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ABSTRACT

It is fundamental to understand the development of Zygnematophycean (Streptophyte) micro-algal blooms within

Greenland Ice Sheet (GrIS) supraglacial environments, given their potential to signiicantly impact both physical (melt) and

chemical (carbon and nutrient cycling) surface characteristics. Here, we report on a space-for-time assessment of a GrIS ice

algal bloom, achieved by sampling an ∼85 km transect spanning the south-western GrIS bare ice zone during the 2016

ablation season. Cell abundances ranged from 0 to 1.6 × 104 cells ml−1, with algal biomass demonstrated to increase in

surface ice with time since snow line retreat (R2 = 0.73, P < 0.05). A suite of light harvesting and photo-protective pigments

were quantiied across transects (chlorophylls, carotenoids and phenols) and shown to increase in concert with algal

biomass. Ice algal communities drove net autotrophy of surface ice, with maximal rates of net production averaging

0.52 ± 0.04 mg C l−1 d−1, and a total accumulation of 1.306 Gg C (15.82 ± 8.14 kg C km−2) predicted for the 2016 ablation

season across an 8.24 × 104 km2 region of the GrIS. By advancing our understanding of ice algal bloom development, this

study marks an important step toward projecting bloom occurrence and impacts into the future.
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INTRODUCTION

Micro-algal residence within supraglacial environments has

been reported from numerous polar and high-altitude locations,

including Antarctica (Ling and Seppelt 1990), Alaska (Takeuchi,

2001, 2013; Ganey et al. 2017), Siberia (Takeuchi et al. 2006, 2015),

the Himalayas (Yoshimura, Kohshima and Ohtani 1997) and the

Greenland ice sheet (GrIS). For the latter, the presence of micro-

algal communities on surface ice has been known since the sec-

ond half of the 19th century (Nordenskiöld 1872), though only

recently have studies reported the potential for wide-spread ‘ice

algal’ bloomsduring summer ablation periods (Uetake et al. 2010;

Stibal et al. 2012; Yallop et al. 2012; Lutz et al. 2014; Stibal et al.

2017a). Distinct from communities associated with snow-pack

(e.g. Chlorophyta) and cryoconite (e.g. Cyanobacteria) habitats

(Lutz et al. 2014), ice algal assemblages are comprised of few, spe-

cialised taxa belonging to the Zygnematophyceae (Streptophyta)

(Remias, Holzinger and Lütz 2009; Remias et al. 2012a,b). Blooms

occur within the upper few centimetres of surface ice when
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liquid water, photosynthetically active radiation and nutrient

resources are available during the ablation season (Yallop et al.

2012; Stibal et al. 2017a; Stibal, Bradley and Box 2017b), and are

manifest through the brownish-greyish colouration they lend

to the ice surface, which is often described as dark- or dirty-

ice (Yallop et al. 2012; Chandler et al. 2015; Anesio et al. 2017;

Musilova et al. 2017).

Additional to the typical suite of light harvesting and photo-

protective pigments associated with green microalgae (Remias,

Holzinger and Lütz 2009; Yallop et al. 2012), ice algae are known

to produce a purpurogallin-type phenolic pigment that is postu-

lated to provide photo-protection against excessive UV and visi-

ble light experienced in supraglacial environments (Remias et al.

2012a,b). This pigmentation, coupled with the high abundance

of cells achieved during blooms (∼104 cells ml−1; Yallop et al.

2012; Stibal et al. 2017a), has been suggested to be one of the

main drivers of albedo reduction (surface darkening) reported

from numerous polar regions, including the western margin of

the GrIS in the so-called dark zone (Yallop et al. 2012; Stibal et al.

2017a; Van Den Broeke 2017G27). As albedo has a primary con-

trol on surface melt (Box et al. 2012), biological-albedo reduction

associated with ice algal blooms may have contributed to the

accelerating surface run-off apparent from the GrIS since the

early 1990s (Yallop et al. 2012; Van den Broeke et al. 2017; Stibal

et al. 2017a), a primary driver of global sea level rise (Van den

Broeke et al. 2017). Yet empirical evidence to fully quantify the

role of ice algae in this process is currently lacking (Cook et al.

2017; Tedstone et al. 2017).

In addition to feedbacks on surface melt, ice algal blooms

may also impact carbon and nutrient cycling within supraglacial

habitats, with consequences for down-stream ecosystems

(Stibal et al. 2012). Whilst the greatest microbial activity is com-

monly associatedwith cryoconite debris (Anesio et al. 2009; Hod-

son et al. 2010), surface ice dominated by ice algae may ix sub-

stantially more CO2 than cryoconite given its greater spatial

extent (Cook et al. 2012; Yallop et al. 2012; Chandler et al. 2015).

A modelling approach demonstrated ice algal communities to

be the primary contributors to supraglacial carbon ixation, con-

tributing signiicantlymore than cryoconite-associated commu-

nities (Cook et al. 2012), with accumulation of autochthonous

organic carbon demonstrated within net autotrophic, dirty ice

habitats (Musilova et al. 2017). Labile organic carbon not con-

sumed in-situ by secondary production can be exported by

meltwater lushing and utilised within downstream ecosystems

(Musilova et al. 2017; Smith et al. 2017).

