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The first moments of medical image perception 

Jeremy M Wolfe 

Karla K Evans 

Trafton Drew 

 

Do not scrutinize Figure 1. Take a quick look and decide how the two arrays of letters 

differ. Then come back to the text of this chapter. 

 

Figure 1: Take a very brief look at each of these letter arrays and think about how they 

differ. 

If you followed instructions, even the briefest of glances will have revealed that these 

two, quite similar images are clearly different. The most obvious difference, visible in a 

glance, is that the array on the left is somewhat less regular than the one on the right. You 

might also have gotten a notion that the distribution of letters is different. In all 

probability, you will not have noticed that the right-hand image has cancer (written 

vertically – feel free to search for it). If cancer only appeared in regular grids, you would 



learn to be more suspicious of those grids after some practice. If cancer tended to appear 

on the left side of such grids, you would learn to direct your attention preferentially to 

that side. 

 

This is an unnatural example of a completely natural aspect of scene perception. You are 

walking through a new city. You turn a corner and in a fraction of a second you know 

that you have stumbled on an outdoor market. Your expertise in such matters tells you 

whether this is the sort of market you want to explore. That first glimpse probably does 

not reveal to you the location of the booth that will feed you your lunch, though it may be 

in plain sight. That will require a bit more scrutiny. That scrutiny will be guided by your 

understanding of the structure of this scene and of other scenes of this sort. Your attention 

will be guided to booths serving food as opposed, for example, to trash bins (Biederman,, 

1973; Henderson, 2004; Vo, 2015).  

 

If you are a radiologist, reading this chapter, you will have had the same experience when 

viewing medical images. On first glance when viewing a radiograph, you will know what 

sort of image this is. You might know that this is an image that is likely to contain a 

finding. If there is a finding present, you will not have found it yet, but you may have a 

hunch that the image is likely to be worth some effort. Your understanding of human 

anatomy and of the reason for the exam will guide your deployment of attention within 

that image. 

 

The Gist of the Image 



In all of these cases, the first glimpse has revealed the ‘gist’ of the image. Gist is a useful 

but imprecisely defined term. For a table describing the variety of usages in the visual 

cognition literature see Koehler and Eckstein (2017). As we have seen, finding ‘cancer’ 

in an array of letters requires the deployment of some form of focused attention to a 

region of space. The act of recognizing any object in a scene filled with other objects 

requires directing attention to that object. There are exceptions to this rule. For instance, 

if there was a single, red letter in Figure 1, you might be able to report on its presence 

without deploying attention to that red object. However, if you needed to specify the 

identity of the red letter, attention would need to be deployed	(Maljkovic, 1994). Using 

attention to select the object permits its features to be “bound” so that the observer can 

appreciate the relationship between those features (Roskies, 1999;  Treisman, 1996,1998; 

von der Malsburg, 1981) (e.g., his shirt is blue and his hair is red, rather than the other 

way around). When the observer first sees a scene, its features are unbound (Wolfe, 1997; 

Wolfe, 1999) and its objects are not explicitly recognizable (Evans, 2005).  

 

Nevertheless, it is not as if attention really was a ‘spotlight’ (Posner, 1980) where inside 

the beam we see and outside  we do not  (Crick, 1990; O'Regan, 1992). As Crick (1984) 

says, “In this metaphor, the searchlight is not supposed to light up part of a completely 

dark landscape but, like a searchlight at dusk, it intensifies part of a scene that is already 

visible to some extent.”  When you first glanced at the letter arrays of Figure 1, the entire 

figure was visible “to some extent”. Moving beyond the realm of spotlight metaphors, we 

need to ask what it means, in this case, to be “visible to some extent”.  

 



An observer can extract a rich impression of a scene in a time far too short to permit 

selective attention to more than a handful of objects (Biederman, 1972; Oliva 2005; 

Potter, 1975). Some of this information is “statistical”. In a single glimpse (< 200 msec, 

with a backwards pattern mask that immediately follows presentation), observers can 

estimate statistics of groups or “ensembles” of objects (e.g., we can estimate the average 

and variance of properties like color, motion, size, orientation) (Alvarez, 2011; Ariely, 

2001; Brady, 2017; Chong, 2003). They can categorize natural scenes (e.g., this is a 

beach, an urban close-up) (Greene 2008, 2009) and identify the presence of types of 

object like ‘animals’ (Drewes, 2011; Li, 2002; Thorpe, 2001). Note, however, that when 

observers extract this sort of semantic information from a scene after a brief exposure, 

they are doing so imperfectly and without necessarily knowing where the animal is or 

what animal it might be (Evans, 2005). Indeed, the ability to extract image statistics may 

be closely related to the ability to infer the presence of an animal or a beach. These higher 

level decisions may be based on raw image statistics (Oliva 2005,2006) or access to 

unbound disjunctive intermediate features (Evans, 2005; Freedman, 2002; Sigala, 2002).  

. 

 

In a real-world scene, those raw image statistics also provide information about the layout 

of the scene (Greene, 2008; Ross, 2010; Sanocki, 1997). 

The gist of the scene will include information about whether you are looking at an ‘open’ 

or ‘closed’ space, for example. A brief glimpse of the scene will guide the subsequent 

deployment of attention, in part, because the observer will know where the surfaces in the 

image lie (Castelhano, 2007). Thus, in a search for humans in scenes, observers will 



preferentially fixate on or near the ground plane because, if there are people, that is where 

they are likely to be (Ehinger, 2009). Importantly, some of this gist processing must be 

learned. While the system may come equipped with an ability to assess the average 

orientation of lines in a scene or even to gain an impression of the layout of the surfaces, 

it can hardly come with built-in definitions of the gist of a bookstore or a gym.  

