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Figure 1: We show how to learn nonlinear, physically plausible modes of shape variation (bottom right) from a set of highly varying training

shapes, which can be used for projection onto a low dimensional submanifold and thus sparse representation by a small set of weights. This

model can be used to solve problems such as reconstruction of dense body shapes from motion capture markers (top) providing compressed

animations for the reconstructed shapes via time sequences of the weights (bottom left) even when the captured data is sparse, noisy and

comes from a different body shape. (Training data: 50 meshes of Dyna [PMRMB15]; Key parameters: K = 4, J = 10).

Abstract

Important sources of shape variability, such as articulated motion of body models or soft tissue dynamics, are highly nonlinear

and are usually superposed on top of rigid body motion which must be factored out. We propose a novel, nonlinear, rigid body

motion invariant Principal Geodesic Analysis (PGA) that allows us to analyse this variability, compress large variations based

on statistical shape analysis and fit a model to measurements. For given input shape data sets we show how to compute a low

dimensional approximating submanifold on the space of discrete shells, making our approach a hybrid between a physical and

statistical model. General discrete shells can be projected onto the submanifold and sparsely represented by a small set of

coefficients. We demonstrate two specific applications: model-constrained mesh editing and reconstruction of a dense animated

mesh from sparse motion capture markers using the statistical knowledge as a prior.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling

1. Introduction

Compact models of the shape variability of a class of 3D objects
are useful in a wide range of analysis and synthesis applications
across graphics and vision. Such statistical models learnt from data

provide constraint for analysis problems, compress high dimen-
sional data to a low dimensional space and ensure plausibility of

∗ B. Heeren and C. Zhang contributed equally to this work.
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synthesised results. Specifically, they can be used for non-rigid reg-
istration, reconstruction from incomplete, noisy or 2D data, mesh
editing, performance-driven animation and deformation transfer.
To meet these applications, we address in this paper a number of
important challenges:
⊲ First, many important sources of shape variability are highly
nonlinear. For example, nonrigid deformation (such as articula-
tion, bending, and stretching) and nonlinear shape changes (such
as weight variation or shape differences between individuals).
⊲ Second, models should be physically plausible so that unrealis-
tic shapes are avoided and to enable meaningful interpolation be-
tween and extrapolation beyond the training samples.
⊲ Third, deformations must be modelled independently of rigid
body motion. Methods that rely on factoring out rigid body motion
by alignment require a choice of alignment metric, the choice of
which influences the final model. Moreover, for nonrigid deforma-
tions a meaningful rigid alignment may not exist.

The natural concept to deal with these requirements is a Rie-
mannian shape manifold. The key ingredient for our model is a
discrete geodesic (i.e. a geodesic path discretised in time) in the
space of discrete shells (a triangle mesh-based approximation of
the thin shell physical model). From this starting point, we propose
time-discrete statistics on manifolds and make the following key
contributions (summarised in the flowchart):

Input data

(I) Fréchet mean via opti-
mising a sum of squared
distances

(II) Gram’s matrix based
on shell objects and polar
formula

1

2

3MJ

(IV) Projection operator
P :

1© scaling
2© local projection
3© rescaling

(III) J princi-
pal variations
as weighted

shell averages
spanning sub-
manifold MJ

Applications: mesh
editing (left) and
model fitting (right)

(I) Starting from a set of input shells, we define in Section 4 a dis-
crete geodesic average (i.e. Fréchet mean) as the minimiser of the
sum of squared discrete geodesic distances to the input shapes. (II)
Then, we use the polar formula for scalar products to introduce an
approximate Gram matrix defined directly on discrete shapes and
not as usual on infinitesimal shape variations. (III) Given the eigen-
vectors, principal variations are defined as weighted shell averages

[ ]={ }
(a) (b)

Figure 2: Key properties of the discrete shell model: equivalence

classes of discrete shells [s] incorporating rigid body motion in-

variance (a), with a physically sound bending (left) and membrane

(right) energy density (b).

on the manifold. They are the nonlinear counterpart of (infinitesi-
mal) principal components and span a finite dimensional subman-
ifold (cf. Section 5). (IV) Arbitrary shells can be projected onto
this submanifold to provide low dimensional representations. This
projection can be used to constrain the admissible set of shapes in
different shape optimisation applications. In Sections 6 and 7 we
exemplarily use the model for mesh editing and dense reconstruc-
tion from motion capture data (cf. Fig. 1). The model ensures that
the results exhibit physically realistic deformations while remain-
ing statistically plausible.