Given the potential of ice algal blooms to signiicantly alter

both the physical and chemical supraglacial environment, it

is thus fundamental to understand how blooms develop in

space and time. Despite this, a limited number of studies have

assessed ice algal blooms on the GrIS (e.g. Uetake et al. 2010;

Yallop et al. 2012; Stibal et al. 2017a), exemplifying the limited

information available for ice algae in comparison to other glacial

microbial communities (Anesio et al. 2017). Yallop et al. (2012)

reported maximal densities of ice algae to range 9.1–29.5 × 104

cells ml−1 at a marginal south-westerly GrIS location, though

observed no spatial trends in algal abundance across their 75

km transect. Recently, Stibal et al. (2017a) reported point obser-

vations of algal loadings for a range of GrIS locations and mon-

itored bloom dynamics over an ablation season in a similar

south-westerly location. They demonstrated that increases in

algal abundance with time over the ablation period weremoder-

ated by rainfall events, determining amean population doubling

time of 5.5 ± 1.7 days (Stibal et al. 2017a).

Here, we report on a space-for-time assessment of an ice

algal bloomoccurring on the south-western GrIS. As the ablation

season proceeds, snow line retreat inland from the ice margin

exposes increasing amounts of bare ice in which algal blooms

can occur. Sampling along a transect perpendicular to the ice

margin thus allows us to substitute space (distance inland from

the margin) for time (duration since snow line retreat), permit-

ting a quasi-temporal assessment of bloom development. We

focus here predominantly on the bare ice zone (see Hodson et al.

2010), the most important region in terms of microbial abun-

dance and activity (Stibal et al. 2012), using helicopter transects

spanning ∼50 km inland from the ice sheet margin toward the

accumulation zone. Emphasis was placed on capturing dynam-

ics in algal biomass and pigmentation across transects, given

their importance in driving biological-albedo effects (Cook et al.

2017). The carbon ixation potential of ice algal assemblages was

further characterised and up-scaled using relationships iden-

tiied between the time since snow line retreat, algal biomass

and net production, to provide the irst temporally and spatially

resolved estimate of organic carbon accumulation in surface ice

driven by a GrIS ice algal bloom.

METHODS

Site and sampling details

Assessment of an algal bloom occurring in surface ice of the

GrIS was achieved using a space-for-time approach by conduct-

ing two helicopter transects across ∼85 km of the ablation- to

the accumulation-zone of the western ice sheet margin during

the 2016 ablation season (Fig. 1 and Table 1). Transects were con-

ducted on the 27th July 2016 (T1, DOY = 209) and the 5th August

2016 (T2, DOY = 218), with three sites examined per transect,

ranging from ∼20 to 30 km apart. The most inland sites (S1a

and S1b) differed between transects, whilst sites 2 (S2) and 3

(S3) were assessed on both transects. To allow a space-for-time

conversion, the duration of time (d) since snow line retreat was

determined for each sampling site using MODIS MOD09GA sur-

face relectance (R) data following the approach of Tedstone et al.

(2017). Briely, a threshold was applied to daily band 2 (841–876

nm, R < 0.6) images and the irst day of themelt season at which

each sampling site became snow free was identiied by applying

a 7-day rolling window in which a minimum of 3 days had to be

classiied as snow-free, 0 as snow-covered and a maximum of

4 days could be cloudy (Table 1). Given the location of site S1a

near the equilibrium line, snow line retreat was not predicted

at this location before sampling occurred during T1. Across all

other sites, the duration since snow line retreat varied inversely

with distance from the ice sheet margin (Table 1).

At each site, n = 10 discrete surface areas measuring approx-

imately 20 × 20 × 2 cm (length x width x depth) were sampled

in order to constrain ice algal abundance, species diversity and

pigmentation. Sample locations were chosen randomly across

an area ∼50 × 50 m upwind of the helicopter landing position.

Whilst no formal sampling strategy was performed, sampling

was conducted to be representative of the surface types present

at each site. For each surface sample, a spectral relectancemea-

surement was taken prior to disturbance of the surface. This

was achieved using a Field Spec Pro 3 spectrometer (ASD, USA)

with a collimating lens limiting the instantaneous ield of view

of the ibre optic to 8◦, held 30 cm above the sample surface at

nadir viewing angle to provide a ground ‘footprint’ of ∼35 cm2.

The same procedure was used to measure the relectance of a

Spectralon reference panel immediately before and after each
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Figure 1. Sampling sites and camp location on the south-western Greenland ice sheet (A), with insert showing the relative position of the sampling region within

Greenland. Transect 1 (sites S1a, S2 and S3) was performed on the 27th July 2016 (DOY = 209) and transect 2 (sites S1b, S2, S3) on the 5th August 2016 (DOY = 218).

Images show the supraglacial surface environment of sites S1a (B), S2 (C) and S3 (D) during transect 1, illustrating the conspicuous increase in surface impurities

apparent across transects toward the ice sheet margin. Ancylonema nordenskiöldii (E) and Mesotaenium berggrenii (F) were shown by this study to dominate surface ice

across transects (scale bars = 10 μm in both cases).

Table 1. Site and sampling details.

Site GPS location Distance from ice margin DOY of snow line retreat

Duration since snow line

retreat (d)

S1a 67.0003, - 47.0154 ∼135 km 213 n.a.