 

To summarize, as Fei-Fei (2007) et al. say, “within a single glance, much object- and 

scene-level information is perceived by human subjects”. That initial glimpse produces a 

representation that includes basic statistical information that can, in turn, give rise to 

information about the structure and content of the scene. In many cases, the mapping of 

basic statistical information to specific meanings will be learned as we are exposed to 

thousands of exemplars of different types of scenes throughout our lives. Moreover, in all 

but the briefest of exposures, there will be time for one or more deployments of selective 

attention to specific locations/objects in the field. This will permit a small number of 

specific objects to be identified, adding them to the gist (Wolfe, 2011).  

 

Radiologists are experts with the object class of medical images. As such, their visual 

systems will become tuned so that it produces this gist representation to this different set 

of stimuli. Even though they are not ‘natural’, medical images can be thought of as 

scenes. The mechanisms that allow us to recognize the gist of the gym, will also allow a 

radiologist to extract some meaning from the first glimpse of an x-ray or MRI image. As 

we will see, medical image perception research suggests that experts can use this initial 



gist to guide attention toward targets and to classify whole images, presumably on the 

basis of their global image statistics. 

 

Guiding Attention: Kundel, Nodine, and their followers 

In a classic, early paper in medical image perception, Kundel and La Follette (1972) 

measured the eye movements of a wide range of observers as they searched normal and 

abnormal chest x-rays. The core finding was that the eye movements of experts were 

different than those of novices and trainees. Experts needed fewer fixations to find the 

targets and their pattern of fixations was different (Figure 2). This basic pattern has been 

replicated many times (Bertram, 2013; Krupinski, 1996; Nodine, 1996)  

 

Figure 2: Eye movements change as radiologists become more expert. Notably, radiologists 
appear to learn where not to look. (redrawn from Kundel and La Follette, 1972 XX DO WE NEED 
PERMISSION HERE?) YES YOU DO! AS IT LOOKS LIKE THE ORIGINAL TO ME 
 

If an expert is going to make fewer eye movements than a novice, that must be because 

that expert has developed a better idea about what parts of the image need to be fixated in 

order to find relevant information. Kundel and Nodine have stressed the importance of 

what they call “holistic recognition” (Kundel, 2007) during the first second or so after an 

image is presented to the radiologist. Just as the gist of a real-world scene guides the eyes 

in routine search tasks, the learned structure of the medical image comes to guide the 

eyes and attention in a search through a medical image. To quote Kundel (2007), “Clearly 



much of what happens in perception precedes exhaustive visual scanning of the image. 

Recordings of the location of the initial few fixations of a group of nine mammographers 

and mammography trainees showed that on about half of the images the mammographers 

jumped right to the cancer whereas most of the trainees only jumped to the cancer in 20% 

of the images.” If observers were simply searching through a medical image in the 

manner that one reads a page of text (or some other orderly manner), then the percentage 

of targets found should be a linear function of the amount of the image that had been 

examined and, thus, a linear function of the amount of time spent on the image. On 

average, by the time you searched 50% of the image, you should have found 50% of the 

detectable targets. The data make it clear that this is not the case. Figure 3 shows the non-

linear rise in performance as a function of time. Figure 3B presents the number of cases 

completed as a function of time. The dashed line shows the rate over the first 20 seconds 

and it can be seen that the rate falls off as time goes on. Experts find more targets in the 

early portion of the search.  

 



Figure 3: Curves showing that the rate of target discovery slows over time. Figure 3a 
shows this effect within the first second. Figure 3b shows the effect over many seconds. 

 

Kundel and Nodine (1975) decided to look at the information available in the earliest 

moments of search by asking observers to assess 10 normal and 10 abnormal lung x-rays 

with only a 200 msec exposure to the images. Their experts could classify70% correctly 

after that limited glimpse of the image. With unlimited time, they were almost perfect, 

but clearly quite a lot of information was available well within the first second. Carmody 

et al. (1981) systematically varied the exposure duration and mapped out the rise in this 

initial information over the course of the first half second of exposure. Most of the 

success was obtained within 250 msec (Fig 3a). Not all the information was available in 

the initial glimpse. Notice that for the least visible stimuli, performance asymptotes at 

just 40% after 500 msec. Performance would rise if the observers were free to scrutinize 

the images, but even with difficult cases, there is substantial information in the first few 

hundred msec. 

 

The Carmody et al. (1981) data come from search for lung nodules. Nodine et al. (2002) 

figure shows mammography data. In both cases, Kundel and Nodine propose a similar 

account of the search process. To use the version in Kundel and Nodine (2004), the first 

step is a global analysis of the image over the course of “a few hundred milliseconds”; 

700 msec or so in Kundel et al. (2008). Next, the results of that global step are subject to 

“foveal verification”. Swensson (1980) formalized this basic idea into his “two-stage 

detection model” in which a “final decision stage must logically follow some earlier stage 

of visual search, during which that particular feature of the pattern was selected for 



attention and specific consideration”.  Swensson noted the similarity between his idea 

and Neisser’s (1967) distinction between “preattentive” and “attentive” processes. In fact, 

Swensson’s work is a precursor of subsequent work on the ‘guidance’ of attention by 

preattentive and/or non-selective aspects of processing (Drew, 2013). We will briefly 

review that concept here. 

 

Guidance 

To recognize an object or an image feature, it is generally necessary to attend to that 

location. Often that involves foveating the location, but it is possible to covertly attend 

away from the point of fixation (Grindley, 1968). Indeed, attention to object or locations 

away from the point of fixation must be happening all the time. If you are searching for 

one type of letter in a field of many letters, you can only foveate 3 or 4 letters per second. 

However, if the letters are big enough to escape from acuity and crowding limitations, 

you can process 20-40 letters per second (Wolfe, 2003). Under normal viewing 

conditions, attention probably visits several locations in a “useful (or functional) field of 

view” (UFOV) around a fixation (Sanders, 1985). This UFOV is an important concept if, 

for example, one is concerned with looking at an “entire” image. Since the point of 

fixation is just that – a point, it is important to have a measure of how much of the scene 

around that point is being effectively processed (for a radiologic example, see Ebner,, 

2016).  

