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ABSTRACT: Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of
produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze
dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a
function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal
way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very
difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to
accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative
approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the
system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific
information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive
manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated
on a long equilibrium atomistic folding simulation of HP3S protein. We have determined the optimal folding RC - the
committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively
accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free
energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path
times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows
linear with time as for simple diffusion. The free energy profile allowed us to obtain a direct rigorous estimate of the pre-

exponential factor for the folding dynamics.

1. INTRODUCTION

Due to advances in computer hardware and simulation
methodology, it is becoming increasingly easier to generate
large simulation data sets of complex molecular systems, with a
prominent example being the long equilibrium trajectories of
fast folding proteins.”” Because of the complexity of dynamics
and high-dimensionality of the resulting trajectories, the
generation of many trajectories per se is not sufficient to
provide full scientific insight. Eventually it becomes necessary
to synthesize the data into as faithful as possible a picture of the
process of interest. Given the growing size and complexity of
simulations, analysis and interpretation of such data are widely
recognized as fundamental bottlenecks in the application of
atomistic simulations.>~°

A fundamental way to analyze a simulation is to determine
the underlying free energy landscape, i.e., the free energy as a
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function of one or more reaction coordinates (RCs), collective
variables (CV), or order parameters.””’ ' Generally, one is
interested in finding free energy minima or metastable states,
pathways, transitions states (TS), and free energy barriers. The
major difficulty in such an analysis is the selection of
appropriate RCs. A poorly chosen RC can result in a
misleadingly simple free energy landscape with missing minima
and the absence or underestimation of barriers.”” Experience
has shown that RCs chosen based on intuition or using
common methods such as principal component analysis (PCA)
are usually suboptimal. Hence a large number of methods have
been suggested to determine good RCs or CVs in an
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Figure 1. Free energy profiles (a, ¢, e) and Z¢, profiles (b, d, f) for different RCs. To apply the committor validation test, coordinate r is first
transformed to the committor as a function of this coordinate r — q(r) using the Markov state model formalism.”*” Then Zc,(q(r), At) profiles are
computed for At/At, = 1, 4, 4% -+, 4% The closer Zc1(q(r), At) to Nyg = 73 is, the more optimal coordinate r is. For the optimal coordinate or
committor Z¢,(g, At) = Ny. For suboptimal coordinates Z¢,(q(r), Aty) > Nyp or —In Z¢,(q(r), Aty) < —In Nyp. As At increases —In Z¢,(g(r), At)
increases as well and reaches the limiting values of —In N, for large At. a and b) the C, root-mean-square deviation from the native structure. c and

d) the fraction of native contacts. e and f) putative RC obtained via the nonparametric optimization after 200 iterations.

”

automated and unbiased way."
refs 5, 6, 10, and 18.

Optimal RCs are an important class of RCs, which are
selected in an optimal way so that the corresponding diffusive
model can be used to compute some properties of the
dynamics exactly.” For equilibrium dynamics between two
states (e.g., protein folding) such an optimal RC is known as
the committor or py in the context of protein folding
dynamics. p; equals the probability to fold before unfolding,
starting from the current position. To define it explicitly,
consider a system where the evolution of probability density
P(X, t) is described by the Fokker—Planck (diffusion) equation
corresponding to the overdamped Langevin equation

OP(X, t)/ot = V-[e PPDX)V (P Pp(X, 1))]

8,9,11—17 .
7 For recent reviews see

where X denotes the position in multidimensional config-
uration space, U is the potential energy, D is the diffusion
tensor, # = 1/(kT), k is the Boltzmann constant, and T is
temperature. Given two boundary states A and B, the
committor, g(X), is the solution of the adjoint equation'”*’
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V[ D(x)Vq(x)] = 0 (1)
with boundary conditions g =0 for X € JAand g =1 for X €
0B. The committor is thus a complex, high-dimensional
function, which is the solution to the high-dimensional partial
differential equation. It has been determined accurately only for
a small number of low-dimensional model systems.”'
Determining the committor for a realistic complex system of
interest is a very difficult unsolved problem. Moreover, in
practice, one needs to determine the committor from a long
equilibrium trajectory, rather than from U(X) and D(X). While
a number of approaches have been suggested to determine the
committor,” they all have serious drawbacks. In particular,
putative RCs determined for realistic systems cannot pass
proposed committor validation tests.”*” Here we present a
solution to this important problem. We describe an approach
that accurately determines the committor, so it can pass the
validation tests, and illustrate its performance by analyzing a
long equilibrium protein folding trajectory.
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Figure 2. Optimization of RC for HP3$ double mutant. The free energy profile (a) and Z, profiles (b) for RC r obtained with the nonparametric
approach. While RC r is close to the committor it still deviates from it. The free energy profile (c) and Z, profiles (d) for RC q obtained with the
adaptive nonparametric approach. RC q closely approximates the committor. Z¢,(r, At) are computed for At/At, = 1, 4, 42, 48, Solid black lines

on (b) and (d) show Z¢,(r, At).

