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Abstract

Economic, social and environmental requirements make planniraysigstainable electricity generation mix a
demanding endeavour. Technological innovation offers a range rdwadble generation and energy
management options which require fine tuning and accurate controlstecbessful, which calls for the use of
largesale, detailed datasets. In this paper, we focus on the UK and use Multi-CritersaoDéddaking
(MCDM) to evaluate electricity generation options against technical, environmental andcsiveidd. Data
incompleteness and redundancy, usual in large-scale datasets, as well as experambiguity are dealt with
using a comprehensive grey TOPSIS modaAle used evaluation scores to develop a multi-objective
optimization model to maximize the technical, environmental and social utilityeadléttricity generation mix
and to enable a larger role for innovative technologies. Demand uncertamtyandled with an interval range
and we developed our problem with multi-objective grey linear naragning (MOGLP). Solving the
mathematical model provided us with the electricity generation mix for évenmynutes of the period under
study. Our results indicate that nuclear and renewable energy optionsicapgaifind, solar, and hydro, but
not biomass energy, perform better against all criteria indicating that intstripduchitectural innovation in the

power generation mix is key to sustainabl¢ electricity production and supply

Keywords
energy innovation; interindustry architectural innovation; sustainable eneajynix; grey TOPSIS,

grey linear programming

1. Introduction
Energy supply is one of the most important elements of any economy. High qualiimelydehergy
supply is necessary to meet demand in a growing range of operations. In thig,aamnterrupted
energy supply feeds into the production, value enhancement and retail of all cassmait even
services (Bhattacharya et al, 2017). However, energy production, transtoresad consumption are

often delivered by large-scale industrial processes which are responsiblevdi® savironmental



damage (Kaldellis et al, 2004; Wang and Song, 2014; Mazzanti and Rizz9, 2bange to more
sustainable systems and processes has been slowed by technological lock-in, whichnairdaito

the status quo and competitiveness of incumbent organisations (Unruh, 2000; Foxon; 2002). Recent
advances in renewable energy and energy storage systems, however, set the scerntbdomanfp
complex energy system that enables deep decarbonig@®me et al, 2017). In this context,
interindustry architectural innovation (Jaspers et al., 2012) offer a better apjmodeh energy
sector. Architectural innovations are reconfigurations of existing products ateimsy created
through new interfaces between existing components, but where the technological hhsis of
components remains largely unchanged (Henderson and Clark, 1990). Interindustry architectural
innovation is defined as the novel configuration of existing technologies froaratiffindustries or
sectors. This approach integrates different mature technologies and incremental anaot@ti
produce higher efficiency under reduced risk (Zhang et al., 2013) and presents less ctialenge
developing and integrating new radical innovations. Configuration approaches put the gmophasi
optimising or incrementally improving existing solutsiirough the application of novel integration
strategies (Hyard, 2013), leading to significantly different and innovative audu(Kern, 2012;

Negro et al., 2012).

To achieve interindustry architectural innovation and adopt a novel integrating appreaehs thn
increasing need for the efficient use of high frequency, large-scale datadiSaln@016) to address
existing and forthcoming challenges in the energy sector (Chalvatzis and Rulil,6itane,
2016) In this process, large-scale data hold the promise of unlocking oppiedufoit interindustry
architectural innovation, particularly focused on the complex issues of relsliay (Etzion and
Aragon-Correa, 2016). For this research we develop a novel multi-objective thatietnables
addressing conflicting challenges for sustainable power supply by using high-fregieenayd and
fuel mix data to fine-tune its operation. We argue that this approach promotes theabilisyaof

power supply system and facilitates interindustry architectural innovation.

There is a wide range of available energy resources, the supply of which can be ofGimdeatzis

and loannidis, 2017a; 2017b), however in this research we call for a focus on sfetirittke other
energytypes, electricity can be used flexibly to support almost every energy need in lthe bui
environment (Darby, 2017), transportation (Canzler et al, 2017) and industrial pra@dgesis et

al, 2014; Pappas and Chalvatzis, 2017). Moreover, electricity is potentially théoonlypf energy

that can be produced and consumed with negligible environmental emissions (Kalayyh2@t2
Jakob et al, 2014), meaning that electriggyan attractive proposition for meeting the ambitious
challenge of economy-wide decarbonisation. Moreover, electricity is a secowndaryf energy
which can be produced from a variety of resources and resource combinations, depenegignal
availability (Chalvatzis, 2009).



Electricity generation is not without challenges, not least with redardptimal resource allocation
(Malekpoor et al, 2017), demanding sustainability constraints and issues af adpistment

(Zafirakis, 2013; Messner, 2015). Policies at international, regional arahalakévels focus on the
electricity sector to address multiple environmental issues. Climate chaitigation and air

pollution control are strongly linked to emission from power generation (Spyapetlal. 2005;

Heard et al, 2017), achieved by substituting fossil fuels for renewable energyssandcauclear
energy for power generation. The reduction of toxic urban air pollution thagspomsible for

respiratory and other health impacts, has also been an important envirorisgma|Giles-Corti et
al, 2016). It is expected that the substitution of internal combustion engindegelith electric

vehicles and the electrification of domestic heating can significantly reduce urban pollution

