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Abstract 

Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects 

represents some of the most complex therapeutic challenges and poses a significant financial 

healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by 

restoring the normal tissue function either through stimulating the endogenous tissue repair or 

by using transplantation strategies to replace the missing or defective cells. Stem cells represent 

an essential pillar of regenerative medicine efforts as they provide a source of progenitors or 

differentiated cells for use in cell replacement therapies. Whilst significant leaps have been 

made in controlling the stem cell fates and differentiating them to cell types of interest, 

transitioning bespoke cellular products from an academic environment to off-the-shelf clinical 

treatments brings about a whole new set of challenges which encompass manufacturing, 

regulatory and funding issues. Notwithstanding the need to resolve such issues before cell 

replacement therapies can benefit global healthcare, mounting progress in the field has 

highlighted regenerative medicine as a realistic prospect for treating some of the previously 

incurable conditions.  
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Introduction 

The ultimate goal of regenerative medicine is to heal diseased or injured tissues and organs 

either by replacing them or enhancing their regeneration potential in situ1. Curing the disease 

using innovative regenerative medicine therapies promises to revolutionise the healthcare of the 

future. The need for effective regenerative medicine therapies has been intensified by the 

projections for an increasingly ageing world population and the consequent predicted rise in 

age-associated degenerative diseases2. Against this daunting background, the historical 

precedent of allogeneic transplantation highlights cell replacement as a conceivable approach to 

treating degenerative diseases3. Nonetheless, the large-scale deployment of such an approach 

has been limited by the lack of an adequate supply of cells, as the demand for donated tissues 

and organs by far outweighs the current and future clinical need. The advent of stem cell 

technologies has had a profound impact on the field of regenerative medicine, providing 

exciting new perspectives promising to overcome the existing limitations. Indeed, recent years 

have witnessed tremendous progress towards this goal, with several ongoing clinical trials 

involving stem cell-derived cells for treatment of degenerative diseases. Here, we start by 

providing a brief overview of the main types and characteristics of stem cells as the main 

sources of cells for regenerative medicine therapies. Furthermore, we discuss several examples 

of the development of stem cell-based therapies for currently incurable diseases caused either by 

injury (spinal cord injury), degeneration (Parkinson’s disease) or developmental anomalies 

(Hirschprung’s disease). Finally, based on the current data and lessons learnt from the past and 

current stem cell-based clinical studies, we highlight the main outstanding hurdles hampering 

the translation of stem cell-based cellular therapies into standard clinical practice. 

 

Stem cells as a source of cells for regenerative medicine 

Stem cells are broadly defined as cells that have the ability to replenish their own population 
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(the feature known as self-renewal) and the ability to produce more specialised cell types 

(differentiation)4. These unique features make stem cells an ideal source of cells for regenerative 

medicine, as they allow production of an unlimited number of cells of a particular type that 

could be used to replace the missing or diseased cells in the body. Although by definition all 

stem cells possess the ability to self-renew whilst retaining the ability to differentiate, different 

types of stem cells can be distinguished based on various criteria. For example, according to 

their developmental origin, stem cells can be categorised as either adult or embryonic. The adult 

stem cells are typically found in adult somatic tissues where they maintain tissue homeostasis 

and are hence also termed tissue-specific stem cells. On the other hand, embryonic stem cells 

originate from the early embryos5-7. The adult and embryonic stem cells also differ in their 

ability to give rise to differentiated cell types. Adult stem cell differentiation is typically limited 

to the cell types of the tissue where they reside, a feature known as multipotency. In contrast to 

this, embryonic stem cells have the ability to produce all of the cell types in the body, and this 

broad developmental potential of embryonic stem cells is termed pluripotency5,6. 

 

Multipotent stem cells 

Multipotent stem cells support the life-long tissue regeneration and homeostasis due to their 

ability to produce all of the cell types of their residential tissue or organ. Through seminal work 

of two Canadian scientists, Till and McCulloch, the hematopoietic stem cell was the first 

multipotent stem cell identified, and it remains the best characterised stem cell to date8,9. 

Capable of multilineage differentiation to all of the blood lineages, hematopoietic stem cells 

have to daily replenish billions of cells lost from the hematopoietic system due to the limited 

life-span of specialised blood cells. Hematopoietic stem cells have also provided a paradigm for 

cell replacement therapies. Indeed, the transplantation of hematopoietic stem cells has been 

clinically used since the 1950s as a treatment for blood and bone marrow cancers10. The 
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treatments are based on the ability of transplanted hematopoietic stem cell from a tissue-

matched donor to reconstitute all of the blood cells in a patient whose bone marrow has been 

ablated using irradiation or chemotherapy11,12. 