2. METHOD

2.1. Nonparametric Variational Optimization of RCs.
Variational approaches appear to be most promising for RC
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Figure 3. a) Two identical copies of the RC are joined into a circle in
order to eliminate boundaries without modifying the RC. The idea is
similar in spirit to the method of images in electrostatics. A and B
denote boundary states, while ¢, d, e denote some states on the RC.
Numbers show the values of the RC for the boundary states A and B.
b) Schematic representation of the multivalued character of the
optimal RC. Its value increments by 2 every time one goes around the
full circle. It is analogous to a multivalued angle, whose value
increments by 27, ie., z ~ ¢/x.

optimization.” A functional form (FF) with many parameters
R(X, a;) is suggested as an approximation to an RC. One
numerically optimizes the parameters «; by optimizing a
particular functional, for example, the probability of being on a
transition path,>*> the likelihood functional,'” the cut
profiles,”*** or the total squared displacement.””** Here we
consider the last one. Given a long equilibrium multidimen-
sional trajectory X(kAt,), where At is the trajectory sampling
interval, one computes the reaction coordinate time-series
r(kAty) = R(X(kAt,), @;). Here and below r defines an arbitrary
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reaction coordinate, while q is reserved for the committor.
Given two boundary states A and B, the optimal coordinate
between them (the committor) is the one that provides a
minimum to the total squared displacement Ar* = Y, [r(kAt, +
Aty) — r(kAty)]% under the constraints that r(k € A) = 0 and
r(k € B) = 1, i.e,, the boundary states A and B map to 0 and 1,
respectively. It is straightforward to prove this principle by
assuming that the system dynamics is described by a Markov
state model. The total squared displacement equals Ar* =
NY,Pi(ADP(r; r)? where P,(At) is the transition
probability matrix from state i to state j after At, P; is the
equilibrium probability, N is the total number of snapshots in
the trajectory, and r; is the position of microstate i on the RC.
Differentiating with respect to r, and assuming the detailed
balance P;(At)P; = Py(At)P, one obtains the following
equation for committor g

> P (At)(q, - q,) =0
j (22)

(2b)

Note that the assumption that systems dynamics is described by
a Markov state model is used only for the derivation of
equations. One does not need to perform the actual
construction of such a model, which means that this
assumption does not restrict the applicability of the algorithm.

The theoretical minimum value of the functional, attained for
r = g, equals Ag® = 2N,,”* where N, is the total number of
transitions from state A to B. Thus, if during RC optimization
Ar*/2 reaches N, it follows that the putative RC equals the
committor. During optimization of an RC for a finitely sampled
system it is possible to obtain Ar*/2 < Ny, i.e., a value of the
functional that is lower than the theoretical lower bound. In this
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case we say that the putative RC overfits the trajectory. Because
of the usage of many fitting parameters the RC starts to
approximate the statistical noise due to limited sampling rather
than the actual dynamics.

A major weakness of these approaches is that it is difficult to
suggest a good FF approximating the RC. The difficulty
becomes apparent if one remembers that such an RC should be
able to accurately project a few million snapshots of a very high-
dimensional trajectory. In particular, it implies an extensive
knowledge of the system, and that such a FF is likely to be
system specific.

Recently we have suggested a nonparametric approach,
which bypasses the difficult problem of finding an appropriate
FE."? Since Ar* depends explicitly only on the RC time-series
r(kAt,), one may directly optimize the values of r(kAt,) rather
than the parameters @; of the FF R(X, a,).

However, r(kAt,) values cannot be varied independently of
each other,'” because points close in the original multidimen-
sional space should have close projections (R(X) is a
continuous function), ie., if X(iAty) ~ X(jAt,), then r(iAty)
~ r(jAty). To vary r(kAt,) in an appropriate, concerted way,
one improves r(kAt,) in the following iterative manner:
' (kAty) = f(r(kAty), y(kAty)), where r'(kAt,) is the updated
values of the RC time-series, y(kAt,) is the time-series of a
randomly chosen coordinate of the original multidimensional
space X, and f(x, y) is a low degree polynomial. If the system
obeys some symmetry (e.g, the rotational and translational
symmetries for biomolecules), then the RC should obey the
same symmetry. A simple way to ensure this is to use as y(kAt)
collective variables that respect the symmetry. For analysis of
protein dynamics, one can use distance time-series between
randomly chosen pairs of atoms. Another possibility is to use
time-series of sin or cos of a randomly selected dihedral angle.
The flowchart of the algorithm is provided in Figure 7 in the
Appendix.

The idea has been successfully tested on an extensively
sampled SO dimensional model system, with a trajectory of 10°
steps containing 989 transitions (N,;)."> After 9100 iterations
Ar*/2 reached 988.9. Continuation of the optimization for
100000 iterations in total insignificantly decreased Ar?/2 to
986.5, indicating that no notable overfitting is possible and that
the putative RC should be very close to the committor, which
was confirmed by applying the committor validation tests.””””
The optimization has improved the seed RC, even though the
difference between the corresponding free energy profiles at the
top of the TS was only 0.05 kT, ie., the approach is very
sensitive.