Power sector management is therefore highly complex. Addressing the sustgichbilenges of
electricity production and distribution requires the diffusion of new technologasatd to tis
complexity (Bompard et al, 2015). Considering the complexities within the electricitytiydnsl the
existence of multiple attributes involved with production planning, researtiaee applied Multi-
Criteria Decision Making techniques to evaluate and optimize the electrmityragion mix and
deliver a solution to sustainable electricity planning. Linares and Romero (2000) proposttl a
objective linear optimization approach to simultaneously minimize the costraisdions related to
electricity production in Spain. Unsihuay-Vila et al. (2011) proposed a Mbjtgfive model for
long-term expansion planning of electricity generation and transmission by applyied imteger
programming for economic and environmental criteria. However, social factarapartant basis of
sustainable development, were omitted by this previous research. Arnette and Zobel (201&) made
effort to develop a regional generation mix for the USA. Applying a Jgebive optimization model,
which aims to reduce the costs of generation and minimize the greenhouse gas €Bi#Siens,
they proposed a model to determine the optimal generation mix of wind,asmlazoal generation
systems. Perrera et al. (2013) developed an optimization model to design adtgtiidication
system for standalone grids. Applying non-linear multi-objective optimizatevelited cost ©
energy, unmet load fraction, wasted renewable energy and fuel consumption were considered as
objectives and by applying TOPSIS the obtained Pareto frontier was assessedrfal sqititions
More recently, Pratama et al. (2017) developed a bi-objective optimization modiedl tthé best
scenarios for electricity generation in Indonesia for 2050. The results veeissed through a simple
normalization aggregation process considering eleven economic, environmental and so@atccriter

select the best possible solution.

The development of low cost renewable energy technologies and the proliferatienewafable

energy sources is adding large-scale intermittent output from wind and solardad thousands of



micro power plants on house roofs. The expected popularity of electric vehicleglgvithillions of
electricity consumption points as well as potential mobile power stationsahahject energy back

into the grid (Haddadian et al, 2016). In addition to the enormous growth of power market participants
their unpredictability brings forward the requirement for supply security mechasischsas the
capacity markets and the emergence of increased frequency market settlementdoeh dnthinute
intervals (Dowling et al, 2017). In this context, attempting to describe eb#rieity market operation
requires high frequency, large-scale data that capture the detailed role ofypachf tpower

generation.

Nevertheless, the use of large-data even though necessary and promising (KaghaR@4 €}, poses
new methodological and contextual challenges. Heterogeneity, redundancy and incompleteress (Y
et al, 2017) are the main problematic features that result in unpredictddtienships between
attributes. To this end, the interrelation of sustainability and big data has beer@gpldrapplied in
various fields of supply chain performance (Hazen et al, 2016; Mani et al, 2017; Bualey017;
Badiezadeh et al, 2017), manufacturing (Rehman et al, 2016; Xu et al,Z2@ig; et al, 2017), risk
management (Janke et al, 2016; Choi et al, 2017) and marketing and predictiome$dssaiccess
(Li et al., 2015, Fan et al., 2015, Erevelles et al., 2016). One of the prominent fedteresgy
system complexity is the behaviour of consumers and their relation to technologyo(R12biL6;
2017) and Diamantoulakis et al (2015) introduced dynamic energy managementcag/ay tilow
between the grid and its users. Acknowledging the potential of big dataratess have developed
load scheduling and power dispatching smart power grid applications (Guo eblél &nd
classification and assignment methods of customer energy loads for servirayr{Bisal, 2017).
There have been few applications of big data in demand prediction. Rahman et al.af3iiEs)
machine learning techniques to data collected for the past 20 years by the USAnmovagement
sector to develop a demand forecasting systeris ddgregation of machine learning and big data
analytics achieved a forecasting rate equal to 99% of the actual demand.

This body of literature shows that improved understanding and knowledge extractiohidralata

offers numerous opportunities for sustainability performance (Mukred and Jianguo). 2017
Sustainability challenges are often cited as the main driver for innovatr@source and knowledge
based view approaches (Jelinek and Bergey, 2013). However, there have been few attempits to expla
the role of big data in enabling innovation to address sustainability challemgest al (2016)
provide a comprehensive review of conceptual approaches to big data for sustaitaitiynclude

that electricity sector sustainability is yet to be addressed. Inahalysis they highlight the role of

sustainable energy mix complexity as a hindrance for innovation.



Following this introductory section, Section 2 explains the context of our case study in the UK and the
goals this paper achieves. The methodological framework and the detailed stru¢heeiafblem
are presented in Section 3. The results are presented in Section 4 alongsidehfigurighlight our
findings and a comprehensive discussion that facilitates contextualisation. Rimalttpnclude with

future research suggestions and limitations in Section 5.

2. TheUK Case Study and Flow Diagram
For our case study we focus on the UK, because it combines several unique featwefnthas
energy sector and contextualises the role of big data in enabling the diffusionowétion for
sustainability. The UK has a long-term commitment to energy decarbonisgiibol¢ et al. 2016),
manifested with the Climate Change Act (UK Government, 2008) and updated with timesecu
Carbon Budgets, leading the country to a trajectory to reduce its tatsi@ms by 80% in the period
1990-2050. It is anticipated that the UK electricity sector will be lardelyarbonised significantly
earlier than 2050, with 2030 cited as a target (Climate Change Committee, 2010).