 

How should the eyes and the metaphorical spotlight of attention be deployed? If one is 

looking for lung nodules, for example, it would be wasteful to simply deploy attention at 



random or even in an orderly, lawnmower-like sweep, back and forth across the image. It 

would make more sense to deploy attention to small, white, round elements in the image. 

Our ability to do this is illustrated with a non-medical example in Figure 4. Your goal is 

to find the letter, T. First, look for a T in the left panel. Next, search the right panel for a 

T that you are told is on a gray, vertical rectangle. It is likely that the second search will 

be more efficient than the first because, on the left, you will have had to resort to an 

unguided sampling of items until you stumble on the target. In the second search, on the 

right, your search will be guided to gray, vertical, rectangular objects. You are not going 

to waste attention on white, round, or tilted items. Figure 4 is just a demonstration. Your 

experience of which search is easier might not correspond to the description just offered. 

In the unguided search on the left, there is no reason that you might not have gotten lucky 

and selected the T with your first or second deployment of attention. This would make 

the time required for the unguided search as fast as that for any guided search. However, 

if you were tested on hundreds of trials of this sort, the data would show that the guided 

search was more efficient (Wolfe, 2010). 

 

Figure 4: Guided Search (Wolfe, 1994): Look for a T on the left. On the right, look for a T on a 
vertical, gray rectangle. 

 



Not every visual property of the target item can guide attention. There is a limited set of 

perhaps 1-2 dozen guiding attributes (Wolfe, 2017). These “preattentive features” 

(Treisman, 1985) are available in that initial period of what Kundel and Nodine (2004) 

called “global analysis”. Treisman, in her influential “Feature Integration Theory” 

(Treisman, 1980), describe the preattentive stage of processing as happening in parallel 

across the whole field. Her second stage was serial scrutiny of items, akin to the “foveal 

verification stage” of Kundel and Nodine (2004). Egeth et al. (1984), followed by Wolfe 

and colleagues, brought in the idea that processing in the preattentive stage could guide 

the subsequent, serial stage (Wolfe, 1994, 2007; Wolfe, 1989); and Wolfe stressed the 

idea that attention could be guided by multiple features at the same time (e.g., vertical, 

gray, & rectangle) (Nordfang, 2014).  

 

It is convenient but misleading to think about these stages in strictly sequential terms as if 

preattentive processing (global) ends at the moment that attentive (foveal verification) 

begins. If a radiologist is looking for lung nodules, the preattentive information about 

small, white, and round is available at the outset to guide the first deployments of 

attention, but it will remain present to continue guiding subsequent deployments for as 

long as the radiologist cares to keep searching. 

 

Kundel and Nodine describe another form of guidance. They envision it as a separate 

stage in their model. After the “few seconds” that are occupied by global processing and 

foveal verification, they propose a “discovery search” phase. This is also guided search, 

but it is guidance to “places with a high probability of finding the object specified by the 



task”. As a trivial example, if you are looking for lung nodules, you need not look outside 

the lung. An expert would guide her attention not only to the lung, but to the parts of this 

lung most likely to contain nodules. As with feature guidance, the radiologist is making 

expert use of a form of guidance we use in more mundane tasks continuously. If you are 

searching for a toaster in a friend’s unfamiliar kitchen, you will direct your attention to 

“places with a high probability of finding” a toaster: the kitchen counter, not the stovetop, 

the ceiling, or the floor. This is known as “scene guidance” (Biederman, 1982; 

Henderson, 2004; Wolfe, 2017). Kundel and Nodine make this a later stage in processing 

but, as noted above, scene layout information is available very early in processing and 

can be shown to guide the earliest fixations (Castelhano, 2007). The Kundel and Nodine 

model, and indeed  most early models of search, capture the critical aspects of guided 

search, provided we do not insist on a linear series of non-overlapping steps. In the first 

moments of perception, information becomes available that allows attention and the eyes 

to be deployed in a non-random way. Attention will go to places where targets are likely 

to be and to objects or locations that show the basic features of the target. 

 

 Kundel and Nodine propose one final stage: a “reflective stage” during which the 

radiologist makes “difficult decisions about ambiguous features”. This can take tens of 

seconds per image and is an aspect of search that has not been much studied in the 

laboratory. Most basic visual attention research has used targets that are either trivial to 

identify once attention is deployed to the right spot (Is that a T or an L?). Sometimes 

more ambiguous stimuli are used (e.g., targets of low, near threshold contrast), but little 

in the basic research field has tried to capture the sort of complexity that would face a 



neuroradiologist trying to determine if anything in the head CT could account for the 

patient’s headache.  

 

Global Gist Signals 

As discussed at the outset, when you take a quick look at the letter arrays of Figure 1, you 

immediately know something about the gist of each scene. For instance, you know that 

one is regular while the other is not. As you scrutinize the images, you can identify 

specific letters but you see and continue to see something everywhere. You do not just 

see the contents of the spotlight of attention. One way of modeling this is to propose that 

there are two pathways to visual awareness (Drew, 2013; Wolfe, 2011). One is a 

“selective” pathway that allows observers to attend to and identify objects. The other is 

“non-selective”, providing some visual experience across the entire visual field (e.g., 

“spatial envelope” of an image (Oliva, 2001) and the summary statistics, mentioned 

above). The non-selective pathway makes global gist information available to the 

observer. 

If that observer is a radiologist, what can be done with that information? We get a hint 

from anecdotal reports in which clinicians say that sometimes, when they first encounter 

an image, it just “looks bad” even though the observer does not know why.  



 

Fig 5: Average ROC data for judging the abnormality of a bilateral mammogram, presented for 
each of five stimulus durations. The ability to discriminate normal from abnormal cases is similar at 
all durations and is reliably above chance. Data from Evans et al. (2013). 

