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Abstract

The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares.
Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite
(GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain
1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares
covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the
micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also
demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift
over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The
RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are
interpreted as signatures of standing oscillations, with the longest period (P1) being the fundamental and others
being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P1/PN) is also analyzed.
The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing
magnetized plasma from the photosphere to the corona in active regions.

Key words: Sun: activity – Sun: chromosphere – Sun: flares – Sun: oscillations – Sun: X-rays, gamma rays

1. Solar Atmospheric Oscillations

Achieving a detailed understanding of the nature of solar
atmospheric intensity oscillations is a long-standing challenge.
The intensity oscillations could provide vital information about
the properties of the solar atmosphere (e.g., geometric structure,
magnetic structure, density structure, ionization degree) by
using solar magnetoseismology tools (Roberts et al. 1984;
Banerjee et al. 2007; Erdélyi & Taroyan 2008; Andries
et al. 2009; Verth et al. 2010; Jess et al. 2015). Numerous
studies reported oscillations in the solar atmosphere, using
high-resolution observations (De Moortel 2009; Ruderman &
Erdélyi 2009; Banerjee et al. 2011; Wang 2011; Mathioudakis
et al. 2013). The observed periods of intensity oscillations
range from several minutes to several hours (Auchère
et al. 2014). Various oscillation patterns with periods of a
few dozens of minutes are also found in polar plumes and polar
coronal holes observations (DeForest & Gurman 1998).
Bocchialini et al. (2011) studied intensity and Doppler velocity
oscillations and reported periods from several up to 80 minutes
in filament and prominence observations. Tian et al. (2008)
investigated solar bright points and reported oscillations
between periods of 8–64 minutes. Magnetohydrodynamic
(MHD) waves in the solar corona are often accounted for by
the observed intensity oscillations in the range of 2–33 minutes
(Aschwanden et al. 2002). Hence, long-period oscillations in
the solar atmosphere are not unprecedented.

Smaller local features like solar flares are also able to
produce periodic behavior, and studying their oscillatory
patterns has become a well-studied subject (McLaughlin
et al. 2018). In general, the observed periodic features in the
wavelet power or the Fourier spectrum of the soft X-ray
emissions are called quasi-periodic pulsations (QPPs). Based
on the observations of the Geostationary Operational

Environmental Satellite (GOES) satellite, Dolla et al. (2012)

performed a case study that reported QPP signatures in the

emission of an X-class solar flare. Simões et al. (2015)
confirmed these results by analyzing a larger statistical sample.

They demonstrated that 28 events out of 35 X-class flares also

show QPP signatures. Reznikova & Shibasaki (2011) used
Reuven Ramaty High Energy Solar Spectroscopic Imager

(RHESSI) observations to show that periodicities in the range

of 2.5–5.0 minutes become shorter the closer the observations
are to a major energetic flare. Sych et al. (2009) found similar

QPP periodicities and proposed that the source of the

oscillations could be triggered by 3-minute slow magnetoa-
coustic waves. Sych et al. (2015) found continuous energy

amplification of 3-minute waves in sunspot umbrae before a

solar flare.
The observed oscillations in coronal loops may indicate that

standing slow modes are likely triggered by micro-flares, which
are produced by impulsive heating (Mendoza-Briceño

et al. 2002; Taroyan et al. 2005; Erdélyi & Taroyan 2008).

On the other hand, the micro-flares themselves before a major,

energetic flare are usually called precursors (Charikov 2000)
and their temporal distribution may be linked to other types of

periodic variations of X-ray flux. Namely, the majority of the

hard X-ray flares are preceded by precursors, usually a few
dozens of minutes before the major solar flare (Tappin 1991).

The information obtained by the observations of these flare

precursors can be applied to acquiring the spatio-temporal
properties of the local magnetic reorganization process and

may also reveal diagnostic information about the nature of the

destabilization of the active region.
In this work, we study the temporal distribution of solar flare

(mostly micro-flare) recurrences before and after an energetic
eruption. An energetic eruption, here, refers to X-type and
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M-type solar flares. Micro-flare occurrence before or after a
major flare will be referred to as pre-flare or post-flare activity.
Furthermore, for the sake of simplicity, both types of micro-
flares, pre-flares and post-flares, will be jointly referred to as
minor flares.