However, it is not always possible in practice to perform an
extensive sampling of a system of interest. A typical example is
the simulation of protein folding, where it is very computa-
tionally expensive to obtain a handful of folding—unfolding
events.”” In this case the direct application of the simple
approach described above leads to Ar*/2 < N, which is an
indication of severe overfitting. Here we describe the approach,
which allowed us to determine the optimal RC or committor
for a typical realistic system of interest, namely the atomistic
folding trajectory of a double mutant of HP3S.

Briefly, the idea is as follows. As we show below, an RC is
likely to be optimized in a nonuniform manner: it is easier to
optimize TSs rather than free energy minima. Consequently,
some parts of the RC may be optimized more than others. For
an extensively sampled system, where overfitting is not possible,
this does not present a problem. As some, more optimized
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parts of the RC reach their optimal values, they cannot be
improved further, and the only way to decrease the functional is
to optimize the suboptimal parts of the RC. For a system with
limited sampling, where overfitting is possible, one needs to
find a way to make the optimization uniform and stop it as soon
as all the parts of the RC are optimal. Using the protein folding
trajectory as an example, we first describe how one can detect
the time scales and the regions of the putative RC which are
most suboptimal. Then we describe how one can improve
uniformity of optimization by focusing on these suboptimal
regions and time scales.

2.2. Identification of Suboptimal Spatiotemporal
Regions. Suboptimal spatiotemporal regions can be detected
by using Z,(r, At) cut-profiles, an important quantity for RC
analysis, which can be straightforwardly computed from RC
time-series r(kAt,) and whose properties we briefly summarize
below (more details are provided in the Appendix).”** The
integral /Z,(r, At) dr equals Ar*(At)/2, hence Z,(r, At) can
be interpreted as a position dependent density of the Ar*(At)/
2 functional. To optimize the entire RC one needs to minimize
the average of Z.,(r, At), and to optimize the RC in a
particular region one needs to minimize Zc,(r, At) in that
region. For a suboptimal RC, Z¢,(r, At) values generally
decrease to the limiting value of Ny, as At increases. The larger
the difference between Z,(r, At;) and Z¢,(r, At,) the less
optimal the RC around r. For the optimal RC or the committor
Zc1(q, At) = Nyp, which can be used as a committor validation
test.”” Thus, our aim is to determine an RC time-series r(kAt,),
such that —In Zc,(r, Af) ® — In Ny up to statistical
uncertainty, roughly estimated as 1/,/2N,z.

We consider a long equilibrium folding—unfolding trajectory
of HP35 Nle/Nle double mutant consisting of 1509392
snapshots at 380 K.** The boundary states are defined using
rather stringent criteria to ensure that only the configurations
from the respective basins are obtained: node B in the native
state is defined by the C, root-mean-square deviation (rmsd)
from the native 2f4k pdb structure®” smaller than 1.0 A, and
node A in the denatured state is defined by the C, rmsd greater
than 10.5 A (Figure la). The total number of transitions
between these nodes, determined from the trajectory, is Nyp =
73.

Figure 1 shows the free energy profiles and Z, profiles (the
committor validation test) for two popular conventional RCs,
the rmsd and the fraction of native contacts (Q),”’ and
compares them with the putative RC obtained with the
nonparametric approach starting from the coordinate initialized
to zero. Zc, profiles show that the conventional RCs are far
from being optimal and are worse than the putative RC already
after 200 iterations. The FEP F(r) (Figure le) shows the main
transition state (TS) barrier separating the denatured and
native states and that the native state contains two basins.

After 33700 iterations Ar*/2 has reached the stopping value
of Ny. Figures 2a-b show the FEP and the Z¢,(r, At) profiles,
respectively. As one can see Zc, shows relatively large
variations, especially in the regions around the free energy
minima, ie., the difference between —In Z¢,(r, At) and —In

N, is significantly larger than 1/,/2N,5 ~ 0.08. It means that
while the putative RC is close to the committor (cf. Figure 1), it
still deviates from it. This is due to the following reasons. First,
variability of Zc,(r, At,) along r indicates that the RC is
optimized in a nonuniform way. It is well optimized in the TS
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region, where Z,(r, At,) is constant, and much less so around
the minima.

Consider an analytical equation for the committor along a
single coordinate: dq/dx ~ D(x) exp[F(x)/kT]. Assuming that
D(x) is relatively constant, the equation shows that regions
with high free energy (barriers) get exponentially magnified
compared to the regions with low free energy (minima). When
one tries to update the RC using a low degree polynomial +’ =
f(r, y), it is difficult to simultaneously update the entire RC on
two very different scales. Increasing the polynomial degree
might help; however, a more efficient solution is to update the
segments with vastly different scales separately. For example
one may use different low degree polynomials for different
segments. Second, the fact that —In Z¢,(r, At,) is higher than
the other —In Z¢,(r, At) around the TS indicates that the latter
are less optimized than the former, e.g., the RC is optimized in
a temporally nonuniform way.