Another example of a tissue in which a rapid turn-over of specialised cells is 

underpinned by a self-renewing stem cell population is the intestinal system. The intestine is 

one of the fastest renewing tissues in the body, with an entire intestinal epithelium being 

replaced every four to five days, hence warranting a constant production of the differentiated 

cells13. Unlike the hematopoietic stem cells, which are relatively easily accessible and whose 

functional identity can be shown by a transplantation of a single cell, the identification of stem 

cells in the gut relied on the lineage tracing analyses14. Such analyses revealed the intestinal 

stem cell at the apex of the intestinal tissue hierarchy, giving rise to differentiated cell types of 

the gut which carry out their specialised functions15,16. 

In contrast to the rapidly renewing tissues such as blood, gut, and skin, the regenerative 

capacity of some other tissues, such as the central nervous system is less apparent. Nonetheless, 

neural stem cells have been identified in the adult central nervous system, albeit mainly limited 

to restricted regions of the hippocampal dentate gyrus17 and the subventricular zone of the 

lateral ventricular wall18. Harnessing the therapeutic potential of the neural stem cells could be 

possible either through stimulating their regenerative capacity in vivo, or purifying them and 

expanding in vitro prior to the therapeutic applications19. However, given the difficulties in 

isolating neural stem cells from in vivo sources, a promising alternative supply of neural stem 

cells are human pluripotent stem cells, which appear to have the ability to generate large 

numbers of neural stem cells that can be patterned to various sub-types useful for regenerative 

medicine20. 

 

Pluripotent stem cells 
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Defined by the ability to self-renew and give rise to cells from all three embryonic germ layers 

(ectoderm, mesoderm, and endoderm), the two types of pluripotent stem cells with likely 

clinical applications are human embryonic stem cells (hESCs) and human induced pluripotent 

stem cells (hiPSCs). HESCs were first derived in 1998, almost twenty years after the 

establishment of mouse embryonic stem cell lines7. The publication of the seminal paper 

describing the process of derivation of hESCs from donated surplus IVF blastocysts spurred a 

flurry of interest into stem cell research. The ability of hESCs to differentiate into somatic cell 

types in vitro was quickly recognised as an enormous opportunity for basic research, disease 

modelling and, most importantly, as a long-awaited source of cells for regenerative medicine. In 

another remarkable breakthrough in the field, Yamanaka and colleagues generated human 

induced pluripotent stem cells (hiPSCs) by reprogramming somatic cells using only four 

transcription factors21. In addition to alleviating some of the ethical issues associated with the 

derivation of hESCs, reprogramming of somatic cells allows derivation of patient-specific 

pluripotent cells. This, in turn, provides a platform for personalised approach to medicine, be it 

for disease modelling and drug discovery or for the production of patient-specific (and hence 

immuno-compatible) cells for cell replacement therapy (Figure 1). 

 A number of intracellular and cell-surface markers are associated with the 

undifferentiated state of hPSCs and hence used to identify undifferentiated cells in culture. 

These include core pluripotency transcription factors POU5F1 (OCT4) and NANOG, and cell 

surface antigens such as TRA-1-60, TRA-1-81, SSEA3, and SSEA422. However, it should be 

noted that whilst the aforementioned markers can be used to assess hPSC phenotypes, the true 

definition of hPSCs is based on their functional features of self-renewal and differentiation. 

Therefore, assessing whether a cell is a true stem cell should ultimately test its functional 

attributes. This is one of the major difficulties when assessing hPSCs, since their true 

developmental potency can only be demonstrated by placing cells in an environment where they 
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can differentiate to cells from all three parent lineages that go on to generate the complete 

embryo. Equivalent experiments are performed with murine PSCs, whereby the cells are 

injected into a mouse blastocyst, followed by embryo transfer into a pseudopregnant foster 

female. If the injected PSCs are truly pluripotent, they will contribute to all the cell lineages in 

the chimeric mouse, including the germ line. Obviously, ethical principles do not allow this type 

of functional assessment of hPSCs, and alternative in vitro and in vivo assays are used as 

surrogate tests for assessing functional aspects of hPSCs. In particular, the teratoma assay has 

been considered a gold standard test of pluripotency23. The assay entails injecting hPSCs into an 

ectopic site of an immunodeficient mouse. In such an in vivo environment, hPSCs tend to form 

complex tumours (teratomas), containing differentiated cells and haphazardly organized tissues. 

