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 43 

The Paris Agreement[1] aims to address the gap between existing climate policies and 44 

policies consistent with ‘holding the increase in global average temperature to well 45 

below 2C’. The feasibility of meeting the target has been questioned both in terms of the 46 

possible requirement for negative emissions[2], and ongoing debate on the sensitivity of 47 

the climate-carbon cycle system[3]. Using a sequence of ensembles of a fully dynamic 48 

three-dimensional climate-carbon cycle model, forced by emissions from an integrated 49 

assessment model of regional-level climate policy, economy, and technological 50 

transformation, we show that a reasonable interpretation of the Paris Agreement is still 51 

technically achievable. Specifically, limiting peak (decadal) warming to less than 1.7°C, 52 

or end-century warming to less than 1.54°C, occurs in 50% of our simulations in a 53 

policy scenario without net negative emissions or excessive stringency in any policy 54 

domain. We evaluate two mitigation scenarios, with 200 GTC and 307 GTC post-2017 55 

emissions, quantifying spatio-temporal variability of warming, precipitation, ocean 56 

acidification and marine productivity. Under rapid decarbonisation decadal variability 57 

dominates the mean response in critical regions, with significant implications for 58 

decision making, demanding impact methodologies that address non-linear spatio-59 

temporal responses. Ignoring carbon-cycle feedback uncertainties (explaining 47% of 60 

peak warming uncertainty) becomes unreasonable under strong mitigation conditions. 61 

 62 

A widely-held misconception is that given ~1°C warming to-date, and considering committed 63 

warming concealed by ocean thermal inertia, the 1.5°C target of the Paris Agreement[1] is 64 
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already impossible. However, it is cumulative emissions that define peak warming[4]. When 65 

carbon emissions cease, terrestrial and marine sinks are projected to draw down atmospheric 66 

CO2, approximately cancelling the lagging warming. While the sign of this “zero emissions 67 

commitment” is uncertain, its contribution can be neglected for low CO2 scenarios[5]. 68 

Therefore, at least when considering CO2 emissions in isolation, the 1.5°C target will remain 69 

physically achievable until the point that it has been crossed. The physical achievability of 70 

the Paris target has been demonstrated in a complex carbon cycle model with a simplified 71 

atmosphere[6] and updated recently using a simple carbon cycle model forced by a modified 72 

RCP2.6 scenario[7] and by policy-driven scenarios with substantial reliance on negative 73 

emissions technology[8]. Here, we demonstrate that the target is achievable using a fully-74 

dynamic three-dimensional climate-carbon cycle model forced with emissions from a 75 

detailed set of sectorally and regionally specific mitigation policies without net negative 76 

emissions (methods).  77 

 78 

We use the intermediate-complexity three-dimensional Earth system model PLASIM-79 

GENIE[9], a model with similar ocean, atmosphere and carbon cycle dynamics to full 80 

complexity models, but with simpler parameterisations and lower spatial resolution. The 81 

model will not produce the full range of small-scale variability in high-complexity models, 82 

but it has the computational efficiency to allow a comprehensive treatment of uncertainties 83 

cognizant, for instance, of ongoing discussions on the state dependency of climate 84 

sensitivity[10,11] and ocean heat uptake efficacy[12]. We evaluate climate-carbon cycle 85 

uncertainty using a 69-member history-matched[13] ensemble designed from 940 training 86 

simulations (see methods). The ensemble climate sensitivity is 2.6 to 4.5°C (90% 87 

confidence), which compares to 1.9 to 4.5°C in CMIP5[14]. The transient climate response is 88 
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1.1 to 1.8°C, 1.2 to 2.4°C in CMIP5[14]. Ensemble ocean heat uptake (1965 to 2004) is 207 89 

to 330 ZJ, 182 to 363 ZJ (1970 to 2010) in IPCC[14]. 90 

 91 

We validate the history-matched ensemble in Table 1A, by comparison with the CMIP5 92 

multi-model ensembles forced by Representative Concentration Pathway (RCP) 2.6 93 

(mitigation scenario) and RCP8.5 (‘business-as-usual’ scenario)[15]. Under RCP8.5, the 94 

PLASIM-GENIE end-century CO2 concentration, global warming and Atlantic Meridional 95 

Overturning Circulation (AMOC) strength[14,16] are remarkably consistent with the CMIP5 96 

ensemble, illustrating that uncertainties in transient climate sensitivity, carbon cycle 97 

sensitivity and AMOC stability capture the spread of high complexity models. Mean surface 98 

pH is also well represented, the significantly lower uncertainty in CMIP5 pH[17] arises 99 

because these particular CMIP5 simulations were concentration forced. Overstated impacts in 100 

marine productivity are apparent relative to CMIP5[17], but there is significant overlap in the 101 

highly uncertain distributions. Under RCP2.6 forcing, there is a less complete analysis of 102 