2.3. Improving Spatial Uniformity. To identify such less
and more optimized spatiotemporal segments in an automatic
way, i.e., without user intervention, we suggest the following
procedure. During optimization the variability of Z,(r, At) is
monitored to determine the regions of RC which are less
optimized. Namely, the larger the difference between —In
Zc,(r, At') and —In Z¢,(r, At) for some At > At the less
optimal is the coordinate in the region around r. One finds such
At" > At, for which the nonuniformity of the distance between
% is the largest, where &(r) = Zc,(r, At)/
Zc,(r, At'). Then segments where £(r) > (1—0.02)max, &(r)
are considered to be less optimized. The less and more
optimized segments of the RC are updated using different
polynomials of higher and lower degree, respectively. Here we
used polynomials of fifth and second degree. A polynomial of
lower, fourth, degree was not sufficiently flexible to improve
suboptimal regions. One can also just update the less optimized
segments while keeping the rest of the RC fixed. This simple
procedure improves the spatial uniformity of optimization.

2.4. Improving Temporal Uniformity. Temporal uni-
formity can be improved by optimizing the RC with longer
sampling intervals. However, one cannot simply optimize Ar* =
Silr(kAt + At) — r(kAt)]? with, e.g,, At = 2At,. The optimal
RC corresponding to At > A, differs from that corresponding
to At = At,”” An intuitive way to understand the difference is
to note that when a trajectory is observed with a longer
sampling interval, one may miss the events when the system
visits a boundary node and quickly comes back, thus
underestimating the probability to end up at the boundary.
More formally, if the RC r; satisfies eq 2a for At = Af, then it is
straightforward to show that 7; satisfies the same equation for
At = kAty, where P,(kAt) = Pk(At)ji. However, the equation is
not satisfied by the boundary nodes, which satisfy eq 2b. In
particular, eq 2a means that the average displacement from
every point is zero, and for a boundary point it is not true: all
points are either smaller or larger than it.

One way to overcome this problem is to eliminate
boundaries without modifying the RC by joining two identical
copies of the RC into a circle as shown in Figure 3a.*** When
at states A or B, the system can follow either of the RC copies
with equal probability. Then the average displacement from
points A and B is zero due to symmetry, i.e., eq 2a is valid for all
points. The optimal RC (the solution of eq 1 or eq 2a) on a
circle is a multivalued function.’ For example, consider
diffusion on a circle with constant U(¢) and D(¢), where ¢

the profiles
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is the angle. Eq 1 reads 0°q/d¢* = 0, with the solution q = ¢/7,
meaning ¢ is multivalued similar to ¢: after making the full
circle q is incremented by 2 (2 RCs of length 1).

In practice this multivalued RC on a circle, denoted by z
(Figure 3b), is constructed from single valued RC r as follows.
Consider a circle with a perimeter of 2 (radius 1/x) with
coordinate z along the perimeter (Figure 3a). States A and B
correspond to points with angle ¢ 7 and ¢ = 0,
correspondingly (Figure 3a). The points divide the circle into
two segments: lower half y° for ¢» € [—7: 0], where z(r) = r and
upper half y' for ¢ € [0: ], where z(r) = 2 — r. These points,
correspondingly, divide the multivalued RC into different
segments or branches z,, (Figure 3b). For each segment z,, one
has the following correspondence: z,,(r) = m + r for even m =
2li.e., for segments on y’, and z,,(r) = m + 1 — r for odd m = 21
+ 1 ie, for segments on y'. The segment number time-series
m(kAt,) is determined from seed RC time-series r(kAt,) as
follows. Whenever the trajectory visits a boundary node, it
selects with equal probability which of the two adjoint segments
it will follow. For example, when the trajectory, currently on
segment z,, visits node B, it selects with equal probability z, or
zy, if it visits node A, it selects between z, and z_,. Once
determined, m(kAt,) are kept fixed during optimization (the
boundary states snapshots do note move), only r(kAt)) can
change. Such constructed multivalued function z satisfies eq 2a
for any value of At, and thus one can optimize Az*(At) =
Yilzmanan (r(kAt + At)) — z,, a0 (r(kAt))]* for any value of
At. Note that AZ*(At)) = Ar*(At).

2.5. Adaptive Nonparametric Optimization. The ideas
described above are combined into a simple optimization
algorithm. Starting with RC initialized to zero, one iteratively
improves the RC by nonparametrically minimizing Az*(At),
using polynomials of fifth and second degrees for less and more
optimized segments of the RC, respectively. Every $ iterations
Zc, profiles are scanned to identify these segments. The
sampling interval At is changed randomly every 50 iterations as
At = 2U%At, where 7 is a uniformly distributed random
number and [---] denotes an integer part. For At > Af,
optimization continues while Az*(At)/2 > 1.15N,;, while for
At it continues while Az*(At,)/2 > N5 The flowchart of the
algorithm is provided in Figure 8 in the Appendix. Figures 2¢-d
show the results obtained with the approach (cf. Figure 1). The
variability of In Zc, is uniformly decreased; it is roughly
bounded by =+0.08, which means that we are close to the
inherent statistical noise, and further improvement of the
results makes little sense.