Importantly, the cells and rudimentary tissues in teratomas are of ectodermal, mesodermal and 

endodermal origin, and the presence of cells from all three embryonic germ layers has been 

considered as evidence of pluripotency of injected hPSCs24. 

 

Differentiation of human pluripotent stem cells 

Differentiation of stem cells to desired specialised cell types is an essential prerequisite to 

utilising these remarkable cells for therapeutic applications. Nonetheless, although in theory 

hPSCs can make any cell type in the body, deciphering instructive cues that drive these 

unspecialised cells to a fully functioning mature cell type of choice has proven an arduous task. 

Early efforts of finding the appropriate differentiation protocols for hPSCs have been focused 

on the production of just a handful of cell types out of over two hundred possible differentiated 

types that build the human body. The cell types in question were deemed to have the greatest 

therapeutic significance, including pancreatic beta cells, hepatocytes, cardiomyocytes, and 

neurons25. These early efforts of producing specialised cell types from hPSCs were plagued by 

issues concerning differentiation efficiency, robustness, and reproducibility. It is worth noting 
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that the early methods for culturing hPSCs entailed growing them on a layer of mitotically 

inactivated mouse embryonic fibroblasts in a media that included fetal bovine serum. Not 

surprisingly, such a chemically undefined culture system suffered from batch-to-batch 

variability and a consequent lack of reproducibility. Some of the robustness and reproducibility 

issues also appeared to be due to seemingly differing propensities of hPSC lines for 

differentiation to specific lineages26. In the years that followed, meticulous studies contributed 

to vastly improved differentiation protocols, directing hPSC differentiation to a number of cell 

types of interest. Although arguably each of the differentiation protocols developed had specific 

intricacies, some of the common denominators started to emerge as key principles that can be 

applied to instructing hPSC differentiation. In particular, the majority of successful protocols for 

hPSC differentiation in a monolayer are based on mimicking cues that the cells experience 

during normal embryonic development25. Admittedly, not much is known about the very early 

stages of human embryonic development in vivo, due to the inaccessibility of the early embryo 

and the ethical concerns with performing human developmental studies. Nonetheless, very 

informative studies on the development of other mammalian species and the differentiation 

studies of the mouse embryonic stem cells have provided the crucial insight into the signalling 

prompts that hPSCs may experience during development. In line with mimicking the 

developmental processes, the successful differentiation of hPSCs typically requires stepwise 

protocols, whereby each stage of differentiation is carefully instructed with specific signalling 

cues before the ensuing progenitor cells are exposed to a new set of signals. A seminal study by 

Wichterle et al.27 demonstrated this paradigm by differentiating hPSCs to motor neurons 

through sequential manipulation of signalling pathways that underpin motor neuron 

specification during embryo development. This concept was subsequently applied to generate 

numerous cell types from hPSCs, including various neuronal subtypes (spinal motor, cortical, 

DA and GABA neurons), cardiomyocytes, hepatocytes and β-cells (summarised in 28). 
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Progress in the development of hPSC-based cell replacement therapies 

The establishment of protocols for hPSC differentiation to various differentiated cell types has 

spurred progress of hPSC-based cell replacement therapies towards clinical trials. Here we give 

a brief overview of the progress in the trials for spinal cord injury and Parkinson’s disease. 

Several other ongoing clinical trials are examining the safety/efficacy of cell replacement 

therapies for the treatment of chronic conditions such as retinal degeneration, heart failure and 

diabetes (reviewed in 29). In addition, driven by immense clinical need and the ability to obtain 

appropriate cell types, further clinical studies may be on the horizon. We highlight a 

developmental disorder, Hirschprung’s disease, as a condition potentially amenable to treatment 

by cell replacement therapy.  

 

Regenerative medicine approach to treatment of spinal cord injury 

Spinal cord injury is one of the key target injuries for a regenerative medicinal approach. There 

are more than 10,000 new cases per year in the USA, with long-term repercussions for sufferers 

requiring constant care resulting with an estimated cost of $4 billion annually (reviewed in30). 

Permanent paralysis and loss of sensation upon traumatic spinal cord injury is caused by the 

death of neurons and glia cells. In some cases, a key issue arises from demyelination of 

otherwise intact axons, leading to the loss of function and degeneration of neurons31. In such 

cases, a potential approach for treating spinal cord injury could entail transplanting the patients 

with cells capable of remyelinating spinal cord neurons in order to prevent their degeneration. 