 

This suggests that there might be a ‘gist’ of abnormality in, at least, some classes of 

images. This is not an outlandish thought. To return to an earlier example, as you walk 

through the door, you might have the immediate impression that, not only is this a 

bookstore, but it is an unusual bookstore. It is also possible that anecdotes about these 

initial hunches are merely selective memory, after the fact. One could imagine that there 

may be a bias to remember instances when these hunches turn out to be true, while 

forgetting times when they are not (Tversky, 1983). In order to determine if there is a 



perceptual basis for these reports, Evans et al. (2013) showed radiologists normal and 

abnormal, bilateral mammograms for exposures of 250-2000 msec. These brief 

presentations were followed by a white, outline mask of the image. Observers were asked 

to localize that abnormality on the outline and then to rate their decision confidence about 

the image on a 0-100 analog scale running from abnormal to normal. Fifty-five 

radiologists were tested on a set of 100 images. Half  contained a subtle mass or 

architectural distortion. No calcifications were used because the ability to detect a bright 

white dot in a brief exposure was not particularly interesting in this case.  

 

Rating scale data can be used to derive ROC (Receiver Operating Characteristic) curves as 

shown in Figure 5. Chance performance would fall on the Hit = False alarm diagonal. 

Radiologists showed above chance performance for detecting these subtle abnormalities at 

all stimulus durations (d’ = ~1.4). In fact, the duration had little effect in this study. A 250 

msec glimpse is just about as good as two seconds during which the observer could make 

7 – 8 fixations.  

Importantly, radiologists were, however, unable to localize the abnormalities in these 

images. Regardless of their degree of confidence that the patient should be recalled for 

further examination,  localization performance was at chance. On the other hand, these 

results are not evidence that screening mammography can be done in a quarter of a second. 

The “expert” square in the upper left of Figure 5 shows the approximate performance of 

radiologists performing screening exams in the normal manner. Obviously, d’ is much 

higher (~2.9).  

 



 

Figure 6: Sample images and data showing the results of filtering the mammograms. The global 
gist signal is more detectable in the higher spatial frequencies than in the lower. Performance with 
the high-pass filtered images is comparable to the unfiltered condition. Dashed lines represent 
empirical ROC curves for each observer, derived from the rating scale data. The thicker, solid line 
is the average result. Figure redrawn from Evans et al. (2016) 

The ability to extract information from a global / non-selective glimpse of a medical image 

is not limited to mammograms. In a similar experiment, cytologists were shown Pap smear 

images from cervical cancer screening for brief periods. These are essentially unstructured 

collections of thousands of cells on a microscope slide. Experts could sort stimuli into 

normal and abnormal at above chance levels (~ d’ = 1.2) though again, they were unable 

to localize the pathology. Some global aspect of the image statistics or the texture of the 

stimulus is telling experts that the stimulus is or is not abnormal.  

What is the nature of the signal? If the signal is well-classified, it can be exploited. For 



example, it could be used to train either radiologists or computer algorithms. Evans et al. 

(2016)	repeated their experiment with low- and high-pass filtered stimuli. As shown in 

Figure 6, radiologists are sensitive to a global gist signal that seems to be present in the 

fine detail of the fibrous structures of the breast tissue seen in the high pass image. 

Performance with a high-pass filtered image is just about as good as performance with the 

full unaltered image. In contrast, the ‘blobs’ of the low pass image are far less detectable 

at the 500 msec exposure duration. This is interesting since the standard hypothesis would 

be that the coarser, low frequency information would dominate in brief exposures (Navon,	

1977;	Oliva,	1997)	but	this	was	clearly	not	the	case.	Localization remained poor across 

all conditions. Moreover, density – a known risk factor for cancer (Zheng, 2012) was not 

correlated with performance. 

 



 Figure 7: The signal is present in a single breast (left panel). It is also detectable in the 
contralateral breast: the breast with no lesion. Dashed lines represent empirical ROC curves for 
each observer, derived from the rating scale data. The thicker, solid line is the average result. 
Figure redrawn from Evans et al. (2016) 

 

Another candidate source of the signal is a distortion of the normal symmetry between the 

two breasts. Humans are good at detecting symmetry (Wagemans, 1997) and asymmetry 

can be a strong indicator for developing breast cancer (Scutt, 2006; Zheng, 2012). 

However, this does not appear to be the basis for the performance of radiologists when they 

are detecting the ‘gist’ of breast cancer. As shown in Figure 7, radiologists do perfectly 

well at the gist detection task when they are presented with just a single breast image. 

Indeed, performance (d’ = 1.2) is not much different than what is obtained with a pair of 



images. Radiologists may use symmetry between two breasts as an important sign in 

normal mammography, but it is not the signal that allows for classification of 

mammograms after a half second of exposure (although in clinical practice where viewing 

times are longer it is, especially with architectural distortion an often used signal).  

The lower panel of Figure 7 reveals what might seem like a counterintuitive finding from 

the same experiment. Radiologists were able to discriminate normal from abnormal even 

when images were taken from the contralateral breast of a woman with breast cancer. The 

signal appears to be weaker (d’ = 0.6) but it is clearly reliable as can be seen by noting that 

the ROC curves for all of the individual observers (dashed lines) lie above the chance 

diagonal. Since no lesion is present in the image, it is clear that performance cannot be 

based on a lucky fixation on a mass. In a related experiment, small but statistically 

significant signals were found when the stimuli were square sections of parenchyma that 

did not contain an abnormality, regardless of whether the sections came from the ipsilateral 

or contralateral breast (Evans, 2016). 

The presence of a signal in the contralateral breast tells us that the global gist signal 

probably does not arise from the effects of overt cancer in the breast tissue. Rather, these 

findings suggest that something else about being a patient with or at risk for cancer is 

correlated with the appearance of the parenchyma. Converging evidence for this view 

comes from computer-based texture analysis. For example, Gierach et al. (2014)  found 

that a Bayesian Artificial Neural Network (BANN) algorithm can be trained to discriminate 

tissue from women who have a BRCA1/2 mutation status that puts them at higher risk of 

cancer. As with the global gist measure, this measure is not related to the measurement of 

density (Li, 2014). Presumably, the genetic make-up of the patient has an influence, not 



only on the probability of developing a cancer but on the structure, and thus the appearance, 

of the tissue. Those genetic effects will not be restricted to the breast that has the cancer. 

