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Comments ŽŶ ͞One-tailed asymptotic inferences for the difference of proportions: 

analyƐŝƐ ŽĨ ϵϳ ŵĞƚŚŽĚƐ ŽĨ ŝŶĨĞƌĞŶĐĞ͟ ďǇ Álvarez Hernández M, Martín Andrés A and 

Herranz Tejedor I. Journal of Biopharmaceutical Statistics (published online 02 Apr 2018) 

 

Peter J. Laud 

 

In their recent paper, Álvarez Hernández and colleagues present an evaluation of numerous 

methods for analysing the difference between two independent binomial proportions for 

one-tailed inference.  I would like to offer a graphical presentation giving some insight into 

the criteria used for selecting the optimal method, and recommend a superior method that 

was omitted from the evaluation. 

 

The parameter כߙ ;ƌĞĂů ĞƌƌŽƌͿ ŝƐ ĚĞƐĐƌŝďĞĚ ĂƐ ͞ƚƌĂĚŝƚŝŽŶĂů͘͟  TŚŝƐ ƉĂƌĂŵĞƚĞƌ ;Žƌ ĞƋƵŝǀĂůĞŶƚůǇ 

coverage probability for a confidence interval) is more often defined in the literature at each 

individual parameter space point (݌ଵ, ݌ଶ), but the authors have defined it as a local 

maximum over the range of ݌ଵ and ݌ଶ for a fixed ߜ. Consequently the summary statistic οߙതതതത, 

which is based on the average of these local maxima over different values of ߜ, ݊ଵ and ݊ଶ, is 

open to misinterpretation. This is further confused when evaluating the ߜ ൌ Ͳ case, when οߙതതതത uses only a single value of כߙ for each ݊ଵ, ݊ଶ pair.  

 

As described by Newcombe (1998), there is a fundamental choice to be made in selecting 

the best methods in the field of discrete data analysis, since the nominal significance level 

cannot be attained exactly. For a given nominal significance level (such as 5%), one may 

seek to obtain error rates that are either guaranteed to be at most 5% (the conservative 



criterion) or that are 5% on average (the proximate criterion). Naturally, there is a range of 

possibilities between these two extremes, ĂŶĚ ƚŚŝƐ ŝƐ ǁŚĞƌĞ ƚŚĞ ĚĞĨŝŶŝƚŝŽŶ ŽĨ ͞ŽƉƚŝŵĂů͟ 

becomes problematic. For example, when applying a proximate criterion, it is sometimes 

preferred that average error rates are slightly below 5%, and this seems to be the position 

the authors are aiming for. However, in practice, the οߙതതതത parameter results in a selected 

method that is further towards the conservative end of the scale than implied in the paper. 

When it comes to evaluating ߜ ൌ Ͳ, the selection criterion almost becomes a strictly 

conservative one, resulting in the unexpected ĐŽŶĐůƵƐŝŽŶ ƚŚĂƚ ƚŚĞ ĐůĂƐƐŝĐ )EϬ ŵĞƚŚŽĚ ŝƐ ͞ƚŽŽ 

ůŝďĞƌĂů͟. 

 

Furthermore, in the case of one-tailed errors in particular, it is not uncommon to observe a 

type of bias in error rates with systematic deviations from the nominal level that cancel 

each other out when averaged. Therefore οߙതതതത is not a reliable indicator of optimal one-tailed 

coverage, regardless of whether the average is taken over local maxima or the whole 

parameter space. Cai (2005) discussed this bias for the one-sample case, without reference 

to any summary of mean coverage probabilities. The ideal for a one-tailed method is to 

have consistent error rates that are close to the target rate (whether in a proximate or 

conservative way) over as much of the parameter space as possible, not just on average. A 

confidence interval that achieves this is described as having central location (Newcombe, 

2011), and arguably this property should form part of the selection criteria for both one- 

and two-tailed inference. For risk difference, this may be examined by separately averaging 

the error rates above and below the ݌ଵ ൌ  ଶ ĚŝĂŐŽŶĂů͕ ƚŽ ĂƐƐĞƐƐ ĞƋƵĂůŝƚǇ ŽĨ ͞ŵĞƐŝĂů͟ ĂŶĚ݌

͞ĚŝƐƚĂů͟ errors respectively. Alternatively, for methods that achieve proximate coverage, it is 



sufficient to summarise the percentage of all parameter space points that have an error rate 

within a set distance (e.g. 0.1) above or below the nominal error rate (% proximate). 

 

Newcombe and Nurminen (2011) considered that occasional substantial dips in coverage 

(i.e. ͞ĨĂŝůƵƌĞƐ͟) need not be viewed with disquiet, and proposed evaluating performance on 

the basis of a moving average representation of actual error rates to smooth out the 

unavoidable spikes in coverage. This approach was extended to the two sample case in Laud 

and Dane (2014).  The resulting smoothed probability surface plots provide a visual means 

of evaluating confidence interval performance, and they also help to illustrate the problems 

noted above regarding οߙതതതത. 

 

The attached figure displays the unsmoothed and smoothed one-sided error rates (RNCP = 

right-sided non-coverage probability) for ݊ଵ ൌ ݊ଶ ൌ ͸Ͳ with nominal one-sided ߙ ൌ ͷΨ. 