Such an approach was tested in animal models of spinal cord injury, whereby animals were 

transplanted with progenitor cells capable of differentiating into oligodendrocytes in vivo. Cell 

types that have been tested as a source of cells for generating oligodendrocyte progenitors prior 

to transplantation include hES cells32,33, neural stem cells34 and hiPS cells35. Given the ability of 
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hPSCs to give rise to an unlimited number of cells in vitro, they were considered a particularly 

promising source of cells for therapeutic applications32,33. Recovery of motor function in animal 

models of spinal cord injury provided an impetus for clinical trials to test safety and efficacy of 

hESC-derived oligodendrocytes for the treatment of spinal cord injury36. Clinical trials were 

commenced by the Geron corporation in 2010, with the Phase I of the trial designed to test the 

safety of the product through dose escalation. The starting dose was two million cells injected 

into the spinal cord of each patient. For spinal cord injury, this represents a relatively low dose 

as calculations based on the equivalent experiments in rat models indicate that 20 million cells 

would need to be transplanted for any rescue of function. In line with that, no major 

improvements were noted in the patients’ motor function in the safety trial. Minor adverse 

events were reported when patients were checked one week to one year post-transplantation, but 

there was no evidence of serious adverse events, tumours or rejection of the transplanted cells. 

Although this clinical trial was initially met with optimism, it was terminated after two years for 

commercial reasons37. Recently, Geron’s oligodendrocyte differentiation protocol was acquired 

by Asterias Biotherapeutics, who are in the process of recruiting for a follow-up safety trial 

(http://www.scistar-study.com/). 

 

Regenerative medicine approach to treatment of Parkinson’s disease 

Parkinson’s disease (PD) is a neurodegenerative condition with the characteristic clinical 

features of tremor, rigidity, and slowness of movement, together with a range of non-motor 

features. It affects 1-2% of the population over the age of 6538 and has a significant burden of 

disease. There is currently no treatment that alters the course of the disease and 60% of patients 

progress to severe disability or death within eight years of diagnosis39. The pathological 

hallmark of the disease is the loss of a specific subtype of dopaminergic neurons from the 

substantia nigra within the midbrain. The focal loss of this relatively rare population of cells 

http://www.scistar-study.com/
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makes the disease a prime target for cell replacement therapy. 

Efforts to identify a viable source of dopaminergic cells for transplantation to the PD-affected 

brain began in the 1970s. Grafts derived from fetal ventral mesencephalon (fVM) showed the 

most promise with evidence of successful engraftment into the host brain, the ability to release 

dopamine and to ameliorate motor deficits in experimental animals40. The outcome of human 

transplantation of fVM tissue has met with variable results but there it is clear that in some cases 

it provides an effective and durable therapy with some patients able to remain off 

pharmacotherapy for over 15 years after transplantation41.  Whilst this work provides a proof of 

concept that cell replacement strategies can be a successful treatment for Parkinson’s Disease, 

the ethical and availability issues associated with fetal tissue preclude this from being a viable 

therapy outside of research studies. 

Advances in stem cell and neural differentiation techniques now raise the prospect of 

being able to replicate the positive clinical outcomes using pluripotent stem-cell derived graft 

material. A major achievement in the field was the development of protocols, which can 

generate high yields of the specific A9 dopaminergic neuron subtype that is affected in the 

disease42. These protocols have now been adapted to clinical grade reagents and culture 

conditions and preclinical work has demonstrated these cells to be safe and have a similar 

efficacy to fetal-derived cells when transplanted in animal models43. It is expected clinical trials 

will begin over the next few years at a number of centres around the world44. 

For these initial trials, an allogeneic approach using a single hESC or hiPSC source cell 

line has been favoured. The relatively immunologically privileged status of the brain means that 

the lifelong immunosuppression may not necessarily be essential in CNS transplantation. In 

patients who have been transplanted with fetal cells from an allogenic source, it has been 

demonstrated that a finite period of immunosuppression following transplantation (ranging from 

12 months to 5 years) is sufficient for tolerance to the cells to be induced, with evidence that the 
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grafts can then continue to survive for decades in the absence of immunosuppression41,45. 