3. RESULTS
3.1. The FEP as a Function of the Optimal RC. Using the

committor for the analysis and description of the folding
dynamics may not be very convenient as the diffusion
coefficient varies significantly along the coordinate D(q) =
]AB/Peq(q) = Z(q)"'N,p/At, where Peq(q) is the equilibrium
probability or Z,(q) is the corresponding histogram density
computed from q(kAt‘O).s’lg’zo’22 It is more convenient to use a
“natural” coordinate, which we denote as §, where the diffusion
coefficient is constant D(§) = 1 and that is related to the
committor bzr the following monotonous transformation dg/dq
= D(q)7"/2*" Since the transformation is monotonous, the new
coordinate is as good as the committor for the description of
the dynamics. Figure 4 shows the free energy profile F(§) as a
function of §. Note that D(§) = 1 in units where time is
measured in timesteps of 0.2 ns.
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Figure 5. Cumulative distribution of residence times t,,, in the basin g
= 0.863 for different transition paths (symbols). The distribution can
be accurately approximated by a sum of two exponents with two very
different time scales 117e"7%%77% 1 29¢77/513 (line), which suggests
two different pathways.

The free energy profile F(§) is relatively smooth in the
denatured state (D) and the TS, while the native state (N) has
many deep minima and high barriers. It is consistent with
experimental observations that the native state has many
conformational substates.”> The substates differ structurally
only locally. The high barriers are likely due to the compact
structure of the native state: to perform any local conforma-
tional change, the protein needs to partially unfold first.

A single reaction coordinate does not show multiple
pathways explicitly. However, if free energy basins that belong
to different pathways do not overlap, they can serve as

102
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7 107!
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Figure 6. MSD of various RCs as a function of time: (Az*) is shown
by blue squares, (Ag*) is shown by red circles, the MSD of the fraction
of native contacts is shown by yellow crosses, and the MSD of the C,
rmsd from the native structure is shown by green x’s. The line shows
the diffusive dependence 2N,zAt/(NAt,). For small At, when the
system does not yet feel the boundaries, (Ag*) ~ At.

Initialize RC:
set 7(kAtp) to random or 0.*

Compute collective variable y(kAt) to improve RC.
~ For example, y(kAty) = 7;(kAty) - the dis-
tance between randomly selected atoms ¢ and j.

|
Improve RC by combining current RC and y:
P(kAt) = f(r(kDto), y(kAto)).
Coefficients of polynomial f are those that provide
minimum to Ar’? - the total squared displacement.
!
Update RC:
’V'(kAto) = T’(]CAto)
!
Is the putative RC
optimal?
A?‘2 / 2 S N AB
| yes

no

stop

Figure 7. Flowchart outlines the nonparametric RC optimization
algorithm. The algorithm computes the putative RC time-series
r(kAty). * points that belong to the boundary states A and B are
initialized to O and 1, respectively. They do not change during RC
optimization.

fingerprints to distinguish different pathways. For example,
there is a clear separation between distributions of residence
times on each transition path in the deep basin defined by lg—
0.863| < 0.0002 (Figure S). About 29 of a total of 146 pathways

Table 1. Comparison of the Dynamical Quantities Computed from the Diffusive Model and Directly from the Trajectory”

g(a) g(b) Ny,
0 84.5 73 (0.1%)
17 83 75 (2%)
17 68 89 (3%)
36.5 58.6 115 (8%)

38 35 127 (12%)

mfpt, mfpt;, mtpt,,
3034 (0.1%) 1101 (—0.1%) 234 (—4%)
3032 (—3%) 1102 (—2%) 208 (—8%)
2547 (—3%) 962 (—3%) 66 (—13%)
2072 (=7%) 750 (=7%) 10.7 (—1%)
1959 (—11%) 712 (—11%) 7.8 (—13%)

“The numbers show the latter, while percentages in the brackets show the relative difference between the two. Times are given in ns.
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belong to the second distribution with much longer mean
residence times. It suggests that this basin is an intermediate
state, that belongs to a minor pathway.

3.2. The Diffusive Model Reproduces Important
Dynamical Quantities. The profile F(q) with the diffusion
coefficient D(g) or F(§) and D(§) define a diffusive model of
the dynamics projected on the committor. According to the
theory this model should provide a rather accurate description
of folding dynamics of the protein.”'”**** In particular, the
following important dynamical quantities can be computed
exactly: the equilibrium flux J,5 = N,z/(NAt,) where N is the
total number of trajectory snapshots, the mean first passage
times (mfpt), and the mean transition path times (mtpt). Also,
the mean squared displacement grows linearly with time as for
simple diffusive motion.

The quantities were computed as’

1 i® dg /q(B) dg

Nyp @) Zc1(q) i) e FDp(g)At, (3)
NAt, [

mfpt, . = dgP (9)(1 — q) = (1 — q)/

fpt,, No, fo qk,(q q) =1 = q)/] @
NAt, [

mtpt, , = N, fo dqP,(9)q(1 — q) = (q(1 — q))/],,

©)

By selecting two points a and b (a < b) on the committor g,
one can define two new boundary states: A’ contains all the
points with g < 4, and B" contains all the points with b < g. The
optimal RC for the new boundary states can be obtained by
simple rescaling of the original RC:* ¢’ = (4 — a)/(b — a) for a
<q<b;q =0forq<a;and q' =1 for b < q. Hence, the
equilibrium flux, the mfpt, and the mtpt can be computed
exactly between any two such states.