2. Methodology

Two X-ray flare databases are employed in our study. First, the
major flares and minor flares are provided by the GOES satellite.
The GOES catalog contains information about the basic properties
of the solar flares, such as the onset time, the position, the
magnitude of the events, and the identification of the associated
active region. The flare catalog is available at NGDC/NOAA.4

Although the main focus is on the statistical population of GOES
eruptions, a control sample is also used that is based on the flare
list5 by the RHESSI satellite (Lin et al. 2002). The RHESSI flare
list contains data about the onset time of the flare, duration of the
event, peak intensity, photon count, and energy channel of the
maximal energy. The positions of the solar flares are calculated by
128× 128 back-projection maps using 16arcsec pixels (Hurford
et al. 2003). The spatial resolutions may seem to be somewhat
inaccurate, but the position data are sufficiently accurate for
locating the active region. The GOES and RHESSI catalogs
contain 25,691 and 121,430 solar flare events, respectively, for the
analyzed time period between 2002 and 2017. The discrepancy
between the number of observed solar flares may lie in the
sensitivity of satellite detectors and/or the significance threshold
of the signal-processing. Although, the identification definitions
for solar flares are similar for both catalogs, the two satellites
observe at slightly different wavelength ranges, which may also
cause further discrepancies.

For identifying major flares for both the GOES and RHESSI
samples, the following criteria are introduced. In the GOES
statistical sample, only M- and X-class flares are selected as
major flares. However, the RHESSI data do not contain flare
classification. Therefore, the RHESSI major flare candidates
must be associated with the GOES counterpart records for
obtaining the flare classification information for each solar
flare. Only simultaneously observed events are considered, i.e.,
the RHESSI and GOES solar flares must be relatively close in
space and time. The actual information for RHESSI major flares
is taken from the RHESSI flare database. The GOES flare
counterpart event only assists in filtering the magnitude of the
RHESSI observations. It is also required that no additional flare
occurs with a larger peak flux in the same sunspot group within
a 6hr interval before and after the candidate major flare. A
major flare candidate without an associated active region is not
considered for selection for further analysis.

The final GOES sample obtained by applying the above
criteria contains 1330 M-class and X-class events (including
1219 M-class and 111 X-class events) between 2002 and 2017.
The final RHESSI statistical population consists of 301 major
flares, 290 M-class and 11 X-class events between the same
period as the GOES sample. Table 1 shows the number of
major flare events before and after filtering. The total
population of the RHESSI sample may seem somewhat low
compared to the sample size of the GOES sample. Due to the
orbital properties of the RHESSI satellite, half of the solar

eruptions cannot be observed. A significant portion of the data
are also lost because of the missing active region identification,
the missing GOES counterpart flare association, the influence
of the orbit of the RHESSI satellite, and other interferences,
such as the South Atlantic Anomaly (Christe et al. 2008).
Criteria for filtering the minor flares are also applied. The