We work directly with meshes and do not require problem-
specific articulated skeletons yet our approach is able to handle
many different kinds of nonlinear deformation. The discrete shell
model (see Fig. 2b) provides highly plausible interpolations and
extrapolations within the nonlinear shape manifold, meaning that
we can build rich models from very sparse training samples. The
shell space in which we work is a space of equivalence classes of
shapes that differ by rigid body motions (see Fig. 2a) and we take
special care to transfer this invariance to our time-discrete statistics.
Therefore, our whole framework is rigid body motion invariant and
does not require a choice of alignment metric or a preprocessing
alignment step.

2. Related work

Elastic shape modelling. Physically-based elastic energy mod-
els have been widely used for simulation, interpolation, mesh edit-
ing and, more recently, statistical modelling. The classical model
for elastically deformable surfaces is the shell model, originally in-
troduced in a graphics context by Terzopoulos et al. [TPBF87], for
thin, flexible materials. Grinspun et al. [GHDS03] introduced the
discrete shell model in which a triangle mesh is a spatially-discrete
representation of the mid-surface of a shell. The model was used
for simulation of deformable materials under physical forces. In the
direction of improving efficiency, the as-rigid-as-possible (ARAP)
framework [SA07] is based on alternating minimisation over ver-
tex positions and local rotations of an energy that measures de-
viation from rigidity. Von Radziewsky et al. [vRESH16] recently
showed how model reduction can be used to efficiently evaluate
elastic deformation models, including the discrete shell energy.
This enables elastic models to be used in realtime applications (see
also [vTSSH15]). Like our model, Zhang et al. [ZHRS15] sought to
construct a statistical shape model in shell space. The same nonlin-
ear elastic deformation energy is used, however the model is built in
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a linear space of vertex displacements and so is not rigid body mo-
tion invariant and does not have an underlying Riemannian model.

Articulated models. The natural representation for deformations
due to articulation is a skeleton model comprised of joint loca-
tions and relative orientations. Heap and Hogg [HH96] extended
classical 2D landmark-based statistical modelling into the artic-
ulated domain by building linear models over joint angles rather
than vertex positions. For 3D shapes, skeletons are used to deform
dense surface models (usually meshes) via a process known as skin-
ning [LCF00]. In their Shape Completion and Animation of People
(SCAPE) framework, Anguelov et al. [ASK∗05] learn a combined
pose and deformation model and a model of the variability in body
shape. A skeleton is used to drive mesh deformation using a method
based on deformation transfer [SP04] and variations in body shape
are learnt using a linear model of bodies in a standard pose. The
Dyna model [PMRMB15] is built on top of SCAPE and adds a
linear dynamics model whose coefficients depend upon the skele-
ton pose. The SMPL model [LMR∗15] shows that pose-dependent
blend shapes can depend linearly on the rotation matrices of the
skeleton joints yet still achieve high realism of pose dependent
shape and dynamics. A drawback of all of these approaches is that
articulated models must be handcrafted for a specific object class
and cannot capture general deformations.

Triangle deformation models. A popular approach is to build
models based on the statistics of triangle deformations [ACPH06,
HLRB12, CLZ13]. Instead of being trained to reproduce the input
meshes directly, they are trained to reproduce the local deforma-
tions that produced those meshes. Unlike elastic models, these are
not physically-motivated. Sumner and Popović [SP04] express de-
formation in terms of affine transformation and a displacement -
the same as the deformation model used in SCAPE. Sumner et
al. [SZGP05] used deformation gradients for mesh-based inverse
kinematics. Hasler et al. [HSS∗09] use a nonlinear representation of
triangle deformations with 15 DoF which captures the relationship
between pose and shape. Freifeld and Black [FB12] derive a 6D
Lie group representation of triangle deformations with no redun-
dant degrees of freedom. None of these approaches are rigid body
motion invariant. Fröhlich and Botsch [FB11] additionally intro-
duce a bending term, expressing deformations in terms of changes
to geometric quantities (triangle edge lengths and the dihedral an-
gle between adjacent triangles). Gao et al. [GLL∗16] introduce a
rotation-invariant mesh difference representation in which plausi-
ble deformations often form a near linear subspace. The deforma-
tions produced by all of these approaches will not in general be real-
isable by a connected triangle mesh. Hence, these models require a
further step to solve for the mesh that best fits the desired deforma-
tions, which might be unsatisfactory from a theoretical standpoint.