The UK must achieve this ambitious plan of deep power sector decarbonisatitst dgabackdrop

of a fragile balance of supply and demand (Newbery, 2016). Specifically, underinvestment in new
generation capacity in the UK electricity sector makes it increasinffigulli to meet demand.
Capacity is being removed faster than it is replaced, with coal powemstéteing retired due to
emissions quota and nuclear power stations reaching the end of their lifespans (RdgahyAo&
Engineering, 2013). The UK power sector is regularly at the centre of ddiiticaourse and public
debate (Lilliestam and Hanger, 2016), with repeated suggestions for price caps ketdcowtrol

(BBC 2013; 2017) and unstable regulation. Within this environment power utiltie®t innovate,

but instead use alternative approaches to retain customers (Rutter et al, 2017).

Identifying the difficultie for UK’s power sector the Government has recently uncovered a plan to

support innovation in new energy technologies (UK Government, 2017), specificallg faitus on

energy storage (Zafirakis and Chalvatzis, 2014) and smart metering. Part of this agenda aims to enabl
wide technology diffusion for demand side management putting consumers in the aetie
changes, an agenda that matches the EU Clean Energy Package (2016). Energy secion,nnovat
with the examples of energy storage and big data, iwakse UK Coalition Government’s Great

Innovations as early as 2013 (UK Government, 2013).

In this manuscript we propose an electricity generation mix optimisatonefwork that satisfies
sustainability requirements for high time frequency big electricity dendata. The sustainability
performance of each generation option has been evaluated against technical, economic, eralironment

and social criteria. The inherent uncertainty in these evaluations and thé luggiistic terms for



gualitative criteria has been modelled using grey TOPSIS (Technique for Oréeefefence by
Similarity to Ideal Solution). The objective functions have been established by thsinfOPSIS
scores for each generating system. Electricity demand has been considered gpttified range to
cover for uncertainty and unexpected events; thus, the optimization problem was coovieteraal
multi-objective optimization type. Multi-objective grey linear programmiMOGLP), a reliable
approach to deal with interval linear programming, has been usedvi tbel developed model
(Figure 1).

Selection of criteria related to /,,.-—-—-—'—'___‘—'—-—-—-._._\
technical, environmental and \"“‘-—-—-_._________._.—-—"""/
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Figure 1: Overall solution procedure for obtaining the optimal electricity genermafiix



3. Methodology
In real life decision making problems, decision makers (DMs) need to evdheapetformance of
alternative options. For complex problems it is necessary to consider multiple pasantetér are
not straight-forward to process and quantify; therefibris, preferable for DMs to occasionally apply
qualitative linguistic terms instead of exact crisp values for a decision mpkiiem. With the
availability of large-scale data there is a degree of uncertainty foe $actors which cannot be
represented with a single value and require a range of values. Thus, we need to use methods capable

of handling interval valued information.

3.1 Grey numbers
Grey number is a concept derived from the grey theory system, proposed by Dengwh#8?)s
well equipped to deal with insufficient, redundant, qualitative and interval informatigrey system
is defined as a system capable of covering uncertain information preserdegrdy number and a
grey variable. For defining a grey number, let X be the universal set arll Then a grey séb of X
is defined by its two mappings in equations 1 and 2:
fig(x):x = [0,1] 1)
ue(0):x - [0,1] )
In equations (1) and (2Ji;(x) andpg(x) are upper and lower membership functions respectively.
Generally grey numbers are expressed as:

®G =G| (3)
The lower and upper memberships can be estimated and an interval valued greywitimiogrer
and upper bound can be defined as:
®G =[G, 6] (4)
If we assume®G; = [G1,G;] and ®G, = [G,,G,] two Grey interval numbers then, the main

operations on grey numbers are done through following:

®G1+®G2=[61+ 62,61+ G2] (5)
®Gl - ®G2=[G1- 62,61 — G2] (6)
®G1 x®G2 =[min(G1 62,61 62,61 G2,G2 G1), max(G1 G2,G1 G2,G1 G2,G2 G1)] (7)
®G1+®G2=[61,61] % [ , 7] ®)

Also the lengths of a grey number can be calculated as follows:

L(®G) = |G — G| 9)



In order to find the distance between two grey numbers, we refer to Euclidiarcelibetween two
triangular fuzzy numbers (TFN). Grey numbers can be considered as a certain T éf TFN
number can be shown ds= (4,,4,,43) and we can transform it to a grey number by considering
the range of it a® A = [44,43] (Oztaysi 2014). Applying fuzzy literature and based on Ghen

(2000) definition of the distance between two TFN numbers, we define the distaneerbetw grey

numbers ofR A = [4,A] and® B = [B, B] as follows:

Dis (® A, ®B) = \/%[(é -B)+(A-B) (10)

If we consider a set oh alternatives(y,,y,, -, V) and a set of criteria(cy, c5,*+, c,), We can
build the grey decision matrix as follows:
®di1 @ dip - Qdip
pm=| @b Otz d®2n | 104 for i =12, m; and j=12,+,n (11)
® dt d @z~ ® o
Where® d;; = [d;},
TOPSIS is based on the idea that the solution or alternative with the shastastelito the ideal

solution and furthest distance from the si@olution is the best option among its peer alternatives.