Despite this, two groups have been working towards an autologous hiPSC-derived cell therapy 

for Parkinson’s disease46,47, although one of these groups appears to have shifted focus to 

allogeneic haplobanked hiPSCs. One alternative approach that has already reached clinical trial 

has involved the use of parthenogenic stem cells. This is the first clinical trial to be approved for 

a stem-cell derived therapy in Parkinson’s disease, with the first patient treated in 2016. There 

are, however, concerns that the differentiated cell type used in this trial may not be optimal and 

that the supporting pre-clinical data for this approach was limited48. It will be several years 

before it will be known if cell replacement therapies can provide an effective and viable therapy 

for Parkinson’s disease. Not only with this potentially provide a first example of the use of stem 

cell-based therapy for a neurodegenerative disease, but will also provide information about the 

relative merits the different source material and differentiation strategies being employed by 

different groups to produce their cell transplantation product. 

 

Regenerative medicine approach to treatment of Hirschprung’s disease 

Hirschsprung’s disease is a congenital disorder with an incidence of 1 in 5000 live births 

(reviewed in49). The patients are born with a segment of gut that is not innervated by the enteric 

nervous system, resulting in the constricted colon and the inability of patients to defecate50. 

Unless there is surgical intervention to remove non-innervated part of the gut within 24 hours of 

birth, Hirschsprung’s disease is fatal51. Given that the disease is underpinned by an absence of a 

particular cell type – enteric neurons - cell replacement therapies have been thought to be the 

ideal treatment for Hirschsprung’s disease52. The key regenerative medicine approaches for 

Hirschsprung’s disease would involve deriving the correct precursors for the enteric nervous 

system, transplanting them en masse and allowing them to migrate, differentiate and integrate 

with the gut, thus allowing for the rescue of peristalsis and relaxation of the constricted gut53. 
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Due to the sheer length of the gut, it is essential for sufficient numbers of cells to be generated 

for any regenerative therapy, which has led to significant work into conditions that will allow 

for expansion of enteric progenitors prior to differentiation into enteric neurons. Considerable 

promise has been demonstrated with studies from mouse gut stem cells, where both fetal and 

adult stem cell populations have been isolated, expanded and shown to form neural and glial 

derivatives after transplantation in vivo54,55. The ability to form neurospheres that generate 

neurons and glia is not limited to gut stem cells. Central nervous system-derived stem cells have 

also been touted as a source of cells for enteric nervous system transplantation53. In addition, 

there has been significant progress in generating enteric neurons from hPSCs56. Transplantation 

of hPSC-derived enteric neuron precursors into a mouse model of Hirschsprung’s disease 

(Ednrb-/-) led to the migration of cells along the gut and rescued the mutant mice from dying56. 

HPSC-derived enteric neurons can also innervate hPSC-derived gut organoids, which represent 

the three-dimensional models of the gut tissue comprising various cell types present in the gut 

epithelia as well as the smooth muscle that surrounds it57. Combining the enteric neural 

progenitors with gut organoids led to the formation of enteric ganglia and innervation of the 

smooth muscle, thus allowing the control of peristalsis57.  

Whilst such preclinical studies provide proof of concept for cellular replacement 

approaches for the treatment of Hirschsprung’s disease, more work is warranted to specifically 

assess long-term safety and functionality of any transplanted cells. The presence of immune 

cells in the gut is an added complication to this therapy that may not present an issue in the 

treatment of some other diseases, such as Parkinson’s. In addition, the number of cells required 

for treatment of Hirschsprung’s disease is a major hurdle to be overcome. Indeed, due to the 

length of the gut, it is anticipated that transplantation of vast amount of cells will be required to 

sufficiently reinnervate aganglionic areas. Apart from the issues of producing the large numbers 

of cells, this will also have implications for the method of transplantation. For example, an 
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injection of cells, which appears a choice delivery of cells for Parkinson’s disease, may not be 

the best method for Hirschsprung’s disease. Current preclinical methods are utilising 

neurospheres or cells encased in extracellular matrix, but these methods have not been 

optimised as yet to achieve the best functional rescue. Potentially the best method will be a 

combination of hPSC-derived enteric neural crest cells in a bioengineered device, which can 

assist in cell grafting and reducing immunogenicity58. 

 

Lessons gleaned from past and current (pre)clinical studies 

As we await results from current clinical trials on the safety and efficacy of hPSC-derived 

cellular products in regenerative medicine therapies, it is appropriate that we take stock of key 

that have plagued clinical translation thus far, with a view of informing future developments in 

the field. 