Table 1 compares these quantities computed from the
diffusive model using eqs 3—S5 and directly from the trajectory
for different boundary states along the RC. We selected the
original boundary states and free energy minima. The relative
differences are around the expected statistical error for q of 8%.
The differences can be reduced even further, if one removes
non-negligible systematic bias due to the finite value of the
trajectory sampling interval At, (see Appendix, Table 3).

Figure 6 shows the mean squared displacement (MSD) as a
function of time computed for different RCs. The MSD of the
multivalued optimal RC (z) follows a simple diffusive law, i.e,, it
grows linearly with time (Az*) = 2N, 3At/(NAt,). The MSD of
q follows that of z for small At, when the system does not yet
feel the boundaries, and approaches the limiting value for large
At. The MSD of the other two popular suboptimal RCs, the
fraction of native contacts and the C, rmsd from the native
structure, shows subdiffusive behavior: (Ar?) ~ At* with a ~
0.45 and a ~ 0.35, respectively. This illustrates that one of the
reasons that the dynamics of various protein degrees of
freedom is subdifusive is because these degrees are not optimal
R 52234-36

3.3. The Pre-Exponential Factor. A fundamental problem
in the analysis of protein folding dynamics, and an active area of
research, is the determination of the free energy barrier AF and
the pre-exponential factor kj, which are related to the folding
rate as k; = koe “F/¥ Direct determination of these quantities
from experiment has been hampered by very limited spatial and
temporal resolution. The situation has significantly improved
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recently’’~* e.g, one can now directly estimate the transition

path times by counting single photons. However, the
interpretation of the experiments still assumes a particular
shape of the folding free energy landscape, which cannot be
established in a direct manner. In this sense, the following
quote from Yang and Gruebele*' summarizes the experimental
situation: “Without sufficient knowledge of the critical reaction
coordinate for describing the motion represented by v* [here
ko] it is impossible to relate experimentally determined folding
rates rigorously to computed free energy barriers.”.

Having determined the optimal RC § and the corresponding
FEP F(g), which provide a quantitative description of the
folding dynamics, we are now in a position to rigorously
determine these quantities in a direct manner. We first note
that to uniquely determine the height of the barrier, which is
not invariant to monotonous transformations of RC (compare
F(q) with F(§)), one needs to impose the constraint that the
diffusion coefficient is constant. We estimate k, in three
different ways. Taking the folding barrier of 4kT (Figure 4) and
ki' = 7;= 3054 ns (Table 1) one finds k3" = 55 ns.

Applying the harmonic approximation to the Kramer’s
equation for the mfpt and assuming that the curvature at the
denatured state and the unfolding basin are approximately
equal, one can derive the following estimate ky' = 277,,,,, where
oo = kT/(Dw)? is the autocorrelation decay time at the TS.*
The TS is approximated by a parabola with (w*/2)/kT = 0.023,
leading to ky' = 27 ns.

Assuming diffusive dynamics over the parabolic TS (with the
barrier height over 2kT), Szabo derived the following relation
between the mtpt and k,**

mtpt = (27k,)" In[2¢ In(kz) ] (6)
where y = 0.577 is Euler’s constant. Taking points with § = 38
and § = S5 or § = 36.5 and § = 58.6 as boundaries for
computing the mtpt (Table 1) one finds k;' = 18 ns or k' = 24
ns, respectively. For boundaries at § = 17 and § = 68 or § = 1.7
and § = 83 one finds k;' = 186 ns or ky' = 888 ns, respectively.
As one notes the estimate strongly depends on the choice of
the boundaries.

We argue that the correct choice of boundaries is § = 38 and
4 =55 or § = 36.5 and § = 58.6. Inside these boundaries the
free energy profile is (approximately) parabolic, and thus the
assumptions used to derive eq 6 are satisfied. While the
boundaries are closer to the TS than to the minima of the
denatured and native states, the mfpt between them captures
65% of the folding time. In other words, eq 6 is rather accurate,
if applied to the parabolic part of the TS.

FEPs along suboptimal RCs are rather smooth with no
apparent barriers in the native basin (see, e.g.,, Figures lc and
e), which may lead one to the erroneous conclusions that an
estimate based on eq 6 is valid for boundaries taken far from
the TS, e.g, at the bottoms of the basins. The diffusive model
cannot be used for a quantitative description of the dynamics
projected on such an RC, because the projected dynamics is
subdiffusive. For example, the difference between the mtpt
computed from the diffusive model and from the trajectory for
the number of native contacts RC (Figure 1c) is 1145%.

4. CONCLUDING DISCUSSION

We have presented an approach to determine the optimal RC
or committor for realistic systems with limited sampling. The
approach is nonparametric and can approximate any RC with
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Initialize RC:
set 7(kAtg) to random or 0. *
Determine branches m(kAty).

Compute collective variable y(kAt) to improve RC.
For example, y(kAtg) = 7;;(kAtg) - the dis-
tance between randomly selected atoms ¢ and j.