RHESSI satellite’s orbit allows a 1-hour observation time then a
40-minute observation blackout caused by the satellite
spending time in orbital eclipse. Furthermore, when the
satellite passes through the intermediate southern latitudes,
the detector counts are influenced by the South Atlantic
Anomaly. Therefore, we omitted solar flares that occurred
while crossing the South Atlantic Anomaly and data gaps.
More specifically, the RHESSI eruptions indicated by the flags
ED, EE, ES, DE, DS, DG, DE, GS, NS SD, SE, SS, and PS are
omitted. Fortunately, the GOES flare catalog does not suffer
periodic data gaps from the satellite orbit as do the RHESSI
observations. When a minor flare occurs in the same sunspot
group within at most 6 hr before or after the major flare, the
eruption is automatically considered a minor flare of a major
flare. However, the minor flares must be less energetic than the
associated major flares. In the GOES sample, the flare
classification of the minor flare candidate must be smaller than
the classification of the major event. In the case of the RHESSI
data, the highest energy band in which the minor event is
observed must be smaller than the highest energy band of the
major solar flare. At this stage, direct physical causality
between the major and the minor flare cannot be assumed;
however, both events could be a consequence of the
reorganization of a local magnetic field. After applying our
introduced filtering criteria, the total number of GOES minor
flare events is 4062, containing 2290 pre-flares, and 1772 post-
flares. Meanwhile, the RHESSI minor flare population is
composed of 4119 events, including 1960 pre-flares and 2159
post-flares. Table 2 demonstrates the number of minor flare
events before and after applying the filtering criteria.
Let us define the reference time as the moment of the major

flare eruption for each active region. Next, the elapsed time
between the eruption of a minor flare (ti) and its major flare (t*)
is calculated for each major flare in every active region
separately. Let us now introduce

A t t t t t t t t, , , ..., , 1n i1 2 3* * * *= - - - -{( ) ( ) ( ) ( )} ( )
where An contains the time differences between the major and

minor solar flares in each active region. The actual value of

(ti− t*) must be between −360 and 360 minutes, however,

A0 Î . The domain [−360, 0[represents the pre-flares up to 6 hr

prior to the major flare and] 0, 360] stands for the post-flares,

up to 6 hr after the onset of the major event. The subscript n

Table 1

Number of Major Events before and after Filtering

Source Type Before Filtering After Filtering

GOES M-class 1340 1219

GOES X-class 115 111

Total 1455 1330

RHESSI M-class 593 290

RHESSI X-class 56 11

Total 649 301

4
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/

solar-flares/x-rays/goes/
5

http://hesperia.gsfc.nasa.gov/hessidata/dbase/hessi_flare_list.txt
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represents the number of major flares. The total number of

elements for a given An equals the total number of pre-flares

and post-flares. On average, each GOES major flare is

surrounded by 3 GOES minor flares and each RHESSI major

flare has 13 RHESSI minor flares. Hence, case studies based on

a single active region cannot be performed. To increase the

number of events we merge all major flares (n) in all active

regions into set x. Therefore, the total statistical sample size is

now defined by the expression

x A . 2
i

n

i

1

=
=
⋃ ( )

The frequency distribution F(x) is calculated in one-minute
bins of the 6hr period before and after the main flare, therefore
the number of bins is 720. In each bin, we determine the total
number of minor flares. One bin still contains approximately
half a dozen minor flares, more specifically in the GOES
statistics each bin contains 5.6 solar flares on average. For the
RHESSI population, 5.7 solar flares are present per bin on
average. The frequency distribution F(x) is normalized by the
following definition (also referred to as Z-Scores):

Z x
F x F x

F x
, 3i

i

s
=

-
( )

( ) ( )

( ( ))
( )

where F x( ) represents the mean of the frequency distribution

F(x) and σ(F(x)) is the standard deviation. The mean

F x 5.64=( ) and standard deviation σ(F(x))=3.37 for the

GOES statistical population. The RHESSI sample shows the

mean F x 5.72=( ) and the standard deviation σ(F(x))=3.20.
Finally, anomalies or outliers were identified and excluded

from the further statistics, therefore we omitted peaks greater

than the Z x 5i s>∣ ( )∣ threshold.
Panels (A) of Figures 1 and 2 show the time variation of the

minor flare occurrence based on the RHESSI and GOES flares
separately before and after the occurrence of the major event.
Both time-series show an undesirable feature, namely the
number of the minor flares is significantly decreased as the
occurrence of the major flare is imminent. This behavior is
likely to be the consequence of the enhanced particle emission
by the major eruption. The particle emission of a major flare
may surpass the fine dynamics of the reconnection in the same
active region. The trend can be removed by applying the lag
operator LZ x Z xt t 1= -( ) ( ). The first differences Z xtD ( ) of the
RHESSI and GOES populations are defined by