 

The challenge of producing specific mature cell types 

The ability to control and direct differentiation of hPSCs to desired functional cell types is an 

essential prerequisite for regenerative medicine efforts. Significant progress has been made 

towards establishing chemically-defined protocols for hPSC differentiation to a variety of cells 

types, including cardiomyocytes59, hindbrain and spinal cord neural stem cells60, epicardial 

cells61, and vascular smooth muscle subtypes62. However, many of the protocols yield the 

differentiated cells that exhibit a relatively immature phenotype. For example, phenotypes of 

hPSC-derived cardiomyocytes reflect structural, molecular and electrophysiology phenotypes of 

fetal, rather than fully mature adult cardiomyocytes63,64. Similarly, phenotypic and functional 

features of hPSC-derived hepatocytes65 and  cells also appear to align more closely with their 

fetal rather than the adult counterparts66. Although fetal-like cells will undoubtedly prove useful 

in developmental studies and some aspects of disease modelling, cell replacement therapies 
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necessitate the production of cells capable of generating fully functional adult cell types when 

transplanted. Several strategies are being explored to promote maturity of the hPSC-derived 

fetal-like cells, encompassing both in vitro and in vivo approaches (reviewed in67). 

A further issue hindering the formulation of robust differentiation protocols is the inter-

line variability of hPSCs in the propensity to differentiate into particular cell types. The 

differentiation bias of hPSCs was revealed in studies that examined the efficiency of the same 

differentiation protocol on a variety of different hESC or hiPSC lines in parallel26,68,69. The 

conclusions drawn from such studies indicated that some lines readily differentiate to cell types 

of interest, whilst others yield a very low efficiency of desired differentiation. A low efficiency 

of differentiation may result in the exclusion of a cell line from use, a practical solution that is 

particularly undesirable when small numbers of patient-specific or haplotype-matched hPSC 

lines are available. Alternatively, the differences in the differentiation propensity may warrant 

optimisation of the differentiation protocols for each hPSC line, which can be time consuming 

and expensive. Hence, future research is needed to unravel the factors that underlie the observed 

differences in differentiation capacity of hPSC lines. An important step towards this goal was 

made in a recent study that examined the molecular features of hiPSC lines that exhibited high 

and low propensity to differentiate to hematopoietic stem cells69. Based on this study, the 

analysis of epigenetic landscape of hPSCs appears to be a promising way forward for predicting 

the differentiation potential of hPSC lines and selecting the optimal lines for downstream 

applications. 

 

The outcome of the transplantation: the importance of the supportive niche and absence of 

immune reaction 

Obtaining appropriate cell types for transplantation in vivo represents only a part of the 

challenge in restoring normal tissue function, with another major hurdle being the survival and 
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functionality of the transplanted cells. Indeed, it appears that less than 1-3% of total transplanted 

cells survive initial transplantation in vivo70,71. One of the major reasons behind a failure of cells 

to thrive upon transplantation is thought to be the absence of supportive environment or a niche. 

Diseased, aged or injured tissues may not provide sufficient levels of oxygen or present the 

signals necessary for cell survival. On the other hand, the engraftment of cells even in healthy 

adult tissues is generally limited, possibly due to the lack of available niches for the transplanted 

cells. In that respect, it is telling that successful bone marrow transplants require ablation of the 

bone marrow to kill off host cells occupying the niche before repopulation with transplanted 

cells. Nonetheless, the approach of killing off host cells occupying the niche is clearly not a 

feasible approach for many diseases, including Parkinson's. For some diseases, it has been 

speculated that a transplantation of stromal cell types might aid in rescuing tissue function 

through helping to generate a supportive niche for transplanted cells. For example, 

oligodendrocyte precursors for spinal cord injury have been demonstrated to release trophic 

factors after transplantation, which show positive effects on spinal cord neurons in vitro72.  

In addition to the lack of a supportive environment, the death of transplanted cells can 

also be mediated by the immune reaction of the host. Regenerative medicine encompasses a 

wide range of potential therapeutic strategies, from the transplantation of allogeneic replacement 

tissue generated in vitro to the use reprogrammed cells transplanted autologously, and 

potentially the in vivo transdifferentiation of supportive cells to perform the function of a 

disease cell type. The ability to avoid the use of immunotherapy is one of the reasons put 

forward in favour of autologous forms of treatment. However, many of the therapies that are 

closest to, or currently in, clinical trials are those that involve allogeneic grafts generated from 

hPSCs of a single cell line. In these circumstances, it is necessary to achieve immune tolerance 

of the graft, either through the use of immunosuppressive agents or other means. This may not 