Every 50 iterations select new At by choosing
with equal probability from [Atg, 2Aty, ..., 512At)
under condition that Az2(At)/2 > 1.15Nap.#

]

Every 5 iterations scan Zg, (r) profiles to deter-
mine suboptimal spatiotemporal regions of RC.

!
Improve RC by combining current RC and y:
r'(kAty) = f(r(kAty), y(kAtp)) using poly-
nomials of 5th and 2nd degree for points from
suboptimal and optimal regions, respectively.
Coefficients of the two polynomials
are those that provide minimum to
AZ?(At) - the total squared displacement.

]

Update RC:
r(kAtg) ' (kAty)

I
Is the putative RC
optimal?
ATZ(AtO)/Q S NAB
lyes

no

stop

Figure 8. Flowchart outlines the adaptive nonparametric RC
optimization algorithm. The algorithm computes the putative RC
time-series r(kAt,). * points that belong to the boundary states A and
B are initialized to 0 and 1, respectively. They do not change during
RC optimization. # for At = At, the condition is Az*(Aty)/2 > Nyp.

high accuracy. It can be readily applied to any system, avoiding
prior analyses required to suggest a good system-specific
functional form approximating the RC. In order to optimize the
RC in a uniform manner we introduced adaptive optimization
over different spatiotemporal regions, which required the
introduction of a multivalued RC.

The approach was applied to the equilibrium folding
trajectory of the HP3S double mutant. The determined RC
closely approximates the committor as was validated by the
optimality criterion — Zc, is constant up to the expected
statistical noise. We have demonstrated that important
dynamical properties - the equilibrium flux, the mean first
passage times, and the mean transition path times between any
two regions on the RC can be computed exactly, up to
statistical uncertainty. The mean squared displacement of the
optimal RC grows linearly with time as for simple diffusion. We
emphasize that no fitting of the parameters of the diffusive
models was employed and that an accurate description is
achieved at the trajectory time scale of 0.2 ns. Using this RC we
obtained a direct rigorous estimate for the pre-exponential
factor of k;' ~ 30 ns.

To determine the optimal RC one needs to specify the
boundary states A and B, which is often done by using order
parameters, e.g., the root-mean-square deviation from the
native structure here. However, such a definition may lead to

3425

poor results in more complex systems, where conventional
order parameters may not be sensitive enough. One possibility
to properly define boundary states in such systems is to use
dominant eigenvectors, determined by the nonparametric
approach.'” While the process of nonparametric optimization
of eigenvectors is not stable, its initial stable phase could be
sufficient to define the boundary states.

The problem of finding an optimal RC for the description of
complex dynamics is not unique to protein folding or molecular
dynamics in general. Consider, for example, the problem of
accurate description, monitoring and prognosis of disease
dynamics. We assume that disease dynamics should be
described stochastically, e.g., due to inherent randomness or
coarse grained/incomplete description. In that case the best
coordinate that describes the progress of the disease (the best
biomarker) between two end states, e.g., healthy and abnormal,
is the committor.”” In particular, it should accurately predict
the odds of positive outcome and the mean time to achieve
that. The proposed approach can be used to construct such a
coordinate from an ensemble of patient trajectories in an
automated way without any disease specific information.

B APPENDIX

Properties of Z¢,(r, At)

Given a long RC time-series r(kAt,), Z,(r', At) equals half the
total length the trajectory makes, when it transits through a
point " on the RC

Ze (', At) = 1/2 ) Ir(At + kAt) — r(kAt)|
k (7)

where Y1 denotes the sum over such k when 1’ is between r(At +
kAt) and r (kAt). This quantity can be computed by
considering every timestep At = Af; of the time-series, every
second timestep At = 2Af,, third, and so forth.

If the RC satisfies eq 2a, then Z¢,(r, Aty) = const.”” If RC
satisfies 2a, then it satisfies 2a with Py(2At)) = Y Py(At)
P(Aty) and Zc,(r, 2At) = Zc,(r, Aty) = const, and so forth.”

Boundary nodes satisfy eq 2b rather than eq 2a, and if
transitions over r’ visit boundary nodes, then Z¢,(r/, At > At,)
# Zc,(r', Aty). To overcome this problem at the boundaries, a
special counting method using the ensemble of transition path
segments has been suggested which restores driftlessness at
boundaries and makes Z, constant everywhere.”” Alternatively
one can combine two identical cozpies of the RC into a circle in
order to eliminate boundaries,>"*” as described in the main text
(Figure 3). In this case the RC is a multivalued function,
denoted as z. Below, for brevity, Z,(r/, At) denotes the Z¢,
profile as a function of the original RC r, while Z¢,(z") denotes
a different Z¢, profile as a function of the multivalued RC z.
Analogously eq 7, given time-series z(kAt), Z¢,(z, At), equals
half the total length the trajectory makes, when it transits
through a point z’ on the RC