CMIP5 outputs. The PLASIM-GENIE ensemble understates the mean warming in RCP2.6 by 103 

0.3°C relative to CMIP5, under-estimating the warmest ensemble members (Table 1A). We 104 

therefore apply 0.3°C to bias-correct warming estimates in the rapid decarbonisation 105 

scenarios (Table 1B). 106 

 107 

Our future simulations are forced with emissions from policy scenarios of the simulation-108 

based integrated assessment model E3ME-FTT-GENIE[18]. The E3ME macroeconomic 109 

model differs fundamentally from the equilibrium models more usually used to assess climate 110 

policy by representing realistic (non-optimal) behaviour based on empirical relationships, and 111 

by relaxing the constraint of a fixed money supply. Investment in renewables therefore can in 112 

principle generate economic stimulus, for instance through increased employment[19]. 113 
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Furthermore, the framework is suited to flexible application of a range of policy 114 

implementations that are not limited to a carbon tax, including regulations, subsidies, 115 

focussed taxation policies and public procurement. The model contains a bottom-up 116 

representation of technological diffusion in multiple-sectors (FTT) and is connected to a 117 

climate-carbon cycle model (GENIE) with a single-layer atmosphere. We consider three 118 

scenarios: 1) Current policy CP[18,20], 2) 2P0C[18,20], rapid decarbonisation policies to 119 

avoid 2°C peak warming with 75% confidence (according to GENIE) and 3) 1P5C 120 

(methods), representing our most optimistic set of policy assumptions, avoiding 1.5°C peak 121 

warming with 50% confidence.  122 

 123 

Time series for the PLASIM-GENIE ensembles forced with the three policy scenarios are 124 

illustrated in Fig 1, and ensemble distributions are summarised in Table 1B. Note that the 125 

time series of ensemble median values do not correspond to fixed simulations, thus the 126 

distribution of peak decadal warming (Table 1B) show slightly higher values as individual 127 

trajectories cross owing to decadal variability. Steady-state decadal variability of mean 128 

surface temperature in PLASIM-GENIE is ±0.08°C (one standard deviation). 129 

 130 

Small differences in assumptions can make significant differences to cumulative emissions 131 

budgets under strong mitigation, noting that 0.1°C incremental warming is equivalent to 132 

~50GTC[4]. Here, we consider both maximum and end-century change, as the former is most 133 

relevant for impact assessment and most consistent with the text of the Paris Agreement, with 134 

change expressed relative to a preindustrial (1856-1885) baseline taken from ensembles of 135 

1805-2105 AD transient simulations. RCP2.6 non-CO2 forcing is applied for both mitigation 136 

scenarios, and RCP8.5 non-CO2 forcing for the current-policy scenario.  137 

 138 
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Bias-corrected median peak warming estimates (Table 1B) are 1.82°C (2P0C) and 1.70°C 139 

(1P5C), and 2100 estimates are 1.71°C and 1.54°C. Correlations suggest an increasing 140 

relative contribution of carbon-cycle processes to warming under rapid decarbonisation 141 

(Table S1). The response of the maximum value of Atlantic meridional overturning 142 

circulation (AMOC) in the mitigation scenarios is notable. The simulated expected peak 143 

weakening to 84% of preindustrial (Table 1B) arises from natural variability (steady-state 144 

decadal variability is 0.9Sv); the median response through the Century is steady (Fig1). 145 

However, in one 1P5C and two 2P0C simulations the AMOC reduces to ~50% of its present-146 

day strength. We therefore cannot rule out significant AMOC weakening under mitigation, 147 

but note the suggestion of a reduction in the probability of this unlikely event under 148 

accelerated decarbonisation. 149 

 150 

We now consider the mean climate-change patterns for a range of impact-relevant climate 151 

stressors: decadal DJF surface air temperature (Fig 2A), decadal JJA precipitation (Fig 3A), 152 

annual surface ocean acidity (Fig 4A) and annual marine primary productivity (Fig 4D). 153 

Patterns are 1P5C ensemble averages of (2090 minus 1990) change, expressed per 1°C mean 154 

ensemble warming. The mean patterns of changes of temperature and precipitation are 155 

broadly consistent with CMIP5 projections. Changes in pH (Fig 4A) result from increased 156 

concentrations of dissolved CO2 and the associated reduction in carbonate ion concentrations 157 

approximately uniform across the surface ocean, except in the Arctic where amplified CO2 158 

uptake is apparent under melting sea ice[21]. This pattern is robust, explaining more than 159 