Eij] is the value of the"ialternative against th& griterion.

The solution procedure for grey TOPSIS is the following:

Step 1. Normalizing the decision matrix so the values lie between 0 and 1 based on etjRaiiuh
13.

X N;; = ® dy = 4 Eij if criterion j belongs to benefit criteria (12)
Y max(® dj) max(aj) "max(d;)
QN =1 D%
Y max(® d]-)
_ d;j g |.. . o
=|(1- —,1— ——| if criterion j belong to cost criteria (13)
max(d,) max(d;)

This normalization converts all criteria to benefit criteria.

Step 2. Determining the positive and negative ideal solutions (PIS and NIS) based on eq{iat)ons
and (L5) respectively:

PIS = {maxN,,

=12, n} = {PIS,, PIS,, -, PISy} (14)

NIS = {minN;; | j =12,,n} = (NIS}, NIS;, -, NIS,,} (15)
l



Step 3. Calculating the distance between each alternative and the positive and negatiselidieal,

Dis* andDis~ respectively, based on equatioh6)(and (17).

n

Disf = Z(PISJ- — N2+ (PIS; = Nyj)?  fori=12-m (16)
=
n

Dis; = Z(lej “ N2+ NIS; N2 fori=12-,m 17
=1

Step 4. Finally, relative closeness coefficient is obtained by equation (18) and alternéth the
highest coefficient ranked as the $tesolution.
C = f)l—sl_ (18)

Dis; + Dis}

Figure 2 shows the necessary steps for execution of a grey TOPSIS evaluation.

Building the Grev decision matrix out of
available information and options

Normalising the decision matrix based
on each l:l'it!."l'ill‘.l]] nature

Selection of Negative and Positive Ideal
solution

Find the grey distance of each alternative
from our ideal solutions

Calculation of closeness coefficient and
ranking alternatives based on it

Figure 2: Grey TOPSIS procedure
3.2 Multi-Objective Grey Linear Programming (MOGLP)
Grey Linear Programming (GLP) is an optimization approach developed by Haahd¥192). In
the presence of interval values, whether as coefficients of objectiveofuioctin the constraints of a
linear problem, the problem cannot be solved by classical linear programpgirgaches. Model (1)
introduces a typical GLP mathematical model.

max f:  CQRQ X

Subject to:



RARX <QYB Model (1)
RX=>0

Where® C = {® (¢1),® (c2),-,® (cn)} is a vector of coefficients for the objective function:

® BT = {® (b1),® (b,),+,Q (b,,)} are the values of the left hand side of the constraints.
Variables in @ X” = {® (x1),® (x3),-,® (x,)} are our design variables a®@ 4 = [ a;;] for
i=12,--,nandj =1,2,-,mis a matrix with the values of design variables on the right hand side

of the constraints. Since all of the parameters in the model are in intervalogmeyttie optimal

solution will also be in interval grey form & f = [@f,@f] is the optimal value of the objective

function and® X* = [® (x1),® (x3), -, ® (x})] where @ (x}) = [® x/,® x;] are the optimal

values of the design variables.

To solve Model 1, Huang et al. (1992) proposed a two steps method (TSM). Thel@riridipe
method was to divide the problem into two sub problems and by solving each of thexptirtied
values for lower and upper bounds of the design variable were found. Fa(26tLa). improved the
methodology by separating the positive and negative values of the objective funefitsierds and
guaranteeing that the solution would not violate the best-case constraiath fhe lower and upper
bounds of the objective functioffi¥) and right hand side of the constrairi$) are positive and for

n interval coefficients in model (1}, of them be positivecji >0;j=12,-,k) andn — k of them

be negative (cji <0;j=k+1,k+2-,n), then the first sub-model for obtaining the lower

bounds can be shown as follows:

k n
- _ - -+
maxf —ZCJ- xj + Z ¢ X;

= jek+1
Subject to:
k n
Z afix; + Z afixt < b7 fori=1.2,,m, Model (2)
= j=k+1

xi 20 forj=12,-k,

xF 20 forj=k+1,k+2,,n

By solving model (2) lower bounds for optimum valuexﬁ;pt ;j=1,2,---,k and upper bounds for

i +
optimum value of;,

pt ] =k+1,k+2,-,ncan be obtained. After solving model (2) the second
sub-model for the main problem can be proposed as model (3) and by solving it thbaypmkefor

objective function can be achieved.



maxf+—Zc+x++ Z ¢ x;

j= j=k+1
Subject to:
Z a;jx; + 4 Z a;jx;j < b fori=12,-,m
j=k+1
lix liz
Z agx; + Z Aij%jopt + Z Gy % z @ijXjope < b fori
Jj=lip+1 Jj=k+1 Jj=liz+1
=12,,m
X = X, forj =12,k Model (3)
X' < Xjope forj=k+1Lk+2,-,n,
xt 20 forj=12,-,k,
xi 20 forj=k+1,k+2-,n,
where:
af 20 j =12l j=lp+1lz+2,,n
aF <0 j=ly+Llg+2,kj=k+Lk+2, 1.
In the aforementioned modet;,,, andx;,,, are the optimum values for decision variables after

solving model (2).