Z x L Z x1 . 4t tD = -( ) ( ) ( ) ( )

Panel (B) of Figure 1 shows the temporal variation of the
GOES micro-flare Z-Scores after calculating the first difference
of the time-series. The GOES signal is now suitable for
frequency analysis. Unfortunately, the temporal variation of the
RHESSI micro-flare occurrence histogram (panel (A) of
Figure 2) also shows another unwanted feature. The period of
this unwanted fluctuation is around 100 minutes. The period
may be the consequence of the orbit of the RHESSI satellite,
which features a 60-minute observational period followed by a
40-minute blackout.
The orbit itself therefore may influence our sampling

method, hence the importance of the dominant 100-minute
RHESSI oscillation cannot be certain. For that reason, the
following additional analysis is performed. A virtual satellite is
created in silico, which observes random eruptive events. The
orbit of the virtual satellite features the same properties as the
orbit of the RHESSI satellite, i.e., a 60-minute “observational”
period and a 40-minute blackout. The occurrence and the
magnitude of the major and minor flares are random, however,
the total number of random events equals the number of real
observed data. Hence, we modeled 301 major and 4119 minor
eruptions. Let us now apply the same methodology used for
previous analyses with this new random-based sample. Panel
(A) of Figure 3 shows the result of the random-based sample
statistics based on 10,000 simulations. Panel (B) of Figure 3
demonstrates the frequency domain signal, which (not surpris-
ingly) reveals one dominant peak around 100 minutes (or
around 0.17 mHz). Judging from only the RHESSI data set, it
cannot be safely assumed that this period is only an artifact and
there is no other physical process with a similar periodicity.
The GOES statistical population, however, does not seem to
show similar periodical behavior. Therefore, the 100-minute
oscillation in the RHESSI data set can be confirmed as an
artifact, which can be removed by applying the seasonal lag
operator L Z x Z xS

t t S= -( ) ( ). If the data show fluctuation
patterns at every S observations, a seasonal difference can be
applied to remove the seasonal trend from the time-series using
the expression

Z x L Z x1 . 5S
t

S
tD = -( ) ( ) ( ) ( )

Unfortunately, the seasonal lag operator introduces an
unwanted consequence. The transformed signal is truncated
and the range of signal is shorter than seen in the original.
However, since the 100-minute orbital periodicity is so clear,

Table 2

Number of Minor Events before and after Filtering

Source Type M-class Major

before Filtering After Filtering

GOES Pre-flare 2270 2102

GOES Post-flare 1807 1675

Total 4077 3777

RHESSI Pre-flare 4273 1851

RHESSI Post-flare 4043 2067

Total 8316 3918

Source Type X-class Major

before Filtering After Filtering

GOES Pre-flare 191 188

GOES Post-flare 100 97

Total 291 285

RHESSI Pre-flare 534 109

RHESSI Post-flare 441 92

Total 975 201

Source Type All Major

before Filtering After Filtering

GOES Pre-flare 2461 2290

GOES Post-flare 1907 1772

Total 4368 4062

RHESSI Pre-flare 4807 1960

RHESSI Post-flare 4484 2159

Total 9291 4119
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the trend can be extrapolated forward in time before applying
the operator, which preserves the time domain to
±360 minutes. We have chosen a sine function as a model
function for describing the orbital period of the RHESSI
satellite. The seasonal lag operator is applied to the extended
time-series. Therefore, the transformed signal remains in the
range of ±360 minutes and the orbital periodicity is removed as
well. Panel (B) of Figure 2 shows the temporal properties of the
RHESSI minor flare sample after applying the first differencing
and seasonal differencing techniques. The transformed RHESSI
and GOES time-series are now more suitable for frequency
analysis because the results of the temporal analysis are less
likely biased by artificial periods due to the applied sampling
methods.