95% of the variability in the ensemble (quantified through singular vector decomposition); a 160 

similar robust pattern of acidification was found in CMIP5[17]. Changes in primary 161 

productivity (Fig 4D) are dominated by large reductions of up to ~10% per °C of warming 162 

that are simulated in the Equatorial Pacific. Significant reductions are also simulated in mid-163 
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latitude Pacific and Indian oceans, and in the Equatorial and high-latitude Atlantic. Despite 164 

the simplified ecosystem model[22], the patterns and magnitudes of productivity change are 165 

consistent with CMIP5 analysis; in RCP8.5, decreases of up to 30-50% are simulated in these 166 

regions[17], attributed to increased ocean stratification and slowed circulation, with 167 

consequent reductions in nutrient supply[23]. Increases in productivity are apparent in the 168 

Arctic and in parts of the Southern and Indian Oceans, here likely attributable to increased 169 

nutrient supply[24]. In stark contrast to pH, the pattern of productivity change explains only 170 

20% of ensemble variability. 171 

 172 

The ensemble-projections are now used to quantify spatio-temporal uncertainty by evaluating 173 

the adequacy of the approximations made in “pattern scaling”[25], a widely used approach to 174 

estimating climate fields for impacts evaluation. In pattern scaling an average climate 175 

response is calculated, typically as a multi-decadal average pattern of change. The pattern, 176 

normalised per °C global mean warming, is then scaled as appropriate for scenarios of 177 

interest. The strengths and limitations of pattern scaling, including modified approaches, have 178 

recently been reviewed[26]. It is known to be less accurate under strong mitigation[27]. 179 

 180 

Figures 2B, 3B, 4B and 4E plot the normalised mean field difference (1P5C – CP), capturing 181 

non-linear scenario-dependent feedbacks, and examining the pattern-scaling approximation 182 

of a scenario-invariant pattern. The temperature pattern differences reveal modest changes, 183 

for instance in the northern Atlantic, where the stronger AMOC leads to relatively warmer 184 

temperatures under mitigation. The largest precipitation pattern differences are associated 185 

with the Indian and SE Asian monsoons. The magnitudes of pH change patterns are very 186 

different in the two scenarios, approximately -0.1pH unit per °C under current policy and -187 

0.03 per °C for rapid decarbonisation. This difference reflects the different response times of 188 
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pH and temperature to changing CO2. The 2090 temperature is influenced by cumulative 189 

excess CO2 but the surface pH in 2090 is determined by 2090 CO2 with no significant lag; 190 

mitigation acts at the timescale of natural CO2 sinks to reduce acidification impacts on the 191 

surface ocean. In contrast, the patterns of change of marine productivity in the two scenarios 192 

are spatially different, with amplified relative reductions in the Atlantic, Indian and Southern 193 

Oceans, and a reduced relative reduction in the Equatorial Pacific. 194 

 195 

The most important error when using pattern scaling arises from the neglect of variability. 196 

This emerges from two distinct sources, the neglect of model uncertainty and the neglect of 197 

natural variability, both of which alter the pattern of change itself. It is well established that 198 

natural variability, which has a magnitude that differs with location, is a critical limiting 199 

factor for the accuracy of climate projections and impact evaluation[28]. If we assume that 200 

the spread of climate model outputs encompasses possible reality, then model error can be 201 

estimated by applying the patterns from different climate models to test robustness of the 202 

impacts that result. However, internal variability is generally not considered, and pattern 203 

scaling impacts are derived from climate means. Under strong mitigation we argue this 204 

neglect may be inappropriate. The signal-noise ratio in strong mitigation scenarios is of order 205 

one and, for instance, decadal variability will be a significant contributor to the uncertainty in 206 

determining peak (~2050 AD) climate change. 207 

 208 

In the final columns of Figs 2, 3 and 4, each 1P5C simulation anomaly field is normalised by 209 

its respective warming, and the RMS ensemble variability about the 1P5C scenario mean is 210 

plotted. For the climate fields (Figs 2 and 3), comparison of variability about the mean fields 211 

30-year averages (predominantly parametric uncertainty) and 10-year averages (internal and 212 

parametric uncertainty) relative to a 30-year baseline, indicates that the two sources of 213 
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variability are comparable in amplitude. For the ocean impact fields (Fig 4) the variability is 214 

derived from annual averages. In all fields, the uncertainties in the patterns (1P5C - CP) are 215 

dominated by the variability about the pattern (right panels). The uncertainties often dominate 216 

even the mean response. For instance, in parts of the Arctic, RMS uncertainty of ~3°C per °C 217 

warming compares to a mean signal of ~3°C (Fig 2, Table S2), while RMS uncertainty of 218 

precipitation is comparable to the mean signal in monsoon regions (Fig3, Table S2). 219 