The initiation stage for a multi-objective optimization problem is to find thiengged value for each
of the objective functions separately. Thus, by applying models (1) to (3), tineabpblution for

each objective function should be obtained. Assuming the optimal objective funaki@nfor the
objective function ig}" = [@fl*,@ fl*], a membership function for each minimization or

maximization objective function can be obtained by equations (19) and (20) respectively:

1 if ilx) < f7",
=9Qf - filx , % 19
MOy 2@ (9
1 if i) =2Q f,
(%) = 1 £10-8f (20)

e f MBS

Figure 3 demonstrates the objective function memberships.



Maximization Mimimization

@ &

Figure 3: Minimization and Maximization of membership functions
Decreasing;(x) leads to increasing the membership function in the minimization problem and on the
contrary, an increase on the valuefgix) increases the membership function for the maximization
problem. Thus, lower amounts in minimization and higher amounts in maximizati@vedtigher
values of membership function. The solution to the multi objective problem cachieved through
maximizing all the membership functions and by solving the model (4):

P
maxz wiy (x)
=1

Subject to:

m(x) <1

RARQRX <®B, Model (4)
and® X = 0.

Wherey,; (x) are the membership functions; is the weight assigned to each objective function to
emphasize the importance of the objectives based on DMs’ opinion; and values fo®Q A and @ B are
the same as the values applied in each objective problem. The above model is liaegrey

programming problem and can be solved through steps (1) to (3).

3.3 Problem design
3.3.1 MCDM evaluation
As explained in Section 3.2, the coefficients for our objective functions are lbas&iCDM

evaluations and specifically the closeness coefficient calculated by grey TOPS#&cforof the
technical, environmental and social criteria. Defining the related eriterone the most important
steps in designing a comprehensive evaluation. An extensive literature review révedtdbwing

criteria for the evaluation process (Tables 1,2,3).

Table 1: Technical Criterifar grey TOPSIS evaluation



Criteria Description and measuring unit Reference
Evaluation of native resource| The extent to which the natural environment, natt
) (Kabak and
resources and technological advances of a cot ]
] o Dagdeviren2014)
support the generation system (Linguistic terms)
Decreasing dependency on | Effectiveness of the generation system in reducing
) ) ) ] (Kabak and
imported fuel fuel imports and decreasing the dependency (Lingu ]
Dagdeviren2014)

Reliability of energy supply

Levelized cost of generation

Capacity factor

terms)

Supplying sufficient electricity to the grid is
significant issue. Intermittent energy sources can
difficult to predict or control and thus provide a sou
of liability (linguistic terms)

The average cost of the lifetime of the plant per M
of electricity generated.

The Capacity factor of a power plant is the ratio of
electrical energy produced by a generating unit fc
period of time: to the electrical energy that could hi
been produced at continuous full power operal
during the same period (crisp numbers in percentag

(Sengul et al2015)

(Lazard, 2017)

(Stein,2013)

Table 2 Environmental Criteridor grey TOPSIS evaluation

Criteria

Description and measuring unit

Reference

Heavy metal emissions

Water consumption

Effect on global Warming

Land use

Disturbance of ecological

balance

Amount of emitted heavy metals to the environm
due to fuel combustion of a power plant (Inten
value, g/MWh)

The amount of water withdrawals used for cooli
conventional power plants (crisp numbef/@&Wh)
Impacts of certain generation systems based on (
emissions on global warming (Linguistic terms)
The environment and landscape are affected dire
by the land occupied by energy systems (Intel
value, n/MWh)

Extent of the negative impacts a power plant
have on the ecological system of the region due

land occupation, noise generation and wa:

Experts opinion

(Macknick et al2012)

(Streimikiene et al,
2012)

(Wang et al2009)

(Garni et al2016)




(Linguistic terms)

Particulate matter PM Particulate matter emissions have been consid

and separately for PM10 and PM2.5.

Particulate matter P)4 Particulate matter emissions pose significant risks  (Streimikiene et al,
human health depending on size, distributi 2012)

microstructure and chemical composition (Inter
value, kg/GWh)
Special wastes (nuclear, ...,) Nuclear power plants, depending on the technolc

(Brand and Missaoui,
produce 2.7 g of nuclear waste per MWh

o ) 2014)
electricity generation (Interval value, g/MWh)
Table 3: Social criteria for grey TOPSIS evaluation
Criteria Description and measuring unit Reference
Job creation Levelized number of employees involved in t
construction and operation phases of a power plar (Maxim, 2014)
Social acceptability The overview of opinions related to energy syste

by the local population regarding the hypothesi:

realization of the projects under review from t (Wang et al2009)
consumer point of view, also known as potential

conflict generation (Linguistic terms)

Health costs associated with | Electricity generation systems can damage hui

the technology health. Emissions, toxicity, noise creation a (Santoyo-Castelazo an
radioactive effects are among the contributors of Azapagic,2014)

externalities.