Riemannian shape modeling. There have been numerous at-
tempts to cast shape modelling or statistical shape analysis in
a Riemannian setting; e.g. [FLPJ04, Pen06, KMP07]. Kilian et
al. [KMP07] showed how to compute geodesic paths between tri-
angle meshes using a metric that measures changes in triangle
edge lengths. Frequently, the underlying metric is based on mea-
suring the lack of isometry, e.g. via a (linearised) elastic energy
acting on the Cauchy-Green strain tensor of an associated infinites-

imal mesh deformation [SP04, ASK∗05, ACPH06, HSS∗09, FB12,
HLRB12, CLZ13, PMRMB15]. To avoid irregular, isometric shape
deformations an additional regularisation is required. Heeren et
al. [HRWW12] take a similar approach but use the discrete shell
model which includes a bending term and leads to time-discrete
geodesic paths with physical meaning (they minimise the dissipa-
tion of thin shell elastic energy). The resulting shell space was sub-
sequently further explored [HRS∗14] by introducing time-discrete
versions of Riemannian concepts such as the exponential and loga-
rithmic maps and parallel transport.

Shape collection analysis. The classical statistical shape mod-

elling approach deals with objects represented by a configuration
of landmark points. A point in Kendall’s shape space [Ken84] cor-
responds to a configuration of landmarks in which rigid body mo-
tion has been “factored out”. Linear Principal Components Anal-
ysis (PCA) in this space is used to extract the important modes of
shape variation. PCA has been extended to manifold valued data
in the form of Principal Geodesic Analysis (PGA) [FLPJ04]. PGA
models are now widely used. Fletcher et al. [FLPJ04] originally
proposed the approach for modelling medially-defined anatomical
objects. Freifeld and Black [FB12] used PGA to build statistical
models on their Lie group representation of triangle deformations.
Tournier et al. [TWC∗09] used PGA to build a statistical skele-
ton model. Tycowicz et al. [vTAMZ18] presented a non-Euclidean
statistical analysis of triangle meshes (represented by means of de-
formation gradients, cf. [SP04]) and consider medical applications
such as shape-based classification of morphological disorders. Be-
sides modelling shape variation, PGA has also been applied to dis-
tributions of probability measures using an optimal transport met-
ric [SC15]. Whereas all these approaches model variability using
only distances between objects, Rustamov et al. [ROA∗13] began
a line of work which uses shape maps to more richly characterise
differences between shapes and differences between differences.
Boscaini et al. [BEKB15] showed how to reconstruct shapes from
these shape difference operators, enabling shape analogy synthe-
sis and style transfer. While the original shape differences opera-
tor captures only intrinsic distortion, Cormen et al. [CSBC∗17] use
offset surfaces to capture extrinsic distortion.

3. Preliminaries

One can consider the space of shapes, e.g. triangle meshes, as a Rie-

mannian manifoldM with a metric g. Then, for a path s : [0,1]→
M the path energy is given by

E [s] =
∫ 1

0
g
s(t) (ṡ(t), ṡ(t)) dt , (1)

where the velocity ṡ(t) at time t is an infinitesimal variation of s(t).
Given two points sA,sB ∈ M a path s minimising (1) among all
paths with s(0) = sA and s(1) = sB is called a (shortest) geodesic

connecting sA and sB and we have

dist2(sA,sB) = min
s(0)=sA, s(1)=sB

E [s] . (2)

Note that minimizers of (1) also minimize the length functional

L[s] =
∫ 1

0

√

gs(ṡ, ṡ)dt. In contrast to L, the path energy is not in-
dependent of reparameterization and minimizers t 7→ s(t) have con-
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stant absolute velocity, i.e. for all t ∈ [0,1] we have

g
s(t)(ṡ(t), ṡ(t)) = g

s(0)(ṡ(0), ṡ(0)) = dist2(s(0),s(1)) . (3)

The geometric logarithm logsA
sB is defined as the initial velocity

v = ṡ(0) and for fixed sA ∈ M there is a 1-to-1 correspondence
between v and sB (for sB close to sA). The corresponding inverse
mapping is denoted as exponential map, i.e. expsA

(v) = sB.