Simulations forced by current-policy emissions are associated with significantly lower 220 

fractional uncertainty (Table S2), reflecting an increased signal-noise ratio, and 221 

demonstrating that the assumptions of pattern scaling are well justified under high-emission 222 

scenarios. 223 

 224 

The implications of our findings for policy-making are important: if policy and market-based 225 

responses to climate change are sufficient to uphold the level of ambition of the Paris 226 

Agreement, climate change impacts could still be of large amplitude in sensitive regions such 227 

as the Arctic. However, in these scenarios, uncertainties from model error and internal 228 

variability can dominate expected mean patterns. Consequently, we argue that a paradigm 229 

shift in impacts evaluation is now essential to support decision making. Estimates based on 230 

mean patterns of change will be insufficient. Instead, statistical methodologies developed to 231 

address non-linear spatio-temporal feedbacks[29] will need to be extended to high-232 

complexity models. Holding the increase in (multi-decadal) global average temperature 233 

above pre-industrial to 1.5 °C appears still to be possible, but results in a world where the 234 

superposition of climate change onto natural variability is key to understanding impacts on 235 

inter alia ecosystems, biodiversity, ice sheets and permafrost stability. 236 

 237 
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Tables 334 
 335 

 336 
B Current policies 2P0C policies 1P5C policies 

Peak decadal warming (°C) (2.54, 3.12, 4.18, 5.17, 5.47) (1.09, 1.19, 1.52, 1.95, 2.02) (1.04, 1.11, 1.40, 1.74, 1.85) 

Peak annual CO2 (ppm) (649, 703, 863, 996, 1048) (394, 405, 446, 485, 493) (381, 391, 429, 458, 468) 

Min decadal AMOC (%) (33, 44, 68, 80, 87) (43, 76, 83, 90, 95) (51, 74, 84, 90, 94) 

Max annual surf acidification (pH) (-0.50, -0.47, -0.39, -0.31, -0.27) (-0.22, -0.19, -0.15, -0.12, -0.10) (-0.19, -0.17, -0.14, -0.10, -0.09) 

2100 decadal warming (°C) (2.54, 3.12, 4.18, 5.17, 5.47) (0.73, 1.10, 1.41, 1.81, 1.87) (0.63, 0.97, 1.24, 1.61, 1.67) 

2105 annual CO2 (ppm) (649, 703, 863, 996, 1048) (371, 382, 415, 445, 453) (357, 367, 394, 416, 427) 

2100 decadal AMOC (%) (33, 45, 69, 83, 91) (43, 79, 90, 102, 104) (52, 82, 92, 101, 107) 

2105 annual surf acidification (pH) (-0.50, -0.47, -0.39, -0.31, -0.27) (-0.19, -0.17, -0.13, -0.10, -0.09) (-0.16, -0.15, -0.11, -0.09, -0.08) 

2105 annual productivity (%) (-33.7, -24.3, -13.8, -4.6, -3.5) (-9.5, -5.0, -3.0, -1.1, -0.8) (-5.7, -4.1, -2.2, -0.7, -0.1) 

Bias corrected peak warming (°C)  (1.39, 1.49, 1.82, 2.25, 2.32) (1.34, 1.41, 1.70, 2.04, 2.15) 

Bias corrected 2100 warming (°C)  ((1.03, 1.40, 1.71, 2.11, 2.17) (0.93, 1.27, 1.54, 1.91, 1.97) 

 337 
Table 1: A) PLASIM-GENIE validation against multi-model ensembles of 338 
Representative Concentration Pathways. Data are expressed as 2090-1990 decadal 339 
anomalies except for CO2 which is 2100 concentration and PLASIM-GENIE productivity 340 
which is 2105-2005 anomaly. The 1990 PLASIM-GENIE baselines are 30-year averages 341 
(1976-2005) except for ocean pH and productivity (where annual averages are used for all 342 

analysis). Ensembles are summarised as mean ± 1 standard deviation (5th and 95th 343 
percentiles), except for CMIP5 CO2 and AMOC where the bracketed ranges represent 11-344 
member and 10-member ensemble spreads respectively. B) PLASIM-GENIE summary 345 
confidence intervals of the E3ME-FTT-GENIE-1 scenarios. Minima, 5th percentile, 346 
median, 95th percentile and maxima of the 69-member ensembles. Warming, AMOC and 347 
acidification are expressed relative to a 30-year average baseline centred on 1870. 348 