necessarily be at the same high doses required for solid-organ transplantation and may not 
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necessarily be life-long. In circumstances where the cells are transplanted to an 

immunologically privileged site such as the brain or the anterior chamber of the eye, a finite 

period of immunosuppression may be sufficient. An alternative to the use of 

immunosuppression may be the induction of tolerance. Recent work has indicated this may be 

possible to generate long-term tolerance to stem cell-derived grafts by using CD4/CD8 

coreceptor and costimulation (CD40L) blockade with monoclonal antibodies given at the time 

of transplantation73. A further alternative strategy in development is the use of genetic 

engineering of the HLA locus to create a universal cell that is able to evade the alloimmune 

response74. With these developments, the issue of immunosuppression is not necessarily an 

overriding consideration and it will be of interest to see whether the advances in technologies 

supporting the efficient production of clinical-grade, regulator-approved, autologous iPSC lines 

outpaces the advances in strategies to obviate the need for immunosuppression in the allogeneic 

setting. 

 

Safety of the hPSC-derived cellular products 

Safety of the hPSC-derived cell replacement therapies is at the forefront of concerns in the 

regenerative medicine field, with a particularly critical issue being the potential tumorigenicity 

of transplanted cells. This issue stems partly from the fact that the undifferentiated hPSCs have 

the ability to form teratomas when placed into ectopic sites in immunocompromised mice24. In 

this context, it is important to note that cell replacement therapies are based on using derivatives 

of hPSCs and not the undifferentiated cells per se. Thus, strategies for minimising the risk of 

remnant undifferentiated hPSCs following the differentiation, for example by sorting the cell 

populations or by eliminating undifferentiated cells through chemical treatment, should be 

effective in minimising the risk of teratomas. A similar strategy could be used for eliminating 

other unwanted cell types that may be present in a cellular preparation at the end of the 
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differentiation protocol. It has been speculated that ‘contaminating’ cell types could also present 

a safety issue in some situations, particularly if they are transplanted to a tissue or a niche in 

which they do not typically reside75. Whilst efficient purifying and monitoring methods should 

alleviate the tumorigenic risk of undifferentiated hPSCs or contaminating cell types, more 

challenging to tackle is the potential tumorigenicity of hPSC-derived differentiated derivatives. 

The observation that hPSCs acquire genetic aberrations during culture76 has raised concerns that 

some of the genetic changes may go undetected at both genotype and phenotype levels in 

hPSCs77, but may confer malignant properties to differentiated derivatives when placed in an in 

vivo environment. Such a concern precipitated a halt of a clinical trial for age-related macular 

degeneration in Japan when patient-derived hiPSCs were found to contain several genetic 

changes that were not present in the somatic cells used for reprogramming78. In light of these 

findings, the scientists involved in the trial decided to err on the side of caution, thus suspending 

the trial and changing their strategy to using haplotype-matched donor cells78. The use of 

partially matched donor cells will allow extensive genetic characterisation of a large batch of 

cells which should be time- and cost-efficient compared to characterising individual patient-

specific hiPSC lines. Nonetheless, the challenge remains to determine which genetic changes 

represent a potential safety issue for cellular replacement and which are merely innocuous 

genetic events. In addition to potential tumorigenicity, another risk factor for cellular therapies 

is the presence of adventitious agents and disease transmission from transplanted cells. 

Traditional sterilization is not applicable in case of cellular products, hence mitigating the risk 

of viral and bacterial transmission includes both testing for adventitious agents and 

manufacturing in compliance with Good Manufacturing Practice (GMP). 

 

Regulatory landscape 

The challenges faced by developers of regenerative therapies do not end with the successful 
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generation of a target cell type and the demonstration of efficacy in preclinical studies. To 

proceed to a Phase I clinical trial, approval for use of the therapy in humans is required from the 

relevant national or international regulatory bodies such as the US FDA or European EMA. In 

general terms, to satisfy regulatory requirements a cell therapy must have a production process 

that is well-controlled, reproducible and capable of generating a cell product within well-

defined specifications. All reagents and processes must comply with clinical-grade Good 

Manufacturing Practices (GMP). In addition, the safety of the cell product must be 

demonstrated using data combined from animal studies, cell karyotyping or other genetic 

analyses, as well as testing using standard assays for sterility and adventitious agents. For cell 

products that have been derived from hPSCs, it is critical that the cell product is evaluated for 

tumorigenicity through the use of animal transplantation and biodistribution studies as well as 

flow cytometry or other single cell analyses to exclude the possibility of contamination of the 

final cell product with potentially oncogenic pluripotent cells.  