3. Frequency Analysis

We use fast Fourier transform (FFT) for studying the
periodic behavior of the data. The stationarity time sample is
required because the FFT algorithm is not able to reveal the
local properties of the time–frequency space. By applying the
first and seasonal difference methods, our time samples fulfill
this requirement. Therefore, it is assumed that the periodic
behavior of the signal is time-independent.

The significance level is calculated by employing an
Autoregressive Model AR(1), also known as red noise or 1/f
noise distribution (Weedon 2003). The red noise is a common
assumption in astrophysical time-series. The power spectrum of
the red noise is weighted toward the low frequencies, however,
there is no preferred period over the range (Kasdin 1995). For
estimating the significance of the peaks in the time–frequency
space, we generated 1 million independent simulations based

on the best-fit AR(1) models. We estimated the coefficients of
the applied models. For the GOES statistics, the expression can
be written as follows:

Z x Z x0.2317 . 6t t t1 = * +-( ) ( ) ( )

In case of RHESSI statistics, the fitted autoregressive AR(1)

expression becomes

Z x Z x0.2160 , 7t t t1 = * +-( ) ( ) ( )

where the parameter Z(xt) is regressed from the previous value

Z xt 1-( ) and the parameter òt represents the error. The obtained

expressions now can be used for generating simulations. Since

the original data values are generally low numbers, the

generated simulations are based on a Poisson distribution

rather than being Gaussian. Finally, we applied the same

methodology to real data, i.e., the simulated data are

differenced and FFT is performed as well. The standard

deviation and average in each frequency bin are calculated

based on the 1 million simulations. In the further statistics, the

significance level is defined by the total of the average and

three standard deviations.
Panel (C) of Figure 1 shows the result of the period analysis

based on the transformed GOES, which is presented by panel (B)
of Figure 1. The power spectrum unveils multiple significant
frequencies. The lowest frequency is now 1.47mHz. The powers
of the higher frequencies are more pronounced and the peaks
appear at 2.97, 4.44, 5.94, and around 7.43mHz. The sampling
frequency is 16.65 mHz and the Nyquist frequency is
8.325 mHz. Therefore, the latest period is close to (but still
below) the Nyquist frequency. Other frequencies close to the

Figure 1. Panel (A) demonstrates the temporal variation of the pre-flare and post-flare occurrences before and after the major M-class or X-class flares based on the
GOES flare data. Panel (B) represents the time domain signal. This signal is transformed by applying the first difference to the original signal. Panel (C) represents the
power spectrum of the FFT. Under the blue area the peaks are not considered significant frequencies. These peaks are below the 3σ significant threshold.
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significance level are also visible, such as 7.04 and 7.79mHz.

Their significance is still above the significance level 2σ,

however, they are relatively close to another more significant

peak. Therefore, these peaks are omitted from the statistics. Note

that the signature of the noise in the power spectrum does not

show red noise behavior. The error is weighted toward the high

frequencies, which is a typical blue noise signature. The changed

properties of the noise structure are more than likely to be the

consequence of the data differentiation.
Panel (C) of Figure 2 displays the result of the frequency

analysis based on the RHESSI flare population. Artificial

periods (100 minutes or 45-minute fluctuations) due to the orbit

of the RHESSI satellite and the influence of the South Atlantic

Anomaly are removed from the original signal, hence

significant peaks at 0.37 and 0.18 mHz are not detectable.

Unfortunately, the previously detected 1.47 mHz GOES

oscillation is also not detectable in these statistics. However,

in the power spectrum of the RHESSI data, there is a significant

oscillation around 1.95 mHz. The other GOES frequencies can

be clearly verified by RHESSI observations. Clear and strong

3.15, 4.55, 5.78, and 7.2 mHz oscillations are found above the

3σ threshold. The 5.78 and 7.61 mHz oscillations are

surrounded by several additional significant peaks; however,

these peaks are relatively close to each other.
Table 3 and Figure 4 display a summary of the obtained

