d✁2⑤K⑤ det mK . (92)

On combining (90), (91) and (92), one thus obtains the relation

2d
➳

K⑨❏1,d❑

γd✁⑤K⑤ det mK ✏
➳

K⑨❏1,d❑

♣2d ✁ 2 ⑤K⑤qγd✁⑤K⑤ det mK ,

i.e. ➳
K⑨❏1,d❑

2 ⑤K⑤ γd✁⑤K⑤ det mK ✏ 0.

Since each term on the left–hand side of this equation is positive, this implies that det mK ✏
0 for all non–empty K ⑨ ❏1, d❑, i.e. T ✏ 0. Under assumption (68), this contradicts the

fact that T P ⑨Md and thus concludes the proof of the first point.

The third point is elementary : given T P M✝
d, the coefficient tdd appears only in the

bottom right corner in the matrix γId � t
T ☎ T , where it is present as t2

dd. Thus, after
expanding the determinant g♣T q following the last column, one obtains that

♣❇ddgq ♣T q ✏ c✁1
0 ☎ 2tdd ☎ det ♣γId✁1 � t

T ✶ ☎ T ✶q , (93)

where the matrix T ✶ is obtained by stripping off the matrix T from its last column and
row. Clearly, the latter quantity does not vanish under the assumption that T has full
rank. This concludes the proof of the lemma.

The claims made in Remark 2 can now be justified as follows : given T P ⑨Md denote
by ti (1 ↕ i ↕ d) the ith column of the matrix T and by t this matrix viewed as a
vector in R

d♣d�1q④2. Upon isolating the terms corresponding to K ✏ ❍ and K ✏ ti✉
(1 ↕ i ↕ d) from the others in (91), this equation together with (88) readily implies
that ⑥t⑥2

2 ↕ ♣c0 ✁ γdq④γd✁1. Conversely, it follows from Hadamard’s inequality that the
determinant of the positive definite matrix γId � t

T ☎T is less than or equal to the product
of its diagonal entries. Thus,

c0 ✏ det ♣γId � t
T ☎ T q ↕

d➵
i✏1

�
γ � ⑥ti⑥2

2

✟ ↕ �γ � ⑥t⑥2
2

✟d
,

hence the fact that ⑥t⑥2
2 ➙ c

1④d
0 ✁ γ.
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4.6. Proof of Corollary 1

Let

H :✏
✂

u v

0 w

✡
P M✝

2

and

L :✏
✂

a b

0 1④a
✡

P Θ��
2

be such that
t
L ☎ L ✏ c

✁1④2
0 ♣γI2 � t

H ☎ Hq .

Formulae (79) and (80) then read

u ✏
❜

c
1④2
0 a2 ✁ γ, v ✏ c

1④2
0 ab❜

c
1④2
0 a2 ✁ γ

and

w ✏
❞

c
1④2
0 b2 � c

1④2
0

a2
✁ c0a2b2

c
1④2
0 a2 ✁ γ

✁ γ ✏

❣❢❢❡✁
c

1④2

0

a2 ✁ γ
✠
☎
✁

c
1④2
0 a2 ✁ γ

✠
✁ γc

1④2
0 b2

c
1④2
0 a2 ✁ γ

☎

This is easily seen to imply that the set N ✝
2 defined in (81) can be explicitly expressed as

follows :

N ✝
2 ✏

✦
♣a, bq P R→0 ✂ R :

❛
δ✝2 ➔ a ➔ ♣

❛
δ✝2 q✁1 and ⑤b⑤ ➔ θ♣aq

✮
,

where the quantity θ♣aq has been defined in (87).

Furthermore, the function g defined in (72) reads in this case

g♣u, v, wq ✏ c✁1
0 ☎ ��u2 � γ

✟ ☎ �w2 � γ
✟� γv2

✟
and, with the notation of Theorem 5,

rJ2♣a, bq ☎ rΓ2♣a, bq ✏
✂

c0☎ a2

u2♣a, bq
✡
☎
✂ rg♣a, bq

2c✁1
0 ☎ w♣a, bq ☎ ♣u2♣a, bq � γq

✡
.

In this equation, the variables u and w are seen as functions of a and b and rg is the norm of
the gradient of g (with respect to u, v and w) also expressed as a function of the parameters
a and b; that is, with obvious notation,

rg♣a, bq :✏ �✎✎∇♣u,v,wq g
✎✎

2

✟ ♣a, bq.

Set

χ♣a, bq :✏ c2
0

2κ2

☎ a2 ☎ rg♣a, bq
u2♣a, bq � γ

, (94)
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where κ2 is the constant defined for instance in (85).

The existence of the constants ω1 and ω2 is then guaranteed by the fact the parameter
a stays bounded away from zero (see the expression of u above) and the fact that the

gradient of g is continuous and never vanishes on the compact set ⑨Md (see Lemma 5 and
Remark 2).

Note also that

u2♣a, bq ☎ w♣a, bq ✏ γc
1④2
0 ☎
❜

c
1④2
0 a2 ✁ γ ☎

❛
θ2♣aq ✁ b2.

In order to conclude the proof, one needs to show that the right–hand side of (86) is
equal to 1 when δ ✏ δ✝2 ; that is, that n2♣δ✝2 q ✏ 1. With the notation of Theorem 5, this
readily follows from the fact that

N ✝
2 rδ✝2 s ✏ N ✝

2

(such a relation does not hold any more in dimension d ➙ 3).
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