S1b 67.0631, - 47.5433 ∼110 km 205 13 (T2)

S2 67.0571, - 48.3064 ∼75 km 191 18 (T1)

27 (T2)

S3 67.0913, - 48.8929 ∼50 km 152 57 (T1)

66 (T2)

Sites S1a and S1b were surveyed during transect 1 (T1, DOY = 209) and transect 2 (T2, DOY = 218), respectively, whereas sites S2 and S3 were surveyed during both

transects.

measurement of the sample surface to enable the hemispheri-

cal conical spectral relectance factor (HCRF) of the surface to be

calculated. Subsequently, the surface was imaged with a scale,

and the top 2 cm collected using a metal ice saw and trowel into

a sterile Whirl-Pak bag. Sampling tools were washed between

samples withMiliQ water andWhirl-Pak bags were immediately

placed into the dark and transported to a primary ice camp (∼35

km inland from the ice sheet margin, Fig. 1) within 3 h for pro-

cessing.

Sample processing

All samples were melted in the dark over a ∼24 h period at the

primary ice camp. Following melting, samples were thoroughly

homogenised before sub-sampling. To assess algal cell numbers,

species diversity and biovolume, 15 ml of homogenised sam-

ple was ixed with 25% glutaraldehyde at 2% inal concentra-

tion. Samples were stored in the dark under ambient ice sheet

temperatures until transport to the University of Bristol, UK,

for counting. Counts were performed using a Fuchs-Rosenthal

haemocytometer (Lancing, UK) on a Leica DM 2000 epiluores-

cence microscope with attached MC120 HD microscope camera

(Leica, Germany). For those samples containing suficient cell

abundance, aminimum of 300 cells were counted to ensure ade-

quate assessment of assemblage diversity. Imaging for quantii-

cation of cell volumes was performed in parallel to counts and

measurements of cell diameter and height made using ImageJ

software, with cell volume calculated considering ice algal cells

as regular cylinders after Hillebrand et al. (1999). Cell volumes

(μm3 cell−1) were converted to biomass (pg C cell−1) using the

relationship of Montagnes et al. (1994) between cellular carbon
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content and volume. Total biomass per sample (μg C ml−1) was

subsequently calculated as the sum of cell counts (cells ml−1)

multiplied by average cell biomass (pg C cell−1) for each species

present.

For characterisation ofmajor chlorophyll and carotenoid pig-

ments, ∼100–200 ml of each homogenised sample was iltered

onto a glass ibre ilter (GF/F, Whatman, UK) by mild vacuum

iltration. Filters were immediately wrapped in foil and frozen

in a Biotrek 10 cryoshipper (Statebourne, UK) illed with liquid

nitrogen. Filters remained under these conditions during trans-

port to the University of Bristol where upon they were stored

at −80◦C prior to analysis by high-performance liquid chro-

matography (HPLC). Following freeze-drying for 24 h, pigments

were extracted from ilters in 100% acetone containing vitamin

E as internal standard. Extractions were analysed using a modi-

ied version of the method of Van Heukelem and Thomas (2001),

using a c8 column in an Agilent 1100 HPLC equipped with a

diode-array detector. Pigments were identiied and quantiied

against analytical standards from DHI and Sigma using both

retention time and spectral analysis.

For characterisation of water-soluble pigments, a further

∼100–200 ml of n = 5 samples collected at each site during T2

was iltered onto a separate GF/F ilter, frozen and transported

back to the University of Bristol, as described above. Filters were

subsequently freeze-dried for 24 h, and water-soluble pigments

extracted in 5 ml Miliq water following the method of Remias

et al. (2012b). To remove non-polar constituents (chlorophylls,

carotenoids) from the raw extract, a phase separation with n-

hexanewas performed. The aqueous phasewas centrifuged and

the absorption of the supernatant measured with a WPA Light-

wave II UV/visible spectrophotometer (Biochrom, UK) using the

wave scan function from 200–750 nm. To provide an estimate

of the relative concentration of water-soluble pigments derived

from samples, absorbance spectra were normalised to extrac-

tion and iltration volumes. Peak height of the dominant peak

identiied across spectra (λ335nm) was subsequently taken as rep-

resentative of relative concentration and normalised to algal

biomass for comparisons between sites.