peaks for both the GOES and RHESSI statistics. In Figure 4, the

GOES statistics show five significant oscillation periods,

labeled G0, G1, G2, G3, and G4. The RHESSI statistics

displays five remarkable oscillations, labeled R0, R1, R2, R3,

and R4. The periods R0, R1 and R2 are strong and remarkable
oscillations with a single peak structure. However, the
remaining two significant oscillations, R3 and R4, each contain
three significant peaks. The differences between the first and
last peaks in R3 and R4 are a few seconds, hence these peaks
cannot be considered with a high confidence to be manifesta-
tions of different physical processes. These peaks are
considered together and the oscillation period of the R3 and
R4 clusters are calculated by the average of the peaks within.
Table 3 shows the average periods of the obtained peaks.
The oscillations G1 and G2 are clearly confirmed by the

peaks R1 and R2. The G1 and R1 periods show only a 6%
difference and the difference between the G2 and R2 periods is
only around 3%. The discrepancies for the average periods of
the G3, R3 and G4, R4 peaks are also negligible (around 3%
and 2%). However, the discrepancy between the longest period
R0 and period G0 is around 24%.

4. Physical Interpretation

Let us now consider a simple oscillatory system: linear
transversal waves in a one-dimensional uniform finite string
with length L and fixed endpoints. When this system is
perturbed, standing waves will form. The string has a number
of specific frequencies, defined by the properties of the string,
at which it will naturally vibrate. These frequencies are called
eigenfrequencies, where the longest period is called the
fundamental mode and the other modes are referred to as
higher harmonics. For a uniform string, the fundamental mode

Figure 2. Panel (A) shows the time variation of the minor flare occurrences before and after the major flare based on the RHESSI statistical sample. Panel (B)
demonstrates the transformed data by employing first difference and seasonal difference techniques. Panel (C) is the power spectrum of the FFT. Under the red area the
peaks are not considered significant frequencies. These peaks are below the 3σ significance threshold.
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P1 is described by

P
L

c

2
, 81

ph

= ( )

where cph is the phase speed, depending on the physical

properties of the waveguide. The ratio of the period of the

fundamental mode P1 to the period of harmonics PN is

P

P
N , 9

N

1 = ( )

where N>1 is an integer for uniform strings, representing the

higher harmonic number. For a non-uniform string the period

ratio may deviate from its canonical integer value given by

Equation (9) above.
In our study, we propose that the observed oscillation pattern

in flare occurrence is driven by the global oscillation of the
solar atmosphere, manifested in periodic rearrangements of the
magnetic field. Let us now model the global, large-scale solar
atmosphere as a simple, uniform and homogeneous one-
dimensional physical environment analog to the string example
above. Here, the basic assumption is that this solar environment
(shaken by a yet to be determined mechanism) responds as a
global body to perturbations. Since the solar atmospheric
plasma is embedded in a magnetic field, field lines will be
shaken too, resulting in casual periodic reconnections that are
observed as, e.g., RHESSI flares. Here, as a first approximation
for insight, we ignore the complexity of active regions,
stratification, and structuring. All these features influence the

period ratio and eigenfunctions of the eigenmodes (in a flux
tube and solar magnetoseismology context; see, e.g., Erdélyi &
Verth 2007; Verth & Erdélyi 2008; Andries et al. 2009; Luna-
Cardozo et al. 2012). Therefore, these omissions may need to
be noted, and could be potentially important for a deeper
diagnostic insight.
Here, we propose that the 3D magnetic solar atmosphere, in

an active region, simply responds to some external driver (or
drivers) as a resonator. The situation is very similar to that of
the solar interior, addressed in great detail by the science of
helioseismology. However, here magnetism is essential. In a
sense, our modeling extends and generalizes the concept of

Figure 3. Random-based statistical population for demonstrating the effect of the RHESSI orbital period. The left panel shows the occurrence of the random
population and the right panel demonstrates the frequency domain signal.