They can be manifest in the contralateral breast as well (Wang, 2017). 

If the global gist signal in mammography is not tied to the visible presence of cancer and 

if it could be related to the patient’s underlying predisposition to develop cancer, it could 

be an indication of risk before any cancer is visible.  

 

Figure 8: A small global gist signal can be found in images acquired three years before the 
diagnosis of cancer. Dashed lines represent empirical ROC curves for each observer, derived from 
the rating scale data. The thicker, solid line is the average result. 

  

Figure 8 shows evidence that the global gist might, indeed, function a novel ‘biomarker’ 
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for cancer risk, detectable in women prior to the time that they develop visible signs of the 

disease (Schill, 2017). The figure shows data from 9 British radiologists. They viewed 58 

bilateral mammograms that had been acquired 3 years prior to the mammograms that had 

revealed visible and actionable cancer. Thus, in this version of the experiment the 

“abnormal” cases were “normal” mammograms from patients who would later develop 

breast cancer. These cases were randomly mixed with 58 normal mammograms (no disease 

for 3 years after the images were acquired). As in the previous experiments, each bilateral 

mammogram was presented briefly (500 msec) and masked with the outline of the same 

mammogram. Participants were asked to rate the likelihood of abnormality of the images 

on the 0-100 scale. Rating scale data were converted to ROC curves and d’ was calculated. 

The ability to distinguish normal from abnormal (cancer priors) was small (d’ = 0.2) but 

statistically significant (p < 0.001). Again, it can be seen that the ROC curves of the 

individual observers lie above (albeit, not far above) the chance line. Neither results from 

a few salient cases nor breast density can account for this ability to classify images at above 

chance in patients who would not develop visible signs of cancer until 3 years. These 

findings raise the possibility that a global gist signal could be a clinically useful tool. If 

detected by an expert or extracted by an algorithm, it might serve as an early warning sign, 

identifying women who should be followed more closely than the others in their cohort. 

Indeed, this signal may be related to the texture measures that are being investigated by 

computer scientists using convolutional neural network methods (e.g., Kallenberg, 2016; 

Nielsen, 2014). 

Gist in General 



This chapter has focused on a global gist signal in mammography (with a brief mention 

of a similar signal in chest radiographs  and cervical cancer screening). This simply 

reflects the current state of research in this area. There is no reason to think that there are 

no other gist signals present in other sets of medical images. After all, gist processing is a 

routine part of normal visual perception and it is likely that it is a routine part of normal 

medical image perception. In any domain where you develop  visual expertise, you 

probably develop some learned gist expertise for the stimuli in that domain. Any regular 

at a sports bar will be able to glance at the TV and will know, at the very least, what sport 

is being played. Any radiologist will know where in the body an image comes from. With 

more expertise, more information will come out of the initial glimpse at a stimulus. You 

may have an instant hunch as to whether this restaurant will suit your needs. That hunch 

may not be perfect but you will probably beat chance. Radiologists will have similar 

hunches about stimuli in their domain of expertise. It should not surprise us that we may 

be unable to verbalize the reason for the hunch. Most perceptual processing goes on 

‘under the hood’ without our conscious access to the processes that got us to the answer. 

You infer a 3D world from 2D images on your retinae with only the dimmest idea of how 

this is accomplished. You hear speech as a succession of discrete words, even though the 

sound stream lacks dividing moments of silence. This is what Helmholtz dubbed 

“unconscious inference” (Helmholtz, 1924). The semantic aspects of gist processing are, 

perhaps, best thought of as another of these occasions where the mind makes meaning out 

of the current stimulus based on its extensive prior experience.  

 



It is worth noting that there is no guarantee that the meaning we make is the right 

meaning. The world of bias and stereotype, for example, also makes use of a set of snap 

judgments that can have a decidedly gist-like feel to them. It may well be that some rapid 

decisions about medical images are just as flawed as a snap judgment about a job 

applicant, based on race or gender. Scientific research can help us to determine if a hunch 

about a medical image is a valuable inference or just a leap to a premature conclusion. If 

an inference is meaningful, it can be exploited in the service of better patient care. That 

might mean making clinicians aware of the circumstances in which a ‘hunch’ may be 

based on useful underlying information. Alternatively, it could suggest signals that can be 

exploited by computer algorithms to guide more effective computer-aided detection 

systems. 

  



 

References 

Alvarez,	G.	A.	(2011).	Representing	multiple	objects	as	an	ensemble	enhances	visual	

cognition.	Trends	Cogn	Sci,	15(3),	122-131.		

Ariely,	D.	(2001).	Seeing	Sets:	Representation	by	statistical	properties.	Psych	Science,	

12(2),	157-162.		

Bertram,	R.,	Helle,	L.,	Kaakinen,	J.	K.,	Svedstrom,	E.	(2013).	The	effect	of	expertise	on	

eye	movement	behaviour	in	medical	image	perception.	PLoS	One,	8(6),	

e66169.		

Biederman,	I.	(1972).	Perceiving	real-world	scenes.	Science,	177(43),	77-80.		

Biederman,	I.,	Glass,	A.	L.,	Stacy,	E.	W.	(1973).	Searching	for	objects	in	real-world	

scenes.	J	Exptl	Psych,	97,	22-27.		

Biederman,	I.,	Mezzanotte,	R.	J.,	Rabinowitz,	J.	C.	(1982).	Scene	perception:	Detecting	

and	judging	objects	undergoing	relational	violations.	Cognitive	Psychol,	14,	

143-177.		

Brady,	T.	F.,	Shafer-Skelton,	A.,Alvarez,	G.	A.	(2017).	Global	Ensemble	Texture	

Representations	are	Critical	to	Rapid	Scene	Perception.	J	Exptl	Psych:	Human	

Percep	Performance,	43(6),	1160-1176.		