Productivity incubations

Ice algal productivity (net photosynthesis and respiration) was

assessed at the primary ice camp given the greater duration of

time required for incubations and measurements. To assess the

relationship between ice algal biomass and productivity, oxygen

evolution incubations were performed following the method of

Telling et al. (2010) with melted (∼24 h in the dark) camp surface

ice samples categorised by eye as containing a high, medium

or low loading of impurities. Six replicates of each biomass

treatment were incubated in 60 ml clear glass biological oxy-

gen demand (BOD) bottles (Wheaton, USA) sealed with ground

glass stoppers. Prior to incubations, initial dissolved oxygen con-

centration and temperature measurements were made using a

Microx 4 ibre-optic oxygen meter with attached dipping and

temperature probes (PreSens, Germany). Incubations were then

sealed and three replicates of each treatment wrapped in foil

to create dark conditions for respiration measurements. Bottles

were incubated for 24 ± 1 h in-situ on the ice surface to main-

tain ambient temperature and/or light conditions, with a inal

dissolved oxygen concentration and temperature measurement

taken at the end of the incubation period. Daily rates of net pro-

duction (NP, light incubations) or respiration (R, dark incuba-

tions) (mg O2 l−1 d−1) were calculated as the difference between

initial and inal oxygen concentrations (mgO2 l−1), normalised to

incubation time (d), as �O2/�t. Gross production (GP) was sub-

sequently calculated as NP—R. Data were converted into units

of mg C l−1 d−1 assuming a 1:1 stoichiometry between moles of

CO2 stored for each mole of O2 released, i.e. 0.375 g of C per

g O2 (Chandler et al. 2015). Following incubations, 15 ml sub-

samples were taken as above for determination of algal cell

abundance and biovolume, and calculation of algal biomass as

previously detailed. Given the absence of cyanobacteria within

incubated samples (determined bymicroscopy), rates of produc-

tivity were assumed representative of the speciic contribution

of ice algae to organic carbon accumulation/respiration within

surface ice.Whilstmeasured R included contributions fromboth

autotrophic and heterotrophic community members, secondary

production on the GrIS surface is ∼30-times lower than that of

ice algal production (Yallop et al. 2012), and thus the contribution

of heterotrophs to community respiration was assumed negligi-

ble.

To estimate the contribution of ice algal assemblages to net

carbon ixation in south-western Greenland, NP was modelled

over the 2016 ablation period in a ∼8.24 × 104 km2 ablation zone

area, at 7.5 × 7.5 km resolution. The model area spanned ∼1000

km of latitude along south-western Greenland, intersected by

our study transect ∼600 km from the lower limit. Given uncer-

tainties regarding microbial activity within the GrIS marginal

zone (Hodson et al. 2010; Stibal et al. 2012), a ∼7.5 km marginal

ice area was excluded from our model region. Pixel by pixel esti-

mates of (i) the day of snow line retreat and (ii) the inal day

of the ablation period were derived using the regional climate

model MARv3.8.1 forced with ERA-Interim (Fettweis et al. 2017).

The former was estimated as the irst day of the year in which

the cumulative snowpack depth (ith day + the subsequent 4

days) fell to zero metres, with the latter determined as the inal

day of the year in which cumulative meltwater production (ith

day + the preceding 4 days) exceeded 3mmwater equivalent. For

the duration between these start and end points, daily increases

in ice algal abundance were calculated per pixel using the rela-

tionship between duration since snow line retreat (d) and ice

algal biomass (μg C ml−1) determined from ield data, and con-

verted to NP (mg C l−1 d−1) using the relationship between ice

algal biomass and NP determined during the productivity incu-

bations detailed above.

Net carbon assimilation over the 2016 ablation period was

thus calculated as the sum of daily NP estimates per pixel. To

allow conversion from units of volume (l−1) to area (km2), tripli-

cate 0.5 × 0.5 m surface ice samples containing a low, medium

or high biomass of ice algae were sampled at the primary ice

camp in an identical fashion to surface sampling described pre-

viously, melted over 24 h and the melt volume quantiied. Melt

volumes did not differ signiicantly between surface ice of dif-

ferent ice algal loadings, averaging 265.33 ± 16.31 ml across all

samples, with 1.061 ± 0.065 l of melt water apparent per m2 of

sampled ice. The total contribution of ice algal assemblages to

net carbon ixation across the south-western GrIS ablation zone

was thus calculated as the sum of NP per km2, multiplied by the

extent of our model region.

Downloaded from https://academic.oup.com/femsec/article-abstract/94/3/fiy025/4850643
by University of Sheffield user
on 31 July 2018



Williamson et al. 5

Figure 2. The relative abundance of Ancylonema nordenskiöldii (Ancylo.), Mesotae-

nium berggrenii (Meso.), Cylindrocystis brebissonii (Cylindro.) and snow-algal resting

spores (Snow) apparent across sampling sites during transect 1 (T1) and transect

2 (T2).

Data analysis

All analysis and plotting of data was performed in R v.3.4.1

(R Core Team 2017). Statistical comparisons of ice algal abun-

dance, biovolume and biomass between sites and transects was

achieved using analysis of variance (ANOVA) or two-sample t-

test comparisons, with post-hoc Tukey HSD analysis applied

to all signiicant ANOVA results. Homogeneity of variance and

normality of distribution were tested prior to all parametric

analyses, and model assumptions veriied by examination of

model criticism plots.

RESULTS AND DISCUSSION

Extensive algal bloom across the GrIS ablation zone

Our results revealed the occurrence of awide-spread algal bloom

in surface ice of the south-west GrIS ablation zone, consis-

tent with the heavy colonisation of the so-called dark zone by

pigmented autotrophs (Yallop et al. 2012; Stibal et al. 2017a).

Assemblages were invariably populated by ice-algal taxa of the

Zygnematophyceae (Streptophyte) (Figs 1 and 2), with consis-

tent dominance by Ancylonema nordenskiöldii and Mesotaenium

berggrenii relecting previous accounts of ice-algal blooms in Rus-

sian Siberia (Takeuchi et al. 2006; Takeuchi et al. 2015), Alaska

(Takeuchi 2013) and the south-western GrIS (Yallop et al. 2012;

Stibal et al. 2017a). Microscopy-based indings of the present

study were also highly consistent with amolecular-based exam-

ination of surface samples from the same locations (Lutz et al.

2018).