Table 3

Detected Oscillation Frequencies and Periods

N Frequency Period ID. Ratio Sample

[mHz] [minutes] P1/PN

1 1.47 11.33 G0 L GOES

2 2.97 5.61 G1 2.01 GOES

3 4.44 3.75 G2 3.02 GOES

4 5.94 2.80 G3 4.04 GOES

5 7.43 2.24 G4 5.05 GOES

1 1.95 8.54 R0 L RHESSI

2 3.15 5.28 R1 1.61 RHESSI

3 4.55 3.66 R2 2.33 RHESSI

4 5.78 2.88 R3 2.96 RHESSI

5 7.61 2.19 R4 3.89 RHESSI

Figure 4. The top panel demonstrates the power spectrum of the GOES

statistical sample. The bottom panel also visualizes the results of the FFT based
on the RHESSI data. The silver peaks are marked as non-significant peaks and
the blue and red peaks are greater than the 3σ significance threshold.
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helioseismology by considering magnetism and applying it to
the upper solar atmosphere as well. If our proposed thought
experiment captures valid physics, and so far the indications of
the detected frequencies are mounting evidence toward that, the
interpretations of the solar flare observations have the potential
to open up a very new branch of diagnostics in solar physics.
The key reason this may be a major step for solar atmospheric
diagnostics is that the deviation from the canonical values of
frequency ratio can be directly linked to obtaining even sub-
resolution information about the waveguide (Erdélyi &
Verth 2007) associated P1/PN ratio of periods. In the GOES
sample, the ratio of the fundamental mode period P1 and the
period of the first harmonic P2 are around the canonical value
of 2.01, indicating that there may not be large-scale strong
inhomogeneity.

In general, with the current resolution we cannot yet
determine with high confidence how much true deviation there
is from this canonical value (referring to a uniform and
homogeneous plasma). While the observed periods line up, as
Table 3 shows, the P1/PN ratios follow an order of succeeding
integer numbers only if we consider the GOES statistical
sample. If the GOES fundamental period is taken into account
as a RHESSI fundamental mode, the canonical values line up
similarly as in the GOES sample. If the first significant RHESSI
period R0 is considered the fundamental mode, the
P1/P2=1.61 ratio significantly departs from a canonical
value of 2, which may indicate inhomogeneity in the system.

5. Discussion

We need more insight into the nature of the underlying
oscillations. Are they the result of Alfvén, slow, or fast
standing MHD waves. Is there perhaps coupling between
modes? What is the true geometry of the waveguide? More
precisely, what is the waveguide? Is it bounded by the low
photosphere and the upper turning point being the chromo-
sphere, or are there other boundaries (reflective or open)? Are
the modes linear or nonlinear? If the latter, this is a very
difficult mathematical problem to model and proceed with.
Answering all these questions suggests the direction of our
future aims, because they may contribute to understanding the
nature of the long-period global oscillations.

Improving our methodology is one of our future aims.
Performing a wavelet analysis of the processed X-ray time-
series may reveal information about period modulation. The
detected oscillations may be present continuously around the
major flare source and migrate to different frequencies over
time. As Reznikova & Shibasaki (2011) concluded, the p-mode
leakage upward along the active region magnetic field lines
can play a role in the generation of periodic phenomena,
particularly those with similar periods to those established in
the present work. This needs to be further compared , since the
presence of a global driver is more challenging to initiate, while
sunspot p-mode waves are ubiquitous. Therefore, developing
our physical interpretation and investigating other theories are
also future aims.

It is also important to emphasize that the GOES and the
RHESSI satellites observe at different wavelengths. It may be

possible that discrepancies between the GOES oscillations and
the RHESSI oscillations are the consequence of the different
observational wavelengths, therefore the different wavelengths
may reveal different physical processes.

6. Conclusion

We propose that X-ray flux oscillations are a consequence of
global upper atmospheric oscillations and that, as said before,
periodic reconnection is likely triggered by driving global
atmospheric oscillations.
R.E. is grateful to STFC (UK), grant number ST/M000826/1,

and The Royal Society for support received. This research has
made use of SunPy, an open-source and free community-
developed solar data analysis package written in Python (SunPy
Community et al. 2015). The authors are indebted to the
anonymous reviewer for providing insightful comments and
directions for this paper.
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