Carmody,	D.	P.,	Nodine,	C.	F.,	Kundel,	H.	L.	(1981).	Finding	lung	nodules	with	and	

without	comparative	visual	scanning.	Percept	Psychophys,	29(6),	594-598.		

Castelhano,	M.	S.,	Henderson,	J.	M.	(2007).	Initial	Scene	Representations			Facilitate	

Eye	Movement	Guidance	in	Visual	Search.	J	Exptl	Psych:	Human	Perception		

Performance,	33(4),	753-763.		

Chong,	S.	C.,	Treisman,	A.	(2003).	Representation	of	statistical	properties.	Vision	Res,	

43(4),	393-404.		

Crick,	F.	(1984).	Function	of	the	thalamic	reticular	complex:	The	searchlight	

hypothesis.	Proc	Natl	Acad	Sci,	81,	4586-4590.		

Crick,	F.,	Koch,	C.	(1990).	Towards	a	neurobiological	theory	of	consciousness.	Sem	

Neurosciences,	2,	263-275.		

Drew,	T.,	Evans,	K.,	Vo,	M.	L.-H.,	Jacobson,	F.	L.,	Wolfe,	J.	M.	(2013).	Informatics	in	

Radiology:	What	Can	You	See	in	a	Single	Glance	and	How	Might	This	Guide	

Visual	Search	in	Medical	Images?	RadioGraphics,	33,	263–274.		

Drewes,	J.,	Trommershauser,	J.,	Gegenfurtner,	K.	R.	(2011).	Parallel	visual	search	and	

rapid	animal	detection	in	natural	scenes.	J	Vision,	11(2).	PAGES!!	

Ebner,	L.,	Tall,	M.,	Roychoudhury,	K.,	Ly,	D.	L.,	Roos,	J.	E.,	Napel,	S.,	et	al.	(2016).	

Variations	in	the	Functional	Visual	Field	for	Detection	of	Lung	Nodules	on	

Chest	Computed	Tomography:	Impact	of	Nodule	Size,	Distance,	and	Local	

Lung	Complexity.	Med	Phys,	NEED	VOLUME	&	PAGES	

Egeth,	H.	E.,	Virzi,	R.	A.,	Garbart,	H.	(1984).	Searching	for	conjunctively	defined	

targets.	J	Exptl	Psych:	Human	Percep	Performance,	10,	32-39.		

Ehinger,	K.	A.,	Hidalgo-Sotelo,	B.,	Torralba,	A.,	Oliva,	A.	(2009).	Modeling	search	for	

people	in	900	scenes:	A	combined	source	model	of	eye	guidance.	Visual	

Cognition,	17(6),	945	-	978.		



Evans,	K.,	Haygood,	T.	M.,	Cooper,	J.,	Culpan,	A.-M.,	Wolfe,	J.	M.	(2016).	A	half-second	

glimpse	often	lets	radiologists	identify	breast	cancer	cases	even	when	

viewing	the	mammogram	of	the	opposite	breast	Proc	Nati	Acad	Scie	,	

113(37),	10292–10297.		

Evans,	K.	K.,	Georgian-Smith,	D.,	Tambouret,	R.,	Birdwell,	R.	L.,	Wolfe,	J.	M.	(2013).	

The	gist	of	the	abnormal:	Above-chance	medical	decision	making	in	the	blink	

of	an	eye.	Psychonomic	Bull	Review,	20(6),	1170-1175.		

Evans,	K.	K.,	Treisman,	A.	(2005).	Perception	of	objects	in	natural	scenes:	is	it	really	

attention	free?	J	Exp	Psychol	Hum	Percept	Perform,	31(6),	1476-1492.		

Fei-Fei,	L.,	Iyer,	A.,	Koch,	C.,	Perona,	P.	(2007).	What	do	we	perceive	in	a	glance	of	a	

real-world	scene?	J	Vis,	7(1),	10.	JUST	1	PAGE?	

Freedman,	D.	J.,	Riesenhuber,	M.,	Poggio,	T.,	Miller,	E.	K.	(2002).	Visual	

categorization	and	the	primate	prefrontal	cortex:	neurophysiology	and	

behavior.	J	Neurophysiol,	88(2),	929-941.		

Gierach,	G.	L.,	Li,	H.,	Loud,	J.	T.,	Greene,	M.	H.,	Chow,	C.	K.,	Lan,	L.,	et	al.	(2014).	

Relationships	between	computer-extracted	mammographic	texture	pattern	

features	and	BRCA1/2	mutation	status:	a	cross-sectional	study.	Breast	Cancer	

Res,	16(4),	424.		

Greene,	M.	R.,	Oliva	,	A.	(2008).	Recognition	of	Natural	Scenes	from	Global	

Properties:	Seeing	the	Forest	Without	Representing	the	Trees.	Cognitive	

Psych,	58(2),	137-176		

Greene,	M.	R.,	Oliva,	A.	(2009).	The	briefest	of	glances:	the	time	course	of	natural	

scene	understanding.	Psychol	Sci,	20(4),	464-472.		

Grindley,	G.	C.,	Townsend,	V.	(1968).	Voluntary	attention	in	peripheral	vision	and	its	

effects	on	acuity	and	differential	thresholds.	Quar	J	ExptlPsych,	20(1),	11-19.		

Helmholtz,	H.	v.	(1924).	Treatise	on	Physiological	Optics	(Southall,	Trans.	Trans.	from	

3rd	German	ed.	of	1909,	ed.).	Rochester,	NY:	The	Optical	Society	of	America.	

Henderson,	J.	M.,	Ferreira,	F.	(2004).	Scene	perception	for	psycholinguists.	In:		

Henderson,	J.M.,	Ferreira,	F.	(eds.)	The	interface	of	language,	vision,	and	

action:	Eye	movements	and	the	visual	world.	New	York,	NY:	Psychology	Press.	

pp.	1-58.	