Regarding the criteria chosen for this research, where the pre@smatibn about the criterion is
available, crisp numbers have been chosen as the unit. For cases with uncerttiaty values,
interval values are used and where expasnionscan best describe the criteria, linguistic terms

have been applied to gather the best possible combination of information about all of tlae criteri

3.3.2 Multi objective optimization model

In this section we present and explain the mathematical models used for thev@bjautiions,
decision variables (design variables) and constraints for this research. Theg@oataidel is to find
the most sustainable electricity generation mix. The 8 sources of electecigragion, including

Coal, Gas, Nuclear, Oil, Wind, Hydro, Solar and Biomass, compete with each otheracsgane of



generation ando maximize the technical, environmental and social utility. Equations (21) Jo (28

show the multi-objective optimization model.

m T
max Environmental score: Z Z Escore; Xy, (21D
i=1k=1
m T
max Technical score: Z Z Tscore; Xy, (22)
i=1 k=1
m T
max Social score: z z Sscore; Xy;, (23)
i=1 k=1
Subject to:
Xyi < De(1+S)LSC; fori=12,-,m, (24)
m
Dey(1+35) sZin < Dex(1.01 +5) for k=12,--,T, (25)
i=1
Xpi=0 fori=7 and k €NS (26)
Xii = PDe, (1 + S)LSC; fori=7 and k&NS (27)
Xpi =0 (28)

Where X,,; is the decision variable and it shows the rate of electricity generdddvih) for
generation option i in time peridd

De,, is the demand rate (MWh) for time period k and it is a grey interval variable.

Escore;, Tscore; andSscore; are the objective function coefficients and are obtained through grey
TOPSIS evaluations.

LSC; is the maximum percentage allowance of generation for system i.

S is the slack coefficient and is used as a reliability coefficieetrm@ting the confidence level for
generating more electricity than demand, in case energy demand is higher thgratadticrhis
coefficient isapercentage.

P, is the solar capacity coefficient which limits the availabilitytioé solar system generation in the
time period of k and is a grey interval variable. Lower bound,ofs ratio of the minimum solar
electricity generation at period k to maximum solar electricity géioerfor the total time periods of
the last year and upper boundByfis ratio of the maximum solar electricity generation at period k to
maximum solar electricity generation for the total time periods of the last¥ea variables for the

model can also be seenriomenclature section, appendix 1.

Equations (21) to (23) are the objective functions and aim to maximize timéc¢ environmental

and social scores of the generation mix. Equation (24) is the constraint wisicdintges diversity



amongthe generation options. Equation (25) guarantees demand satisfaction in each time period. The
total electricity generation through the system must satisfy electdeityand to prevent black outs.
Equation (26) prevents the model from assigning any share to solar system durirzgttiooks
belongs toNS where there is no solar radiation available and Equation (27) limit the dgeneavft

solar electricity proportionate to availability of solar radiation myirihe day. Equation (28) is a

technical constraint to make sure there are no negative values in the solutions.

4. Results
The first step in our approach is to obtain the Technical, Environmental and So@altbcough the
multi-criteria evaluation of 8 mainstream generation options (i=13,respectively for Coal, Gas,
Nuclear, Oil, Wind, Hydro, Solar and Biomass). The expedpinions, statistical data and
information about the criteria mentioned in Section 3.3.1 form the ei@iuables (Tables 4, 5 and
6). The importance weights of all of the criteria have been considered eqil&,camsensus among

the experts was that all of the criteria had a similar significance.

Table 4: Evaluation against technical criteria.

Criteria Evaluation of Decreasing
e dependencies Reliability of Capacity L evelised cost
Systems on imported energy supply Factor of generation
I esour ces
fuel
Coal Medium High Medium Medium High 85 [124 153]
Gas M edium M edium Very High 85 [56 58]
Nuclear Low Low Medium High 85 [82121]
Oil Low Very Low High 85 [163 216]
Wind Very high Very High Medium 24 [78.5108.5]
Hydro Medium High Very High Medium High 50 [58 68]
Solar Medium Very High Low 20 [7194]
Biomass Low Low Medium High 83 [85 88]
Table 5: Evaluation against environmental criteria.
- Global Disturbance Particulate Particulate
s - ez Water warming  Land use of Matter Matter Nuclear
metal per  Consumption > .
g/GWh mé/ GWh (tonsCO,  (MYMWh) ecological PM 1o PM3s waste
Systems / GWh) balance kg/GWh kg/GWh
Coal g%%?f;‘;‘ 2405 VeryHigh  [360440] Very High z[ig.%g] 1[232_';‘;] 0
Gas [113;5311} 1480 Mﬁ‘i’;am 36 44] Mlj‘i’;;m [5677.06]  [5.677.06] 0




Nuclear 0 2405 Very low [911] Medium 0 0 [252.9]
Oil Sy 2405 High [36 44] Veyhigh (2035248 % 0
Wind 0 0 Very low [632 048] Medium 0 0 0
Hydro 0 0 Very low [104 156] Medium 0 0 0
Solar 0 0 Very Low [110 130] Low 0 0 0
Biomass [2%17%?623? 271 medium [11.313.9] Low ‘{3333% 525%%'1%5? 0

Table 6: Evaluation against social criteria.

Critenia | o creation Social Ll ST
Systems (Job year GWh) Acceptability €/GWh
Coal 0.11 Low [10200 76500]
Gas 0.11 Medium [2000 8000]
Nuclear 0.14 Low [1640 5740]

Oil 0.11 Medium [2000 8000]
Wind 0.17 High [340 1680]
Hydro 0.55 High [200 6700]

Solar 0.87 High 4380
Biomass 0.21 Medium 1700-42500

Linguistic terms were converted into grey numbers. The lower and upper bounds of thengbeys
have been tuned in consultation with experts to best reflect their qualitative opiradies TJ.