Complete absence of algal life at site S1a, particularly species

known to bloom in snow-pack environments such as Chlamy-

domonas and Chloromonas spp. (Remias, Lutz-Meindl and Lutz

2005), indicated the restriction of blooms of ice-algae to abla-

tion areas in this region of the GrIS. Ancylonema andMesotaenium

spp. dominated assemblages across all other sites, consistent

with their description as ice environment specialists (Takeuchi

2001), and observations of their immediate dominance of glacial

ice following snow-line retreat (Takeuchi 2013). Ancylonema typi-

cally demonstrated the greatest relative abundance (∼65%) dur-

ing the present study, followed by Mesotaenium (∼35%), though

Figure 3. Ice algal cell abundance across sampling sites during transect 1 (white

bars) and transect 2 (grey bars) (mean ± SE, n = 10). Lower-case letters denote

homogenous subsets determined from 1-way ANOVA analysis of algal abun-

dance ∼ site per transect (Transect 1, F2,27 = 5.88, P < 0.01; Transect 2, F2,27 = 6.78,

P < 0.01). Separate 1-way ANOVA was performed per transect given the assess-

ment of different sites (S1a/S1b) between transects.

deviations from this trendwere apparent at sites S1b and S2 dur-

ing T2 (Fig. 2). Cylindrocystis brebissonii, an opportunistic species

usually observed at the lowest down-glacier locations (Takeuchi

2013), was recorded here at the lowest relative abundances (∼1%)

at sites S2 and S3 only. Data thus add to the growing evidence

that GrIS ice algal blooms are consistently dominated by few,

specialist taxa, capable of survival and proliferation in extreme

cryo-environments (Uetake et al. 2010; Yallop et al. 2012; Stibal

et al. 2017a).

Cell abundances ranged from 0 to 1.6 × 104 cells ml−1 across

all samples (Fig. 3), with maximum densities lower than those

reported by Yallop et al. (2012) from samples collected closer to

the ice-sheet margin (9.1 to 29.5 × 104 cells ml−1), though highly

comparable to those from site S6 in close proximity to our tran-

sect sites (<100 to 8.5× 104 cellsml−1, Stibal et al. 2017a). Patterns

in algal abundance did not conform to space-for-time expec-

tations of bloom development, i.e. no increase in abundance

was evident from S2 to S3 over either transect (39 d time dif-

ference), though examination of cell volumes revealed signii-

cant increases both across and between transects for the dom-

inant two taxa (Fig. 4). Thus, total algal biomass within surface

ice increased across both T1 and T2 toward the ice sheet mar-

gin (Fig. 5), revealing a signiicant linear relationship between

average algal biomass within surface ice and time since snow

line retreat (R2 = 0.73, P < 0.05, n = 6). Strong spatial pattern-

ing is thus evident in ice algal biomass during blooms in GrIS

supraglacial environments, with implications for algal popula-

tion dynamics.

Dynamism in algal loadings within surface ice was also cap-

tured by the present study, with longer-term increases punc-

tuated by shorter-term variability. Signiicant decrease in algal

abundance within sites S2 and S3 over the 9-d period between

transects (Fig. 3), though meditated to an extent by increases

in cell volume, demonstrated the capacity for signiicant loss

of algal cells from surface environments over short time-scales.

Mechanisms for the removal of algal cells from the surface may

include mortality and subsequent loss, burial by precipitation
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Figure 4. Ice algal biovolume of (A) Ancylonema nordenskiöldii and (B) Mesotaenium breggrenii assessed across sampling sites during transect 1 (white bars) and transect

2 (grey bars) (mean ± SE). For A. nordenskiöldii, letters denote homogenous subsets determined from 2-way ANOVA of biovolume ∼ site (upper case letters) + transect

(lower-case letters) (F1,23 = 14.98 and 20.81, respectively, P < 0.001 in both cases). For M. berggrenii, given the absence of cells at site S1a during transect 1, biovolume

was compared between sites separately across transect 1 (two-sample t-test, t14 = − 3.06, P < 0.01) and transect 2 (1-way ANOVA, F2,18 = 16.7, P < 0.001), and between

transects separately for sites S2 (two-sample t-test, t12 = − 2.24 P < 0.05) and S3 (two-sample t-test, t17 = −3.65, P < 0.01). Upper case letters denote homogenous

subsets in relation to site, and lower-case letters in relation to transect.

Figure 5. Ice algal biomass within surface ice assessed across sampling sites dur-

ing transect 1 (white bars) and transect 2 (grey bars) (mean ± SE, n = 10). Lower-

case letters denote homogenous subsets determined from 1-way ANOVA analy-

sis of algal biomass ∼ site per transect (Transect 1, F2,27 = 7.07, P < 0.01; Transect

2, F2,27 = 8.40, P< 0.01). Separate 1-way ANOVAwas performed per transect given

the assessment of different sites (S1a/S1b) between transects.

and hydrological lushing events (Cameron et al. 2017; Stibal et al.

2017a; Stibal, Bradley and Box 2017b). For example, Stibal et al.

(2017a) demonstrated that rainfall events reduce algal abun-

dance in surface ice, such that a signiicant correlation between

the number of days since the last precipitation event and algal

abundancewas apparent.Whilst themechanism responsible for

cell loss from surface ice is not identiiable here, we contend

that the decrease in cell abundance (40%–50% decrease in the 9

days between transect sampling) indicated either a melt or rain

driven removal of the heavily colonised surface ice observed dur-

ing T1, followed by development of a cleaner weathering crust

observed during T2. However, assessment of MARv3.8.1 outputs

for the period between T1 and T2 failed to highlight melt or pre-

cipitation events at either S2 or S3.

Pigment concentration in surface ice increases as a

function of algal biomass

A suite of light harvesting and photo-protective pigments typ-

ical of green micro-algae were identiied across samples (Fig.