Kallenberg,	M.,	Petersen,	K.,	Nielsen,	M.,	Ng,	A.	Y.,	Pengfei,	D.,	Igel,	C.,	et	al.	(2016).	

Unsupervised	Deep	Learning	Applied	to	Breast	Density	Segmentation	and	

Mammographic	Risk	Scoring.	IEEE	Trans	Med	Imag,	35(5),	1322-1331.		

Koehler,	K.,	Eckstein,	M.	P.	(2017).	Beyond	Scene	Gist:	Objects	Guide	Search	More	

Than	Scene	Background.	J	Exptl	Psych:	Human	Percep	Performance,	43(6),	

1177-1193.		

Krupinski,	E.	A.	(1996).	Visual	scanning	patterns	of	radiologists	searching	

mammograms.	Acad	Radiol,	3(2),	137-144.		

Kundel,	H.,	L.	(2007).	How	to	minimize	perceptual	error	and	maximize	expertise	in	

medical	imaging.	Proc	SPIE	Med	Image,	XX,	xx-xx.	NEED	REAL	REF	

Kundel,	H.	L.,	La	Follette,	P.	S.,	Jr.	(1972).	Visual	search	patterns	and	experience	with	

radiological	images.	Radiol,	103(3),	523-528.		

Kundel,	H.	L.,	&	Nodine,	C.	F.	(1975).	Interpreting	chest	radiographs	without	visual	

search.	.	Radiology,	116,	527-532.		



Kundel,	H.	L.,	Nodine,	C.	F.	(2004).	Modeling	visual	search	during	mammogram	

viewing.	Proc	SPIE	Med	Image,	XX,	xx-xx.	NEED	REAL	REF	

Kundel,	H.	L.,	Nodine,	C.	F.,	Krupinski,	E.	A.,	Mello-Thoms,	C.	(2008).	Using	gaze-

tracking	data	and	mixture	distribution	analysis	to	support	a	holistic	model	

for	the	detection	of	cancers	on	mammograms.	Acad	Radiol,	15(7),	881-886.		

Li,	F.	F.,	VanRullen,	R.,	Koch,	C.,	Perona,	P.	(2002).	Rapid	natural	scene	categorization	

in	the	near	absence	of	attention.	Proc	Natl	Acad	Sci,	99(14),	9596-9601.		

Li,	H.,	Giger,	M.	L.,	Lan,	L.,	Janardanan,	J.,	Sennett,	C.	A.	(2014).	Comparative	analysis	

of	image-based	phenotypes	of	mammographic	density	and	parenchymal	

patterns	in	distinguishing	between	BRCA1/2	cases,	unilateral	cancer	cases,	

and	controls.	J	Med	Imag,	1(3),	031009.	

Maljkovic,	V.,	Nakayama,	K.	(1994).	Priming	of	popout:	I.	Role	of	features.	Memory	&	

Cognition,	22(6),	657-672.		

Navon,	D.	(1977).	Forest	before	the	trees:	The	precedence	of	global	features	in	

visual	perception.	Cognitive	Psych,	9,	353-383.			

Neisser,	U.	(1967).	Cognitive	Psychology.	New	York:	Appleton,	Century,	Crofts.	

Nielsen,	M.,	Vachon,	C.	M.,	Scott,	C.	G.,	Chernoff,	K.,	Karemore,	G.,	Karssemeijer,	N.,	et	

al.	(2014).	Mammographic	texture	resemblance	generalizes	as	an	

independent	risk	factor	for	breast	cancer.	Breast	Cancer	Res,	16(2),	R37.		

Nodine,	C.	F.,	Kundel,	H.	L.,	Lauver,	S.	C.,	Toto,	L.	C.	(1996).	Nature	of	expertise	in	

searching	mammograms	for	breast	masses.	Acad	Radiol,	3(12),	1000-1006.		

Nordfang,	M.,	Wolfe,	J.	M.	(2014).	Guided	Search	for	Triple	Conjunctions	Atten	

Percept	Psychophys,	76(6),	1535-1559.		

O'Regan,	K.	(1992).	Solving	the	'real'	mysteries	of	visual	perception.	The	world	as	an	

outside	memory.	Canad	J	Psych,	46,	461-488.		

Oliva	,	A.	(2005).	Gist	of	the	scene.	In:	Itti,	L.,	Rees,	G.,Tsotsos,	J.	(eds).	Neurobiology	

of	Attention.San	Diego,	CA:	Academic	Press	/	Elsevier.	pp.	251-257.	

Oliva,	A.,	Schyns,	P.	G.	(1997).	Coarse	blobs	or	fine	edges?	Evidence	that	information	

diagnosticity	changes	the	perception	of	complex	visual	stimuli.	Cognit	

Psychol,	34(1),	72-107.		

Oliva,	A.,	Torralba,	A.	(2001).	Modeling	the	shape	of	the	scene:	A	holistic	

representation	of	the	spatial	envelope.	Intl	J	Computer	Vision,	42(3),	145-

175.		

Oliva	,	A.,	Torralba,	A.	(2006).	Building	the	gist	of	a	scene:	The	role	of	global	image		

features	in	recognition.	Prog	Brain	Res,	155,	23-36.		

Posner,	M.	I.	(1980).	Orienting	of	attention.	Quart	J	Exptl	Psych,	32,	3-25.		

Potter,	M.	C.,	Faulconer,	B.	A.	(1975).	Time	to	understand	pictures	and	words.	

Nature,	253,	437-438.		

Roskies,	A.	(1999).	The	binding	problem.	Neuron,	24(1),	7-9.		

Ross,	M.	G.,	Oliva,	A.	(2010).	Estimating	perception	of	scene	layout	properties	from	

global	image	features.	J	Vision,	10(1),	1-25.		

Sanders,	A.	F.,	Houtmans,	M.	J.	M.	(1985).	Perceptual	modes	in	the	functional	visual	

field.	Acta	Psychologica,	58,	251-261.		