Principal geodesic analysis. Let us briefly recall classical Prin-
cipal Components Analysis (PCA) on R

N before we consider Rie-
mannian manifolds. For data points s1, . . . ,sn ∈ R

N the arithmetic
average is given by

s̄ = arg min
s∈RN

n

∑
i=1

‖s− s
i‖2

RN = 1
n ∑

i=1,...,n

s
i . (4)

Then Gram’s matrix is defined by G = 1
n DDT ∈ R

n,n, where

D ∈ R
n,N represents the data matrix whose ith row is given by

(si− s̄)T ∈ R
1,N . In particular, the entries of G depend on the un-

derlying (Euclidean) scalar product as Gi j =
1
n 〈s

i − s̄,s j − s̄〉RN .
Since G is a symmetric and positive semi-definitive matrix we ob-
tain non-negative eigenvalues {λ j} j and corresponding orthonor-
mal eigenvectors {w j} j, i.e. Gw j = λ jw j for j = 1, . . . ,n. Finally,

the principal modes of variation of the data set {s1− s̄, . . . ,sn− s̄}

are obtained via v j = λ
−1/2
j DT w j ∈ R

N for j = 1, . . . ,n.

PCA in Euclidean space easily translates to Riemannian man-
ifolds [FLPJ04]. To this end, one considers data points s1, . . . ,sn

on the manifold M and performs a classical PCA for the loga-
rithms logs̄ s j of the input shapes s j with respect to their Fréchet
average s̄ – the Riemannian counterpart of the arithmetic average.
Thereby, the tangent vector u j = logs̄ s j represents the geometric
variation of s j relative to the average s̄ in an infinitesimal sense.
Here, the metric gs̄ is taken into account as the scalar product on
these infinitesimal shape variations. Thus, Gram’s matrix is de-
fined by Gi j =

1
n gs̄(u

i,u j) and—as before—its spectral decompo-
sition leads to the pairing (v j,λ j) j=1,...,n which is called Principal
Geodesic Analysis (PGA).

Discrete Riemannian calculus on the space of shells. Rumpf
and Wirth [RW15] introduced a discrete Riemannian calculus on
Hilbert manifolds. Using (2) on consecutive pairs of interpolated
shapes sk = s(k/K) for k = 0, . . . ,K and the Cauchy-Schwarz in-
equality one obtains

E [s]≥ K
K

∑
k=1

dist2(sk−1,sk) . (5)

Note that (5) becomes an equality iff s is already a geodesic path.
Now, the key ingredient of the discrete calculus is a functionalW :
M×M→ R which locally approximates the squared Riemannian
distance, i.e.

W [s, s̃] = dist2(s, s̃)+O
(

dist3(s, s̃)
)

(6)

and replacing dist2 byW in (5) leads to the definition of a discrete

path energy

E[s] := K
K

∑
k=1

W [sk−1,sk] , (7)

where s denotes a polygonal path with vertices sk = s(k/K) for
k = 0, . . . ,K. A minimiser of (7) for fixed endpoints is referred to
as discrete K-geodesic, where the minimisation of (7) is with re-
spect to the K−1 inner vertices {s1, . . . ,sK−1} ⊂M. It is shown
in [RW15] that under suitable assumptions discrete K-geodesics
converge to continuous geodesics for K→∞.

Here, we pick up the discrete calculus on the space of discrete
shells [HRWW12, HRS∗14]. For a fixed mesh topology a discrete
shell can be identified with the vector of vertex positions in R

3M ,
where M is the number of vertices. The space of discrete shells
M⊂ R

3M is then equipped with a metric which measures the en-
ergy dissipation caused by infinitesimal membrane distortion and
normal bending (cf. Fig. 2b). The definition of the metric is based
on an elastic deformation energy W[s, s̃] for thin shells needed to
deform s ∈ M into s̃ ∈ M. To account for the physical proper-
ties of thin elastic shells,W splits into a membrane and a bending
distortion energy (cf. Fig. 2b), i.e.

W[s, s̃] =Wmem[s, s̃]+Wbend[s, s̃] . (8)

Thereby, the bending energy is taken from [GHDS03]. The dis-
crete shell model is physically valid for thin shell materials. More
generally, it proves useful for modelling a much wider class of ob-
jects by capturing two important modes of deformation: bending
and stretching. Concretely, the membrane and bending energies are
defined as follows (Here, quantities with a tilde always refer to the
deformed configuration):

Wmem[s, s̃] = δ ∑
t∈T (s)

atW (Gt) , Wbend[s, s̃] = δ3 ∑
e∈E(s)

(θe− θ̃e)
2

ae
l
2
e ,

where T (s) and E(s) denote the set of triangles resp. edges of s,
δ > 0 is the physical thickness and W : R

2,2→ R is the hyperelas-
tic energy density given by Eq. (8) in [HRWW12]. Furthermore,
Gt ∈ R

2,2 is a two-dimensional representation of the Cauchy Green
strain tensor of the deformation of the triangle t, at is the triangle
volume of t, le is the edge length of e, θe is the dihedral angle at
e and ae =

1
3 (at + at′) is an area weight associated with e = t ∩ t′.