6), including chlorophylls a and b, β-carotene, and the xan-

thophylls antheraxanthin, lutein, neoxanthin, violoxanthin and

zeaxanthin. Additionally, abundant secondary pigmentation

in the form of UV-VIS absorbing aqueous compounds were

extracted from T2 samples (Fig. 7), with highly analogous spec-

tral absorbance signatures to the purpurogallin-derived phenols

previously isolated from A. nordenskioldii (Remias et al. 2012a)

and fully characterised from M. berggrenii (Remias et al. 2012b).

Pigments indicative of the presence of oscillatorian cyanobacte-

ria, i.e. scytonemin and echinenone were also recorded within

a limited number of surface samples from sites S2 and S3 only,

andmayhavemarginally contributed to pigment concentrations

determined from these sites. Chlorophyll a, the dominant quan-

tiiable pigment in all samples, ranged in concentration from

1.43 ± 0.51 to 21.08 ± 0.95 μg l−1, though was not detectable in
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Figure 6. Ice algal chlorophyll and carotenoid pigment ratios relative to chloro-

phyll a (33.02 ± 8.00 fg Chla per pg C−1) assessed from surface ice samples col-

lected at S2 during transect 1 (mean ± SE, n = 5). Lut = lutein, Chlb = chlorophyll

b, Carot = β-carotene, Viol = violaxanthin, Zea = zeaxanthin, Anth = antherax-

anthin, Neox = neoxanthin.

Figure 7.Normalised absorbance spectra ofwater-soluble pigments derived from

surface ice samples at sites S1b (black line), S2 (blue line) and S3 (red line) during

transect 2. Insert shows biomass normalised absorbance maxima for the domi-

nant peak (λ335nm) identiied across spectra (mean ± SE, n = 5).

surface samples from S1a, corroborating the absence of mea-

surable autotrophic life. Pigment proiles thus validated assem-

blage composition determined by light microscopy, and served

to highlight the abundant pigmentation characteristic of the

Zygnematophyceae (Holzinger and Pichrtová 2016).

Chlorophyll and carotenoid concentrations varied in con-

cert with algal biomass within surface ice, given that signif-

icant differences in biomass-normalised pigment concentra-

tions were absent across and between transects (Table 2). Sim-

ilarly, biomass-normalised relative concentrations of aqueous

extracts did not differ signiicantly across T2 (Fig. 7), though a

general trend of increasing relative concentration was evident

across sites S1b to S3, potentially indicating the accumulation of

phenol-type pigments at rates greater than biomass increases.

Currently, knowledge of the factors that regulate ice-algal pig-

ment accumulation under in-situ conditions is lacking (Anesio

Figure 8. Spectra obtained during transect 1 illustrating the contrasting spec-

tral relectance of snow (site S1a), clean ice (0 algal cells ml−1, Site S3) and algal

ice (0.76 ± 0.19 × 104 algal cells ml−1, Site S3). HCRF = hemispherical conical

relectance factor, obtained by measuring light relected from the surface rela-

tive to a Spectralonwhite reference panel. Reference panels can be less relective

than ine grained snow at nadir, explaining relectance values >100%. Data are

presented as a proxy for albedo, though correction for the viewing angle and sur-

face anisotrophy are required to calculate albedo from these data (see Cook et al.

2017).

et al. 2017), despite the potential implications for surface albedo

and glacier-wide melt processes (Stibal et al. 2012; Yallop et al.

2012; Cook et al. 2017; Tedstone et al. 2017; Stibal et al. 2017a).

Whilst initial studies have characterised the pigments present

in dominant ice algal taxa (e.g. Remias et al. 2012a,b), a limited

number of in-situ observations have failed to resolve spatial or

temporal patterning in chlorophyll or carotenoid concentrations

(Yallop et al. 2012; Lutz et al. 2014), and no study has examined

spatio-temporal dynamics in water-extractable phenols initially

documented here. The latter are of particular importance given

their presumed facilitation of ice algal dominance in glacial

environments via their UV-VIS shading and/or grazer defence

qualities (Remias et al. 2012a,b, Holzinger and Pichrtová 2016).

We demonstrate here that phenol-type pigments are ubiquitous

across the extent of ice algal blooms on the GrIS, being present

at comparable cellular concentrations from the onset of bloom

initiation (i.e. 22 days after snow line retreat) until later bloom

stages (66 days after snow line retreat), reinforcing their impor-

tance in bloom development.

Spectral relectance measurements made in concert with

surface sampling during the present study demonstrated obvi-

ous surface darkening for those samples dominated by ice algal

assemblages, as compared to clean ice or snow (Fig. 8). These

indings are consistent with previous assertions of ice algae as

major contributors to albedo reduction across vast areas of the

GrIS dark-zone (Yallop et al. 2012; Stibal et al. 2017a). We empha-

sise, however, that our ability to directly relate albedo reduc-

tions of ice surfaces to ice algal biomass is currently limited

by the inluence of surface physical characteristics and exter-

nal factors related to solar and atmospheric effects on ice sur-

face albedo (Cook et al. 2017). Additionally, glacial ice can contain

concomitant loadings of non-biological impurities whose effect

on albedo cannot be readily distinguished from that of biologi-

calmaterial (Cook et al. 2017).Whilst we have demonstrated that

increases in algal biomass are accompanied by increases in pri-

mary and secondary pigmentation as ice algal blooms develop

on the GrIS, a physical modelling approach has been suggested

Downloaded from https://academic.oup.com/femsec/article-abstract/94/3/fiy025/4850643
by University of Sheffield user
on 31 July 2018



8 FEMS Microbiology Ecology, 2018, Vol. 94, No. 3

Table 2. Ice algal chlorophyll and carotenoid pigment concentrations normalised to biomass (fg pigment per pg C−1) across sites and transects.