Productivity is 2105-2005 anomaly. The 0.3°C bias correction under strong mitigations is 349 
implied by the RCP2.6 CMIP5 comparison (Table 1A).  350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
  358 

A RCP2.6 RCP8.5 

 CMIP5 PLASIM-GENIE CMIP5 PLASIM-GENIE 

Warming (°C) 1.0 ± 0.4 (0.3, 1.7) 0.7 ± 0.2 (0.4, 1.0) 3.7 ± 0.7 (2.6, 4.8) 3.6 ± 0.6 (2.6, 4.4) 

CO2 (ppm)  402 ± 19 (373, 429) 985 ± 97 (794, 1142) 1010 ± 110 (829, 1185) 

AMOC (% change)  -6 ± 10 (-17, 4) (-60, -15) -32 ± 12 (-54, -16) 

Surface pH (pH) -0.07 ± 0.001 -0.04 ± 0.01 (-0.069, -0.028) -0.33 ± 0.003 -0.33 ± 0.04 (-0.41, -0.27) 

Productivity (%) -2.0 ± 4.1 -2.7 ± 1.2 (-4.8, -1.2) -8.6 ± 7.9 -15.1 ± 4.1 (-21.7, -7.43) 
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 359 
 360 
 361 
Figure Captions 362 
 363 
 364 
Figure 1: Summary time series of the 69-member Current-Policy, 2P0C and 1P5C 365 
E3ME-FTT-GENIE emissions-forced PLASIM-GENIE ensembles.  366 
 367 
Figure 2: December-January-February surface air temperature scaling patterns and 368 
uncertainty. Scaling patterns are 1P5C and CP ensemble means (2086-2095 minus 1976-369 

2005, °C) normalised per 1°C warming. Ensemble variability is calculated by normalising 370 

each ensemble member per 1°C warming and calculating the RMS difference with respect to 371 
the mean pattern (A). Variability is derived for both (C)10-year (2086-2095) and (D) 30-year 372 
(2076-2105) patterns to help isolate the contributions of decadal variability and parametric 373 
uncertainty. 374 
 375 
Figure 3: June-July-August precipitation scaling patterns and uncertainty. Scaling 376 
patterns are 1P5C and CP ensemble means (2086-2095 minus 1976-2005, mm/day) 377 

normalised per 1°C warming. Ensemble variability is calculated by normalising each 378 

ensemble member per 1°C warming and calculating the RMS difference with respect to the 379 
mean pattern (A). Variability is derived for both (C)10-year (2086-2095) and (D) 30-year 380 
(2076-2105) patterns to help isolate the contributions of decadal variability and parametric 381 
uncertainty. 382 
 383 
Figure 4: Ocean stressor scaling patterns and uncertainty. Top: surface pH, pH units per 384 

°C warming. Bottom: marine productivity, fractional change per °C warming. Scaling 385 
patterns (left) are 1P5C ensemble means (2105-2005), and 1P5C - CP scaling pattern 386 
difference (centre). Ensemble variability is calculated by normalising each ensemble member 387 

per 1°C warming and calculating the RMS difference with respect to the appropriate mean 388 
pattern. All data are annually averaged. 389 
 390 
 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 

407 
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Methods 408 
 409 

PLASIM-GENIE is a coupling of the intermediate-complexity spectral atmosphere model 410 

PLASIM[30] to the Grid-Enabled Integrated Earth system model GENIE[31]. The coupling 411 

and climatology are described in detail in [9]. PLASIM-GENIE is not flux corrected; the 412 

moisture flux correction required in the original tuning[9] was removed during the history-413 

matching calibration (see below). We here apply PLASIM-GENIE with carbon-coupled 414 

biosphere modules BIOGEM and ENTS, described in [31] for the energy-moisture balance 415 

atmosphere configuration. We apply BIOGEM with the default Michaelis-Menton 416 

phosphate-limited productivity scheme[22]. The carbon-cycle model has been extensively 417 

validated through model inter-comparisons[32,33]. 418 

 419 

Important neglects of the PLASIM-GENIE carbon cycle are anthropogenic land-use change, 420 

peat and permafrost. These omissions tend to overstate the terrestrial carbon sink (by 421 

overstating natural forest) and they neglect potentially significant terrestrial sources (from 422 

peat and permafrost). We note that the history-matching calibration is designed to subsume 423 

such structural deficiencies (here, for instance, into CO2 fertilization and soil respiration). 424 

 425 

 PLASIM-GENIE is freely available. Please contact the authors for information. 426 