Ze (2, At) = 1/2 ) 1z(At + kAt) — z(kAt)l
k (8)

where Y% denotes the sum over such k when z' is between z(At +
kAt) and z(kAt). Z¢,(r', At) is obtained by summing up over
all segments or branches z,,(r') of the multivalued function z,
i.e, by projecting z back to r:
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Table 2. Comparison of the Dynamical Quantities Computed with the Sampling Intervals of 0.001A¢, and At, by Simulating

Diffusion on the Free Energy Profile”

q(a) q(b) Ny

0 84.5 130958 (2%)
1.7 83 134511 (2%)
17 68 157507 (0.7%)
365 58.6 206167 (2%)
38 RN 224917 (2%)

mfpt, mfpty, mtpty,
3284 (—2%) 1159 (—2%) 245 (—12%)
3205 (—3%) 1121 (—2%) 201 (—3%)
2705 (—3%) 990 (—3%) 64 (—7%)
2087 (—2%) 736 (—2%) 12 (—10%)
1910 (—2%) 677 (—2%) 8 (—13%)

“The numbers show the latter, while percentages in the brackets show the relative difference between the two. Times are given in ns.

Zc (1, At) = Z Zc \(z,(r"), At) )

For the optimal RC or the committor such computed Z¢,(r’,
At) = N,p is constant, ie., is independent of #' and At for At
much less than the trajectory length.

In the limit of very small At, Z.,(r, At) = Zy(r)D(r)At,
where Zy(r) ~ e T s the density of trajectory points
around r, F is the free energy, and D is the diffusion coefhicient
(5). The relation can be used to determine the diffusion
coefficient for arbitrary RC. For very large At, Z¢,(r, At) =
N 3. Since for the committor coordinate Z¢, (g, At) is constant
for all At and thus is equal to N,p one can determine the
diffusion coefficient along the committor as D(q) =
Zu(q) "' Nyp/At.

Integrating eq 7 one obtains [Z,(r, At)dr = X, [r(kAt +
At) — r(kAt)]*/2, hence Z,(r, At) can be considered as the
local average density of Ar*/2. Difference between two profiles
Zc,(r, 2At) and Z, (r, At), averaged over some local region, is
proportional to Ar*(2At) — Ar*(At) ~ {(r(t + At) — r(t))(r(t)
— r(t — At))), the correlation between successive displace-
ments. Which means that the closer Z¢,(r, At) profiles for
different At, the closer the correlation is to zero. For the
optimal RC or the committor, Z,(g, At) is constant for all At,
and the correlation is zero. If Z¢,(r, At) < Z¢,(r, Aty) for At >
Aty, then the correlation is negative and the dynamics is
subdiffusive. The larger the difference, the more negative are
correlations and the more suboptimal is the coordinate. If,
alternatively, Z¢,(r, At) > Zc,(r, Aty), then the correlation is
positive and the dynamics is superdiffusive.

Removing Systematic Bias Due to Finite Value of the
Trajectory Sampling Interval At,

Table 1 compares dynamical quantities determined using the
diffusive model with that computed directly from the atomistic
trajectory. Equations for the equilibrium flux, the mfpt, and the
mtpt (eqs 3—5) were derived assuming that the dynamics is
observed with infinitely high temporal resolution. In practice,
however, the trajectory is saved with a finite sampling interval
At,, which means that some of the events, when the system
quickly visits a boundary state and comes back, can be missed.
This may lead to systematic underestimation of the number of
transitions N,p and overestimation of the mfpt and the mtpt.
An accurate way, which removes this systematic bias, is to
compare the estimates for the same value of At, One may
either compare eqs 3—S5 with the results obtained directly from
trajectory in the limit of At; — 0, or one may simulate diffusive
dynamics on the free energy profile F(§) and determine the
equilibrium flux, the mfpt, and the mtpt, when observed with
the sampling interval of At,. We followed the second option.
Diffusive dynamics on the free energy profile F(§) was
simulated using MC with diffusion coefficient D(§) = 1 and a
timestep of 0.001Af,. The simulation length was chosen to be
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much longer than the original trajectory, so that statistical
errors are negligible. Table 2 compares the dynamical quantities
computed with sampling intervals At, and 0.001At, One can
see that, indeed, the systematic differences due to the finite
sampling interval are non-negligible and comparable to the
differences shown in Table 1.

Table 3 compares the dynamical quantities computed by
simulating diffusion on the free energy profile F(§) with that

Table 3. Comparison of the Dynamical Quantities
Computed from the Diffusive Model and Directly from the
Trajectory, Both with the Sampling Interval A"

g(a)  Gb) Ny mfpt,, mfpt;,, mtpty,

0 845 73 3034 (—8%) 1101 (—=5%) 234 (—=5%)
1.7 83 75 3032 (6%) 1102 (—2%) 208 (3%)

17 68 89 2547 (=3%) 962 (—3%) 66 (4%)
365 586 11S 2072 (=1%) 750 (2%) 10.7 (—13%)
38 SS 127 1959 (2%) 712 (5%) 7.8 (—2%)

“The numbers show the latter, while percentages in the brackets show
the relative difference between the two. Times are given in ns.

computed directly from the original atomistic trajectory, both
with sampling interval At,. The differences are now smaller in
comparison to the corresponding differences in Table 1.
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