Sanocki,	T.,	Epstein,	W.	(1997).	Priming	spatial	layout	of	scenes.	Psychol	Sci,	8,	374-

378.		



Schill,	H.,	Culpan,	A.-M.,	Wolfe,	J.	M.,	Evans,	K.	K.	(2017).	Detecting	the	“gist”	of	breast	

cancer	in	mammograms	three	years	before	the	cancer	appears.	Paper	

presented	at	the	Annual	Meeting	of	the	Vision	Science	Society,	May	2017.	IS	

THERE	A	PAPER	OR	PROC?	

Scutt,	D.,	Lancaster,	G.	A.,	Manning,	J.	T.	(2006).	Breast	asymmetry	and	

predisposition	to	breast	cancer.	Breast	Cancer	Res,	8(2),	R14.	

Sigala,	N.,	Logothetis,	N.	K.	(2002).	Visual	categorization	shapes	feature	selectivity	in	

the	primate	temporal	cortex.	Nature,	415(6869),	318-320.	

Swensson,	R.	G.	(1980).	A	two-stage	detection	model	applied	to	skilled	visual	search	

by	radiologists.	Percep	Psychophys,	27(1),	11-16.		

Thorpe,	S.	J.,	Gegenfurtner,	K.	R.,	Fabre-Thorpe,	M.,	Bulthoff,	H.	H.	(2001).	Detection	

of	animals	in	natural	images	using	far	peripheral	vision.	Eur	J	Neurosci,	

14(5),	869-876.	

Treisman,	A.	(1985).	Preattentive	processing	in	vision.	Computer	Vision,	Graphics,	

Image	Proc,	31,	156-177.		

Treisman,	A.	(1996).	The	binding	problem.	Curr	Opinion		Neurobiol,	6,	171-178.		

Treisman,	A.	(1998).	Feature	binding,	attention	and	object	perception.	Philos	Trans	

R	Soc	Lond	B	Biol	Sci,	353(1373),	1295-1306.		

Treisman,	A.,	Gelade,	G.	(1980).	A	feature-integration	theory	of	attention.	Cognit	

Psych,	12,	97-136.		

Tversky,	A.,	Kahneman,	D.	(1983).	Extensional	versus	intuitive	reasoning:	The	

conjunction	fallacy	in	probability	judgment.	Psycholog	Rev,	90(4),	293-315.		

Vo,	M.	L.-H.,	Wolfe,	J.	M.	(2015).	The	role	of	memory	for	visual	search	in	scenes.	Ann	

NY	Acad	Sci,	1339,	72–81.		

von	der	Malsburg,	C.	(1981).	The	correlation	theory	of	brain	function.	Max-Planck-

Institute	for	Biophysical	Chemistry,Göttingen,	Germany,	Internal	Report	81–2.,	

Reprinted	in	Models	of	Neural	Networks	II	(1994).Domany,	E.	van	Hemmen,	

J.L.,	Schulten,	K.	(eds).	Berlin,	Germany:	Springer.		

Wagemans,	J.	(1997).	Characteristics	and	models	of	human	symmetry	detection.	

Trends	Cogn	Sci,	1(9),	346-352.		

Wang,	J.,	Shidfar,	A.,	Ivancic,	D.,	Ranjan,	M.,	Liu,	L.,	Choi,	M.	R.,	et	al.	(2017).	

Overexpression	of	lipid	metabolism	genes	and	PBX1	in	the	contralateral	

breasts	of	women	with	estrogen	receptor-negative	breast	cancer.	Int	J	

Cancer,	140(11),	2484-2497.		

Wolfe,	J.	M.	(1994).	Guided	Search	2.0:	A	revised	model	of	visual	search.	Psychonom	

Bull	Rev,	1(2),	202-238.		

Wolfe,	J.	M.	(2003).	Moving	towards	solutions	to	some	enduring	controversies	in	

visual	search.	Trends	Cogn	Sci,	7(2),	70-76.		

Wolfe,	J.	M.	(2007).	Guided	Search	4.0:	Current	Progress	with	a	model	of	visual	

search.	In:	Gray,	W.	(ed),	Integrated	Models	of	Cognitive	Systems.New	York,	

NY:	Oxford	Press.	pp.	99-119.	

Wolfe,	J.	M.,	Bennett,	S.	C.	(1997).	Preattentive	Object	Files:	Shapeless	bundles	of	

basic	features.	Vision	Res,	37(1),	25-43.		

Wolfe,	J.	M.,	Cave,	K.	R.	(1999).	The	psychophysical	evidence	for	a	binding	problem	

in	human	vision.	Neuron,	24(1),	11-17.		



Wolfe,	J.	M.,	Cave,	K.	R.,	Franzel,	S.	L.	(1989).	Guided	Search:	An	alternative	to	the	

Feature	Integration	model	for	visual	search.	J	Exp	Psych:Human	Percep	Perf,	

15,	419-433.		

Wolfe,	J.	M.,	Horowitz,	T.	S.	(2017).	Five	factors	that	guide	attention	in	visual	search.	

Nature	Human	Behav,	1,	0058.	

Wolfe,	J.	M.,	Palmer,	E.	M.,	Horowitz	,	T.	S.	(2010).	Reaction	time	distributions	

constrain	models	of	visual	search.	Vision	Res,	50,	1304-1311.		

Wolfe,	J.	M.,	Vo,	M.	L.-H.,	Evans,	K.	K.,	Greene,	M.	R.	(2011).	Visual	search	in	scenes	

involves	selective	and	non-selective	pathways.	Trends	Cogn	Sci,	15(2),	77-84.		

Zheng,	B.,	Sumkin,	J.	H.,	Zuley,	M.	L.,	Wang,	X.,	Klym,	A.	H.,	Gur,	D.	(2012).	Bilateral	

mammographic	density	asymmetry	and	breast	cancer	risk:	a	preliminary	

assessment.	Eur	J	Radiol,	81(11),	3222-3228.		

		
 