 427 

Atmosphere-ocean gearing. PLASIM-GENIE simulates approximately 2.5 years per CPU 428 

hour, so that 2,000-year spin-ups take one month of computing. In order to enable the 429 

exploration of parameter space, the implementation of an atmosphere-ocean gearing approach 430 

was required. The spin-up simulation time is determined by the ocean timescale, but the 431 

simulation speed of the model is determined by the atmosphere, which uses approximately 432 

99% of the CPU demands of the physical model. In gearing mode, applied only to 433 
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equilibrium spin-ups, the model alternates between a conventionally coupled mode (for 1 434 

year) and a fixed-atmosphere mode (for 9 years), reducing spin-up CPU time by an order of 435 

magnitude. During the conventional coupling mode, atmosphere-ocean coupling variables are 436 

accumulated and saved as daily averages. These variables comprise energy fluxes, moisture 437 

fluxes and wind stresses. During the fixed atmosphere phase, the atmospheric variables are 438 

kept constant and these daily averaged fluxes are applied to the ocean. Latent heat, sensible 439 

heat and longwave radiation ocean heat loss are recalculated at every atmosphere time step 440 

during the fixed atmosphere phase, when energy conservation is therefore not imposed. This 441 

is necessary for numerical convergence because these fluxes depend upon ocean temperature, 442 

which evolves during the fixed atmosphere phase. Evaporation is not recalculated during the 443 

fixed atmosphere phase in order to ensure moisture conservation. AO-geared spin-up states 444 

are consistent with the standard model, as demonstrated by smooth spun-on historical 445 

transient simulations in all ensemble members, though we note that rapid (sub-decadal) and 446 

modest (a few Sv) AMOC adjustments are seen in some simulations, arising from different 447 

inter-annual variability. 448 

 449 

Experimental design. Each model configuration was spun-up with a 2,000-year AO-geared 450 

quasi-equilibrium preindustrial simulation, with atmospheric CO2 relaxed to 278ppm. 451 

Simulations were continued as emissions-forced historical transient simulations (AO-gearing 452 

off, CO2 freely evolving). Historical forcing (1805 to 2005) comprised anthropogenic CO2 453 

emissions and non-CO2 radiative forcing. Fossil fuel, cement and gas flaring emissions were 454 

prescribed from CMIP5 (https://cmip.llnl.gov/cmip5/forcing.html) and were combined with 455 

ISAM C-N land-use change emissions[34] from the HYDE land-use dataset[35]. Non-CO2 456 

forcing data was taken from [15] implemented in PLASIM-GENIE as effective CO2. Future 457 

(2005-2105) emissions were taken from the E3ME-FTT-GENIE scenarios, scaled by 458 
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9.82/8.62, to match estimated 2015 total emissions[36], accounting for sources not 459 

represented in E3ME. Future land use change emissions and non-CO2 radiative forcing were 460 

taken from RCP2.6 (1P5C and 2P0C scenarios) and RCP8.5 (CP scenario). 461 

 462 

History-matched ensemble 463 

Carefully designed ensembles of simulations are central to our approach to quantifying Earth 464 

system uncertainties. We applied a ‘history matching’ calibration strategy[13,37], sampling 465 

throughout high-dimensional model input space to identify model configurations that are 466 

capable of producing reasonable simulations in the PLASIM-GENIE Earth system model, 467 

and then running the plausible configurations forward to characterise uncertainty about the 468 

future. Each configuration is required only to provide a ‘plausible’ simulation[38], thereby 469 

avoiding the introduction of bias through over-fitting[39]. A configuration is ruled out only if 470 

it is inconsistent with an observation, allowing for the imperfections of both model and 471 

data. Thus, the history matching philosophy generates simulations that encompass the full 472 

range of realistic dynamical feedbacks implemented in model[40].   473 

 474 

In PLASIM-GENIE, identifying large numbers of history-matched configurations would be 475 

prohibitively demanding computationally. We render the problem tractable by using 476 

emulators[41] to search throughout model input space. The emulators are trained on a 477 

sequence of preliminary ensembles amounting to 1.9 million years of climate simulation in 478 

total (940 completed simulations). The process produced 69 model variants, each validated 479 

by simulation, having considered hundreds of millions of randomly sampled parameter 480 

configurations in the emulator. The final models all adequately simulate ten key global-scale 481 

observational targets including surface air temperature, vegetation and soil carbon, Atlantic, 482 
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Pacific and Southern Ocean circulation measures, dissolved O2 and calcium carbonate flux, 483 

and transient temperature and CO2 changes (Table S4). 484 

 485 

For the purposes of the history matching, the simulator (here applied to the preindustrial spin-486 