Demonstrating safety and meeting regulatory requirements for a therapy in which the 

therapeutic agent is a population of living cells is, unsurprisingly, more difficult than a 

conventional pharmacological drug. The inherent heterogeneity of hPSC cultures and variability 

of differentiation procedures is a fundamental issue. Even in well-established clinical grade 

protocols, it remains difficult to completely eliminate all run-to-run variation. For allogeneic 

stem cell therapies, another challenge is the identification of a suitable source stem cell line. 

There are many requirements that need to be considered including whether the cell line was 

generated in clinical GMP conditions, whether the donor consented to use of the donated 

material for use in commercial product, the country of origin in relation to prion disease and 

other infectious risks, and whether the cell line carries any potentially harmful mutations. For 

example, it has recently been shown that a significant proportion of the global hESC lines carry 

mutations in TP53 or other potentially oncogenic loci (Merkle and Eggan, webinar 



20 

 

https://www.stemcell.com/pluripotent-lounge). Whilst the final safety testing, cell production 

and quality control assays are performed in certified GMP and GLP laboratories, the 

development of these methods is performed in a standard research environment, usually in an 

iterative process until the necessary parameters are met to justify moving to the next phase with 

much higher associated costs (Figure 2). 

 

Regenerative medicine: the feasibility of personalised cell products 

The advent of techniques for generating induced pluripotent stem cells has given rise to much 

hope about the prospects for personalized cell therapies that are generated specifically for each 

individual patient and transplanted autologously, circumventing the need for 

immunosuppression. It is now technically possible to achieve this, but stem cell lines need to be 

generated for each individual patient, and these each need to individually pass through extensive 

safety testing and regulatory requirements before proceeding to transplantation. It is estimated 

that safety testing alone cost US$500,00079, with the total cost per patient estimated to be 

US$1,000,000. This was the approach attempted by a clinical trial based at the RIKEN Institute 

in Japan for the treatment of age-related macular degeneration, which was halted due to 

mutations detected in hiPSCs of one of the patients80. The suspension of the trial brought 

sharply into focus the fact that, at the present time, the logistical and financial challenges of 

developing an autologous hPSC-based therapy are very significant. This does not necessarily 

mean that the barriers will remain as high. With technical advances and improving 

understanding, personalised cell therapies may become a more feasible option in the future, with 

many research groups focussed on this as an objective. 

 

Concluding remarks 

Regenerative medicine is on the cusp of transforming healthcare by delivering curative 
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treatments for many life-threatening or debilitating diseases. The major driving force behind the 

dynamic evolution of regenerative medicine has been the remarkable progress in the field of 

stem cells and related technologies. If we look forward, it seems that the rate-limiting step for 

the development of cell replacement therapies will not be the production of desired cell types, 

but rather, translation of the developments from an academic into the clinical setting. Unlike 

drug discovery, which has a well-established manufacturing and regulatory trajectory, when it 

comes to hPSC-derived cell replacement therapies, we are navigating unchartered waters, full of 

unforeseen scientific, manufacturing, regulatory and funding complexities. Nonetheless, the 

preliminary results of the safety studies are encouraging and the prospects for the hPSC-derived 

cellular therapies appear positive. As highlighted in this review, several hurdles are still 

hampering the translation but they are surmountable. The continuation of efforts to develop a 

sound translational framework will undoubtedly help regenerative medicine to deliver its full 

potential and become an important part of modern healthcare. 
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Figure 1. The cell replacement therapy paradigm. Two main approaches include allogeneic 

approach using adult stem cells or human embryonic stem cells (hESCs) (right), and 

personalised approach, which utilises patient-derived human induced pluripotent stem cells 

(hiPSCs) (left). In either approach, stem cells are directed to differentiate to desired cell types 

prior to transplantation into patients. In the case of genetic disorders, it may be necessary to 

correct the disease-causing mutation in hiPSCs by genetic engineering in order to generate 

functional patient-specific differentiated cells (mutation correction).  

 

Figure 2. Flow chart of typical steps in development of cell therapy products. Starting with 

basic biology experiments, which encompass development of differentiation protocols and in 

vitro characterisation of differentiated cells, the process is continued by testing the safety and 

functionality of derived cells in animal models in vivo. Positive outcome of pre-clinical testing 

provides a base for clinical trials in humans. The dashed lines represent iterative loops that may 

be necessary to optimize the final product. 
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