Transect Site Anth Chla Chlb Carot Lut Neox Viol Zea

1 S2 1.03 ± 0.01 33.02 ± 8.00 6.38 ± 1.44 4.73 ± 0.29 8.68 ± 1.17 0.80 4.47 ± 0.48 1.35 ± 0.04

S3 0.91 ± 0.10 24.61 ± 2.78 3.39 ± 0.85 3.59 ± 0.82 5.58 ± 1.07 0.41 3.05 ± 0.56 1.00 ± 0.17

2 S1b n.d. 41.7 ± 14.90 n.d. n.d. 7.54 ± 1.96 n.d. n.d. n.d.

S2 1.64 ± 0.27 29.00 ± 3.35 9.27 ± 1.10 4.89 ± 0.57 8.34 ± 0.78 0.65 ± 0.04 3.32 ± 0.40 1.48 ± 0.23

S3 1.55 ± 0.43 48.08 ± 14.07 8.37 ± 1.27 6.91 ± 0.36 9.13 ± 0.98 0.76 ± 0.12 4.56 ± 0.17 1.52 ± 0.30

Quantiiable pigment concentrationswere absent from site S1a during transect 1. n.d.= not detectable, Anth= antheraxanthin, Chla= chlorophyll a, Chlb= chlorophyll

b, Carot = β−carotene, Lut = lutein, Neox = neoxanthin, Viol = violaxanthin, Zea = zeaxanthin.

Figure 9. Net production (A), respiration (B) and gross production (C) of surface ice containing a high (H, 3.76 ± 0.56 μg C m−1), medium (M, 1.16 ± 0.06 μg C ml−1) or

low (L, 0.01 ± 0.00 μg C ml−1) biomass of ice algae (mean ± SE, n = 3). Lower case letters denote homogenous subsets in relation to biomass for each parameter as

determined by 1-way ANOVA (net production, F2,6 = 15.81, P < 0.01; respiration F2,6 = 6.56, P < 0.05; gross production F2,6 = 11.05, P < 0.05). Biomass was signiicantly

different between each biomass category (1-way ANOVA, F2,6 = 33.91, P <0.001).

necessary for disentangling the various biotic and abiotic con-

tributions to surface albedo (Cook et al. 2017).

Ice algal communities drive net autotrophy of the

surface ice environment

Assessment of net production (NP) and respiration (R) of surface

ice containing a high, medium, or low biomass of ice algae

demonstrated consistent net autotrophy for surface ice samples

(Fig. 9), with signiicant linear relationships identiied between

ice algal biomass and NP, GP and R (Fig. 10). Data were highly

comparable to rates of primary production assessed using 1 h
14C-uptake incubations with ice containing dense algal cover-

age at a marginal south-western GrIS location (∼1.03 ± 0.62

mg C l−1d−1, Yallop et al. 2012), and values reported from 24

h incubations with ‘dirty-ice’ from Leverett Glacier (∼0.35–1.12

mg C l−1 d−1, Musilova et al. 2017), and the same location

as the present study (NP = 0.40 ± 0.20, GP = 0.64 ± 0.31,

R = −0.24 ± 0.17 mg C l−1 d−1, Chandler et al. 2015); though no

assessment of algal abundance was undertaken during the lat-

ter two studies. GP was approximately double R across all sam-

ples (GP/R = 2.3 ± 0.2), supporting assumptions built into pre-

vious modelling approaches (Cook et al. 2012), with an average

biomass doubling time of 3.75 ± 0.36 days estimated from NP

incubations (biomass/NP), highly comparable to the 5.5 ± 1.7

Figure 10. Relationships determined by least-squares linear regression between

ice algal biomass and net production (NP, red data), respiration (R, blue data) and

gross production (GP, green data), showing regression line (sold lines) and 95%

conidence intervals (dashed lines).
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Figure 11. Total ice algal net production potential (kg C km−2) estimated for

the 2016 ablation season within south-western Greenland. Black dots represent

sampling sites of the present study where ield measurements were performed

(see Fig. 1).

days determined by Stibal et al. (2017a). Interestingly, dou-

bling times estimated here increased with algal biomass, from

0.11 ± 0.03 days for low biomass ice, to 7.18 ± 1.04 days for

high biomass ice, indicating potential resource limitation as

algal biomass increases within surface ice. We note, however,

the possibility for increased ‘bottle-effects’ with increasing algal

biomass within our incubations (see Telling et al. 2010), poten-

tially driving our indings toward more conservative estimates

as biomass increases. Taken together, data highlight the impor-

tance of ice algal communities in driving net autotrophy of

GrIS surface habitats, and the potential importance of ice algal

blooms in global carbon cycles (see below).