up state) can be considered as a function that maps from 32 input parameters (Table S3) to 487 

the eight different outputs (Table S4). Our aim is to infer the input values that lead to outputs 488 

within the plausible climate ranges as defined in Table S4. It is not possible to naively 489 

explore the simulator output over the full input parameter ranges by repeatedly evaluating the 490 

simulator, as for example, just doing one evaluation in each corner of the input space would 491 

require 232 ≈ 109 model evaluations. Instead, we build emulators[41,42] that mimic the 492 

simulator response surface, and allow us to predict its value for any input. An initial large 493 

exploratory analysis was performed, motivated by the iterated waves approach[39]. Starting 494 

from a 100-member maximin latin hypercube ensemble, sequential series of 100-member 495 

ensembles were performed, probing regions of likely plausible space by using stepwise-496 

selected linear regression models that were continually refitted as simulations completed. 497 

This produced 940 completed simulations that we used to train the final history match. Part 498 

of the motivation for the exploratory ensemble was to develop a general understanding of the 499 

range of model responses. Most notably it enabled us to identify regions of parameter space 500 

that satisfied the plausibility constraints without flux correction so that the associated 501 

parameter (APM, Table S3) could be fixed at zero for the final history match. 502 

 503 

For the final history match, a variety of emulation approaches were considered, including 504 

stepwise regression, the LASSO[43] which is a regularized version of linear regression, and 505 

Gaussian process regression with a combination of different mean and covariance 506 

functions[44]. To determine the optimal approach for each of the eight outputs, we split the 507 
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data into test and training datasets and evaluated the emulators' predictive performance 508 

(RMSE, statistical coverage), repeating the process 10 times to get an average performance. 509 

The optimised emulators were used to find input values that are expected to give plausible 510 

simulations (i.e. within tabulated ranges for all emulator-filtered metrics, Table S4), to 511 

generate a sample of design points which encapsulate the uncertainty about future climate. 512 

We used an approximate Bayesian computation type approach[45], using rejection sampling 513 

to sample parameters from the prior distribution and evaluating the probability of these 514 

values leading to plausible outputs, to generate a large number of plausible future climates, 515 

considering hundreds of millions of emulator evaluations. A final 200-member candidate 516 

ensemble for the future transient simulations was then chosen using a ‘greedy’ design, adding 517 

points to maximize a criterion that combined the probability the simulation would be 518 

plausible (according to the emulator), and the distance of candidate points to the other points 519 

already in the design, so as to ensure design points fully span the 32-dimensional plausible 520 

input space.  521 

 522 

The 200 history-matched parameter sets were applied to PLASIM-GENIE, and 183 were 523 

accepted as giving plausible preindustrial climates in the simulator. These were spun on 524 

through the industrial period (1805 to 2005) with emissions and non-CO2 radiative forcing. 525 

Sixty-nine simulations were selected as also having plausible climate sensitivity (2005 -1870 526 

warming between 0.6 and 1.0K) and carbon cycle (2005 CO2 in the range 355 to 403ppm). 527 

These 69 model configurations were applied in the future transient ensembles. 528 

 529 

In total, 1140 spin-up simulations (2000 years each) were performed with the geared model 530 

and 345 transient simulations (300 years each) with the standard model, representing 531 
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approximately 15 CPU years of computing, corresponding to the CPU time needed to 532 

simulate a few decades with a CMIP5 type Earth System Model. 533 

 534 

Decarbonisation policies to meet 1.5°C and 2°C 535 

The E3ME-FTT-GENIE modelling framework and the particular policy scenarios used here 536 

have been described in detail elsewhere[18,20], below we give a summary of the policy 537 

choices taken as inputs to the modelling framework in deriving the emissions scenarios used 538 

here as input to PLASIM-GENIE. Three scenarios are used: a current-policy baseline, a 539 

scenario in which there is an 75% chance of limiting peak warming to 2°C and a scenario in 540 

which there is a 50% chance of limiting peak warming to 1.5°C. 541 

 542 

The model baseline is consistent with the IEA’s ‘Current Policies’ scenario[46]. The baseline 543 

can broadly be considered as a continuation of current trends; existing policy remains in 544 

place and has some lagged effects that continue into the projection period, but there is no 545 

additional policy stimulus. Most policy instruments in the baseline are implicitly accounted 546 

for through the data itself (e.g. diffusion trends). 547 

 548 

The 1.5°C and 2°C scenarios are designed as sets of policies that are added to the baseline 549 

case. In almost all countries, these policies encapsulate the measures put forward in the 550 