Table 7: Linguistic terms conversion to grey numbers.

Interval Term Grey Value
Very High [9 10]
High [7 9]
Medium High [5 7]
Medium [3 5]
Low [1 3]
Very Low [0 1]

The evaluation process is done through steps 1 to 4 in Section 3.1. The closenegent®eff
obtained for each generation alternative is euatafirectly into the objective functions of the
mathematical multi-objective model. The demand data required for the optimipatiblem has been

collected from th&JK National Grid ("Data Explorer | National Grid") which provides high frequency



demandin 5 minute intervals throughout 2017. To demonstrate the methodology, we single out the
week with the highest demand in 2017, thé 18 24" of January. The slack coefficient (S) was
considered at 2% and the demand interval was presumed between the actual demand (ABe) and 3
above the actual deman® (e = [ADe, 0.03 x ADe]).

All of the systems have been limited to 20% of the generation mix share, éxeays generation
system which was given the limitation of 30%. The choice of these specific figuaaguably
arbitrary but it serves model functionality in a range of ways. First, it dwes f@r a fuel mix to be
developed rather than for the best option to substitute all others. Second, it detlixense fuel mix
which increases robustness of supply security. Third, it maintains focus omcigyeptanning that
acknowledges the existing UK infrastructure. In this context, given the rapmthgof renewable
energy sources and the role for natural gas as the last fossil-fuel remaitiegUK power sector
these constraints provide a balanced approach. Specifically, natural gas is given aokegtiem
other energy sources because of its large-scale existing infrastructuits @agacity to provide

energy on demand at times when renewable energy sources are not productive.
(LSC, = 0.3 and LSC; = 0.2 for i = 1,3,4,5,6,7,8).

The grey TOPSIS evaluation final results shehigher closeness coefficient value as an indication

for higher suitability of the options (Table 8).

Table 8: Grey TOPSIS evaluation results.

Systems

Coal Gas Nuclear Qil Wind Hydro Solar Biomass
Scores
Tesccr(‘)?;a' 05600 06365 04669 04238 06056 0.6813 04866  0.4730

Environmental
Scor es

0.4866 0.7212 0.6163 0.4432 0.7141 0.9226 0.9278 0.4986

Social scores 0.0813 0.4743 0.4390 0.4743 0.6173 0.7874 0.8329 0.4344

Similar to other large-scale datasets, the dataset provided by the gridswiigch from missing data

points and redundant data throughout the year. For the selected highest demand week, we had 1,976
five-minute periods available (instead of 2,016) and the optimization pre@ssun for these

periods. A total of 15,808 decision variables exists in each of the objeatigdohs. The problem

was solved by Linear Programming function on CPLEX 12.0 which provides a rellatitem for

large scale optimizations with a core i7 3.5 GHz CPU.

The optimised generation mix across all objective functions, as an average weekly snapshot, promoted

low carbon energy resources as the best options (Figure 4a and b). Specifiodllgnd hydro are



rated at their maxim permitted (by the model) share of 20%. Coal and oil are virtually scheduled for
zero generation, which fits with the forthcoming UK power plan to elimioadé power stations that

are not fitted with carbon capture and storage by 2025 (UK Government, 2015)eSalgy is
overshadowed by other options which perform better in the UK and are better suppotted by

current policy instrument mix.

8% 7% 0%
4% 5%
29% 30%
20% 20%

18%

20% 20%

0%

n Coal = Gas = Nuclear = Qil = Coal = Gas = Nuclear = Qil

= Wind = Hydro Solar  m Biomass = Wind = Hydro Solar = Biomass

a b

Figure 4. Optimised generation mix of the selected week for lowera@d)upper (3b) bound of
generation

Figure 5 demonstrates the optimised use of generation options throughout Hisevariraday
demand for 18 January 2017. The contribution of wind and hydro is at all times equal (emactly
their cap of 20% of demand) for thes¥stems due to their satisfactory performance across the
evaluation stages. Gas and nuclear contribute all of the non-renewable energy tcethe \&4sin,
there is no solar radiation available, biomass is making up for the required demandrizitglect
however, when solar starts the generation, biomass is the first option thaidsdethd sometimes
when solar production is high, biomass is eliminated. These results demonstrétees hexamined
energy supply sources would behave according to the criteria that have beenhsit partormance
and their availability based on historical environmental patterns.
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Figure 5: Intraday 5-minute interval generation fof I18nuary(a) Lower bound (b) Higher bound.