PĂƌĂŵĞƚĞƌ ƐƉĂĐĞ ƉŽŝŶƚƐ ǁŝƚŚ Ă ͞ƚŽŽ ĐŽŶƐĞƌǀĂƚŝǀĞ͟ ƌĞĂů ĞƌƌŽƌ ďĞůŽǁ ϰ͘ϱй ĂƌĞ ĐŽůŽƵƌĞĚ ŝŶ 

shades of yellow, fading to white at 0%, ĂŶĚ ͞ƚŽŽ ůŝďĞƌĂů͟ ĞƌƌŽƌ ƌĂƚĞƐ ŽĨ ŽǀĞƌ ϱ͘ϱй ĂƉƉĞĂƌ ĂƐ 

shades of red to black (note that this is much more strict than the 7% used in the definition 

of failures). Two shades of orange represent the desirable ͞ƉƌŽǆŝŵĂƚĞ͟ range of error rates 

within 0.5% of the target 5% error rate.   

 

Blue circles are superimposed on the plots showing the local maxima at selected ߜs that 

form the basis of οߙതതതത. These reveal the clear pattern of change in error rates for AE5 across 

the range of ߜ (which can also be observed to some extent in Table 2 of the paper). It can 

also be seen that in places the performance of all three selected methods can be quite 

conservative, and alarmingly ƐŽ ĨŽƌ ƚŚĞ )P͛Ϭ ŵĞƚŚŽĚ͘ It may also be noted that the 



continuity correction for AE5 has almost no effect, and does not achieve the conservative 

selection criterion, which is commonly the purpose of such corrections. This suggests that 

ƚŚĞ ĂƵƚŚŽƌƐ͛ ƉƌŽƉŽƐĞĚ ĐŽŶƚŝŶƵŝƚǇ ĐŽƌƌĞĐƚŝŽŶ may have a different intended purpose. 

 

The authors also analysed the ŚǇďƌŝĚ ͞MNBL͟ ŵĞƚŚŽĚ͕ ƉƌŽƉŽƐĞĚ ŝŶ LĂƵĚ ĂŶĚ DĂŶĞ ;ϮϬϭϰͿ͘ 

They have overlooked the superior method labelled in the same ƉĂƉĞƌ ĂƐ ͞GNďĐ͕͟ ǁŚŝĐŚ ŚĂƐ 

subsequently been developed further as the skewness-ĐŽƌƌĞĐƚĞĚ ĂƐǇŵƉƚŽƚŝĐ ƐĐŽƌĞ ;͞“CA“͟Ϳ 

method (Laud, 2017). Error rate plots for SCAS are shown in the figure alongside those for 

AEϱ ĂŶĚ )P͛Ϭ͕ ĐůĞĂƌůǇ ĚĞŵŽŶƐƚƌĂƚŝŶŐ the superior performance of this method. The 

incidence of failures (0.07<כߙ) across the whole parameter space is comparable to the other 

methods at 0.2%. Similar patterns are observed in the surface plots for other combinations 

of ݊ଵ, ݊ଶ and ߙ. Further evaluations also confirm that error rates for SCAS are equally 

consistent for two-tailed inference. 

 

Average power (ߠҧ) has not been extensively evaluated for SCAS, which is designed to 

prioritize the other aspects of performance in relation to error rates and interval location. 

However, for the example shown here, the calculated value of ߠҧ for SCAS is slightly higher 

than the AE5 methods. According to my calculations, SCAS also has fewer failures than AE5 

at the selected values of ߜ, so I believe it might have been selected as optimal if it had been 

included in the paper, despite the flaws in the selection criteria. 

 

As well as superior error rates, the SCAS method has a number of other advantages:  

1) No adjustments to the sample data are necessary; 

2) The method is extended to stratified datasets; 



3) The same underlying methodology is applicable to analysis of relative risk and odds 

ratio, and also to analysis of Poisson exposure-adjusted incidence rates, and even to 

the single sample case;  

4) A versatile continuity correction may be used to obtain either strictly conservative, 

mostly conservative, or even conservatively proximate coverage, while maintaining 

central interval location (see Laud 2017 Supplementary Appendix). 

5) Finally, SCAS is applicable to smaller sample sizes without too much reduction in 

performance͘ TŚĞ ĂƵƚŚŽƌƐ ŽĨ ƚŚĞ ĂďŽǀĞ ƉĂƉĞƌ ĚĞĐůĂƌĞ ƚŚĂƚ ͞Ăůů ŵĞƚŚŽĚƐ ǁŽƌŬ ďĂĚůǇ͟ 

with ݊ଵ ൏ ͸Ͳ. It is true that smaller sample sizes result in increased fluctuations in 

the probability surface leading to a slightly higher failure rate, but SCAS nevertheless 

achieves remarkably consistent proximate coverage at all sample sizes, when 

assessed on the basis of moving average error rates. This is helped by the n/(n-1) 

variance bias correction (Miettinen and Nurminen, 1985) that Álvarez Hernández et 

al. omit from the ZE0 method, presumably for the sake of consistency with the 

classic Pearson chi-squared test.  

 



 

Surface plots of [top] right-sided non-coverage probability (RNCP) and [bottom] moving average RNCP for AE5, 

AE5-ĐĐ͕ )P͛Ϭ ĂŶĚ “CA“͕ ǁŝƚŚ ݊ଵ ൌ ݊ଶ ൌ ͸Ͳ and one-sided ߙ ൌ ͷΨ. 
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