INDCs that were submitted to the Paris COP and complement them with other measures in 551 

order to scale up the level of ambition of decarbonisation. The scenarios are designed from a 552 

‘bottom-up’ perspective. Essentially, policies are added across the full range of economic 553 

sectors sequentially until the targets are met. The 1.5°C scenario includes all the measures in 554 

the 2°C scenario, plus additional ones, as described below. 555 

  556 
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Many of the policies are specific to particular sectors, but two economy-wide policies are 557 

implemented: 558 

• The first measure is an economy-wide programme of energy efficiency. Our 2°C 559 

scenario assumes that the programmes are in line with the IEA’s analysis[47] for a 560 

450ppm scenario (excluding houses, which are treated separately, see below). They 561 

are further scaled up 25% for the 1.5°C scenario. 562 

• The second measure is a carbon tax that is applied equally across the world. The 563 

carbon tax rates rise to $310.2/tCO2 and $96.4/tCO2 by 2030 in the 1.5°C and 2°C 564 

scenarios respectively, and $886.3/tCO2 and $274.8/tCO2 by 2050. The carbon taxes 565 

are applied to all industrial sectors, but not to road transport nor households, where 566 

separate rates are levied (since these sectors are likely to, or already have, their own 567 

specific carbon or energy tax rates). 568 

 569 

Building on [48], the following power sector policies were added to both scenarios: 570 

• Feed-in-Tariffs - 100% of the difference between the levelised cost for wind and solar 571 

and a fixed value of $80/MWh is paid by the grid to promote renewable uptake. 572 

• Direct renewables subsidies – in most cases 50-60%, to provide an incentive to 573 

increase uptake, across a range of technologies (this is in addition to feed-in-tariffs). 574 

The subsidies gradually decrease over time and are phased out by 2050. 575 

• In several countries there are immediate mandates to prevent the construction of new 576 

coal capacity.  577 

 578 

In addition, it is assumed that electricity storage technologies advance up to 2050 such that 579 

the requirement for back-up flexible generation capacity (e.g. oil and gas peaking plants) is 580 

limited. 581 
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 582 

Combinations of policies are used to incentivise the adoption of vehicles with lower 583 

emissions [49] in both scenarios. The list includes:  584 

• fuel efficiency regulations of new liquid fuel vehicles 585 

• a phase out of older models with lower efficiency 586 

• kick-start programmes for electric vehicles where they are not available (by public 587 

authorities or private institutions, e.g. municipality vehicles and taxis) 588 

• a tax of $150/gCO2/km (2015 prices), to incentivise vehicle choice 589 

• a fuel tax (increasing from $0.10 in 2018 to $1.00 per litre of fuel in 2050, 2015 590 

prices) to curb the total amount of driving 591 

• increasing/introducing biofuel mandates between current values to between 10% and 592 

30% (40% in Brazil) in 2050, different for every country, extrapolating IEA 593 

projections [50] for the 2°C scenario, and to 97% in the 1.5°C scenario 594 

 595 

Aviation is assumed to switch to biofuels gradually over the period 2020-2050 (faster in the 596 

1.5°C scenario), but total bioenergy consumption remains within 150 EJ/yr. 597 

 598 

The following policies were applied to homes in both scenarios: 599 

• taxes on the residential use of fossil fuels, applied in Annex I and OPEC countries: 600 

starting at an equivalent of $110/tCO2 (2015 values) and linearly increasing to 601 

$240/tCO2 in 2030, constant at 2030 levels afterwards 602 

• direct capital subsidies on renewable heating systems, applied globally: -40% on the 603 

purchase and installation of heat pumps, solar thermal systems and modern biomass 604 

boilers, phased out between 2030 and 2050 605 



 24

• kick-start programmes for renewable heating systems where they are not available, 606 

for a limited time period of five years (e.g. installations in publicly owned housing 607 

stock) 608 

 609 

In some industrial sectors in East and South East Asia, a further mandate was added to 610 

electrify sectors that are currently dependent on coal (only in the 1.5°C scenario). Emissions 611 

from industrial processes are modelled as fixed in relation to real production levels from the 612 

relevant sector. In the baseline scenario, no efficiency improvements are assumed. In the 2°C 613 

and 1.5°C scenarios it is assumed that the production efficiency of process emissions 614 

improves by 3% a year over the projection period. Land-use change emissions are calculated 615 

in GENIE, with LUC assumed to follow RCP2.6 in the mitigation scenarios and RCP8.5 in 616 

the current policy baseline. 617 

 618 

Data availability 619 

 620 

The data that support the findings of this study are available from the corresponding author 621 

upon request. 622 
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