While the focus on a single optimal solution is an attractive propositian,benefit of our
recommended approach is its capacity to open up various viewpoints and demonstrate value
propositions when a certain set of criteria is prioritised. To this end, we camskeate the specific
performance of the generating options only against technical (Figure 6), environ(réntes 7) or

social (Figure Bcriteria without the “distortion” of all criteria having an impact at the same time.
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Figure 6: Optimal generation mix based on upper bound production of technical criteria
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Figure 7: Optimal generation mix based on upper bound of environmental criteria
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Figure 8: Optimal generation mix based on upper bound of social criteria

Specifically, the variable sets of criteria used for our objective functionsdsignificantly different

results. Coal is generally not considered to be an acceptable generation optioajledpeciew
investment, but it performs well when it comes to technical criteria EigurThe main reason for

that is its long-term reliability in power generation. However, itasfeatured in any of the other sets

of criteria. Oil only performs well for social criteria and mainly forribde in skilled employment;
however, it is completely eliminated against all other criteria. Biomaks isetcond solid fuel among

our generation options, and it performs similarly to coal against technitaiagrbut its high air
pollution emissions and social costs eliminate it against all other crifEn. criteria-specific
approach allows for the biomass, oil and coal options to be examined in the areas in which they

perform well, allowing a more complete view of this evaluation exercise.
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Figure 9: Generation rate in absence of social (a), environmental (b) and technicadr{a) crit

Reviewing the results by eliminating each of the objective function can givegosdaoverview of

the sensitivity of the results to the removed objective function. In figuree 9etbults have been
calculated, each time based on only two of the objective functionsheAshiare of generation for
different systems based on lower and upper bound of generation is not signifitiiatgnt, only

upper bounds of the electricity generation have been presented. Due to satisfactory performance of the
wind and hydro systems against all the sustainability criteria, these systamihdieaeneration at

their maximum allowance by the diversity coefficient, at 20 percent of theajimemix in each

time period. Furthermore, the solar system is also filling up its maximum share baeesllalility

of the solar radiation. Eliminating social objective function allows coabtdribute and moreover, it
allows nuclear energy systems to maximize prodtfg%on during the day. This shows the vulnerability of
these two generation systems to social aspects of electricity generatioevaiowhen solar power
reaches its maximum generation capacity, coal fired generation becomes zero eadpraduction

level reduces approximately by half.



In absence of environmental criteria, the generation share of biomass increatids aad be an
indicator of a need for development of this technology regarding environmental meahigasight
particularly important as biomass energy carbon capture and sequestration SIBECOGften
discussed as a possible carbon negative technology. The generation of eledgthicibyf system

remains zero during all three scenarios. showing significant shortages against iall criter

5. Conclusion

The rapid expansion of intermittent renewable energy will continue owing to bidipsiog costs
and decarbonisation targets. At the same time, energy innovations such as energydeorage,
side management systems, sensors and transmitters must play a role in ensuring thdesastdinab
secure supply of energy, but need the application of novel integration strategiagh an
interindustry architectural innovation approaClontrolling and integrating these innovations requires
extracting knowledge about their interoperability from large-scale datr.c@wing the challenges
inherent to large-scale data, such as redundancy and uncertainty can delivemgrossults for

sustainable planning across a wide range of applications and sectors (Song et al, 2017).

Our case study focuses on the UK electricity sector where we use high frequency, large-scale, detailed
electricity demand data to develop a generation mix optimisation process. In thinimieti
approach, we employ objective functions that maximise the environmental, teemucacial utility

to achieve optimum sustainability. We find that generation mix innovation éssaiy for the UK to
achieve its ambitious deep decarbonisation targets. Our results support the QHrsnategy to
completely remove coal from its power fuel mix by 2025. At the same timeanwapacity will be
reduced because of power stations reaching the end of their life-span. Interirotakirgctural
innovation will be necessary to substitute coal and nuclear power stationsendtivable energy
sources. Our analysis indicates that wind, solar and hydro energy provide the bptiefék for the
UK electricity mix. To this end we suggest that subsidizing biomaghtmmot be appropriate, in
terms of overall sustainability, even if it allows the UK to achiew=ighouse reduction targets based

on zero emission assumptions.

Apart from these final results, we argue that the transformation ofati#idnal utilities to a new
disaggregated model is a case of interindustry architectural innovation whichligragpaars to be
feasible. This transitional decarbonisation phase requires fine tuning toleatisaa was never
previously necessary; therefore, with this work we contribute a robusbdwtgical approach to
integrate detailed large datasets for resource allocation in sustainedtieciey production. Our
approach is helpful to policy makers and utility managers because it alloespbmatory view of

results witha separate focus on distinct technical, environmental and social objectives. doritext,



decision makers can adjust their attention based on the specificities of the weathme, ensuring
the transferability of our method. We expect the implications of our work tiybiéicant in enabling
interindustry architectural innovation in the power sector. The use of large datasétsm and fine

tune this transition is essential and will promote sustainable resource allocation.

As with all modelling work, our approach comes with limitations. Thenraiitation is data quality.
In addition, we do not control for the possibility of the rapid diffusiome#v innovatios, such as
electromobility, that could have substantial interactions with the powesrsé&ature work should
focus on a more meaningful understanding of innovation spill-over effects, pafticiar example
with the role of electric vehicles to provide grid services. Furthermorerefuvork should model
energy diversity by accurately optimising the selected constrains for the selectedngirerggions.
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Appendix 1: nomenclature

Escore; Environmental score for generation system type i
Sscore; Social score for generation system type i
Tscore; Technical score for generation system type i
Xyi Generation level of systeinat time period of k
De, Range of electricity demand at time period of k
LSC; Maximum allowance of generation mix share for system i
P, Capacity coefficient of solar system at time period k
NS Set of time periods k with no solar radiation available
S Slack coefficient to reduce the risk of electricity interruption
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