Total ice algal organic carbon accumulation over the 2016

ablation period was estimated as 1.306 Gg C across our

∼8.24 × 104 km2 model region, averaging ∼15.82 ± 8.14 kg C

km2 (Fig. 11). Strong spatial patterning in carbon accumulation

was evident, with total NP increasing toward the ice margin in

concert with biomass increases through time, and exceptional

NP approaching ∼40–50 kg C km2 in this region. In contrast,

surface ice located toward the equilibrium line demonstrated

total ice algal NP potential of <10 kg C km2 over the 2016 abla-

tion period, relecting the shorter duration of bare ice exposure

apparent in these locations, and thus reduced capacity to accu-

mulate ice algal biomass. Previously, Cook et al. (2012) modelled

the NP potential of supraglacial algae for a 1600 km2 region of

the south-western GrIS over the period 2000–2010, reporting an

average total NP of 16.40 ± 12.80 Gg C for their 1600 km2 model

region (∼10 250 kg C km2, Model 4). As comparison, average NP

of 0.0022 ± 0.0026 Gg C was reported for carbon accumulation

driven by cryoconite alone (∼1.37 kg C km2, Model 3, Cook et al.

2012). The values determined by the present studywere thus sig-

niicantly reduced as compared to the outputs ofModel 4 of Cook

et al. (2012), though consistent with the expectation that ice algal

assemblages provide a greater contribution to carbon accumu-

lation than cryoconite-associated assemblages in supraglacial

environments, with our estimates for ice algae ∼11-times those

reported for cryoconite alone (Model 3, Cook et al. 2012). Given

that Model 4 of Cook et al. (2012) did not allow for temporal vari-

ability in ice algal coverage during ablation seasons, we contend

that the organic carbon accumulation determined here for the

2016 ablation period provides a more realistic estimate of the in-

situ carbon ixation potential of ice algal assemblages across the

bare ice zone.

CONCLUSIONS

Despite their potential importance for surface albedo and car-

bon lux estimates (Yallop et al. 2012; Stibal et al. 2017a), few

studies have characterised blooms of ice algae that occur in GrIS

supraglacial environments. Our results serve to demonstrate the

nature of ice algal bloom development, highlighting the capac-

ity for signiicant increases in algal biomass, associated pig-

mentation, and carbon ixation potential following snow line

retreat. Strengthening of the patterns described here would be

anticipated into the future if global temperature increases trans-

late into longer ablation periods, which in turn would expose a

greater extent of bare ice in which algal blooms can occur. This

process may be further exacerbated by increased deposition

of bio-available nutrient resources driven by increased anthro-

pogenic activities. Outcomes of the present study coupled with

future research into the mechanisms underlying ice algal pig-

ment regulation and abiotic/biotic controls on biomass within

surface ice are required to facilitate projections of the magni-

tude and impacts of future GrIS ice algal blooms.

ACKNOWLEDGEMENTS

The authors thank and acknowledge the entire Black &

Bloom team, especially those involved in the 2016 ield cam-

paign. Xavier Fettweis is acknowledged for his contribution of

MARv3.8.1 regional climate model outputs to the present study.

FUNDING

This work was funded as part of the UK Natural Environ-

ment Research Council Consortium Grant ‘Black and Bloom’

(NE/M021025/1). We further acknowledge support from the Mir-

coArctic Innovative Training Network (European Commission’s

Marie Sklowdowska Curie Actions program, project 675546).

Conlict of interest. None declared.

REFERENCES

Anesio AM, Hodson AJ, Andreas F et al. High microbial activity

on glaciers: importance to the global carbon cycle.Glob Chang

Biol 2009;15:955–60.

Downloaded from https://academic.oup.com/femsec/article-abstract/94/3/fiy025/4850643
by University of Sheffield user
on 31 July 2018



10 FEMS Microbiology Ecology, 2018, Vol. 94, No. 3

Anesio AM, Lutz S, Chrismas NAM et al. The microbiome of

glaciers and ice sheets. npj Bioilms Microbiomes 2017;3:10.

Box JE, Fettweis X, Stroeve JC et al. The cryosphere Greenland ice

sheet albedo feedback: thermodynamics and atmospheric

drivers. 2012;6:821–39.

Cameron KA, Stibal M, Hawkings JR et al. Meltwater export of

prokaryotic cells from the Greenland ice sheet. Environ Micro-

biol 2017;19:524–34.

Chandler DM, Alcock JD, Wadham JL, et al. Seasonal changes of

ice surface characteristics and productivity in the ablation

zone of the Greenland Ice Sheet. The Cryosphere 2015;9:487–

504.

Cook JM, Hodson AJ, Anesio AM et al. An improved estimate of

microbially mediated carbon luxes from the Greenland ice

sheet. J Glaciol 2012;58:1098–108.

Cook JM, Hodson AJ, Gardner AS et al. Quantifying bioalbedo: a

new physically-based model and critique of empirical meth-

ods for characterizing biological inluence on ice and snow

albedo. Cryosph 2017;11:2611–32.

Fettweis X, Box JE, Agosta C et al. Reconstructions of the 1900–

2015 Greenland ice sheet surface mass balance using the

regional climate MAR model. Cryosph 2017;11:1015–33.

Ganey GQ, Loso MG, Burgess AB et al. The role of microbes in

snowmelt and radiative forcing on an Alaskan iceield. Nat

Geosci 2017;10:754–9.

Hillebrand H, Dürselen C-D, Kirschtel D et al. Biovolume calcula-

tion for pelagic and benthic microalgae. J Phycol 1999;35:403–

24.

Hodson A, Bøggild C, Hanna E et al. The cryoconite ecosystem on

the Greenland ice sheet. Ann Glaciol 2010;51:123–9.
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