In detail, if e0,e1,e2 ∈ R
3 are edges of a triangle t, a discrete first

fundamental form on t is given by gt = [e2|−e1]
T [e2|−e1] ∈ R

2,2,
which yields the representation Gt = g−1

t g̃t .

In order to retrieve the underlying metric one can apply
Rayleigh’s paradigm by replacing strains by strain rates for a sec-
ond order approximation of this energy. Indeed, due to [HRS∗14,
Thm 1] the Hessian of (8) actually induces a Riemannian metric on
the space of discrete shells modulo rigid body motions. In particu-
lar, the deformation energyW represents a consistent approxima-
tion of the induced (squared) Riemannian distance as in (6).

4. Discrete principal geodesic analysis

Based on these preliminaries we now derive a principal geodesic
analysis on the space of discrete shells. The central building blocks
are a discrete geodesic average, an approximation of Gram’s ma-
trix, and the computation of principal modes of variation.

A critical observation of the discrete shell space introduced by
Heeren et al. [HRWW12] is its rigid body motion invariance incor-
porated in (8), i.e.

W [s, s̃] =W [s,Rs̃+b] (9)
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for R ∈ SO(3) (the space of rotation matrices in R
3) and b ∈ R

3.
Indeed, a discrete shell is no longer a single triangular mesh s but
an equivalence class of shells [s] = SO(3)s+R

3, cf. the sketch in
Fig. 2a. As a consequence the shape manifold M is a space of
such equivalence classes. For simplicity we stick to the notation s

instead of [s]. Then tangent vectors – as they appear in the classical
principal geodesic analysis – are equivalence classes as well, where
the associated Lie algebra so(3) has to be taken into account. This
renders the computational treatment of the shell manifold’s tangent
bundle very cumbersome. In what follows, we will derive a rigid
body motion invariant, discrete principal geodesic calculus based
on elastic energyW . Thus, in all components of our algorithm we
will solely treat discrete shells and avoid any direct tangent vector
computation.

Discrete geodesic average. Let s1, . . . ,sn be discrete input shells
in M. The Riemannian average on the manifold M – called
Fréchet mean – is obtained by using in (4) the Riemannian dis-
tance (2) in place of the Euclidean distance. Further replacing E by
the discrete path energy (7) in (2) yields the definition of a discrete

geodesic average

s̄ = arg min
s∈M

n

∑
i=1

min
s

i(0)=s,

s
i(1)=si

E[si] , (10)

where the interior minimisation is over a polygonal spider consist-
ing of all polygonal paths si connecting the average s

i(0) = s̄ and
the input shapes si(1) = si for i = 1, . . . ,n as shown in Fig. 4. Ob-
viously, s̄ is invariant with respect to rigid body motions due to (9).

Approximation of Gram’s matrix. Next, we substitute metric
evaluations on tangent vectors in the definition of Gram’s matrix by
evaluations of the squared distance directly on discrete shells, and
then in a second step by the corresponding local approximation (6)
as follows. Due to property (3) of geodesic paths we obtain

g(u j,u j) = dist2
(

s̄,s j
)

= σ−2dist2
(

s̄,s j(σ)
)

≈ σ−2W
[

s̄,s j(σ)
]

for the tangent vectors u j = logs̄(s
j) in the standard PGA. Here,

σ > 0 is some generic scaling factor and s
j : [0,1]→M is the

geodesic connecting s̄ and s j . Note that we have used the shortcut
notation g = gs̄ (here and in the following). For the off-diagonal
entries of Gram’s matrix we take into account the polar formula

g(u j,ui) =
1

2

(

g(u j,u j)+g(ui,ui)−g(u j−u
i,u j−u

i)
)

and an analogous, now also in the first replacement approximate,
identity

g(u j−u
i,u j−u

i)≈σ−2dist2(s j(σ),si(σ))≈σ−2W [s j(σ),si(σ)],

to replace evaluations of the metric with (approximative) squared

distances onM. Finally, we replace s j(σ) by s
j
1 = I(s̄,s j,σ), where

I denotes the discrete geodesic interpolation operator, as described
in Section 8, and σ=σ(K) = 1

K is a suitable choice, which retrieves

the first node along the discrete K-geodesic from s̄ to s j. Altogether
we define the entries of an approximative Gram’s matrix G (which

1 2 4 8
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Time discretisation (K)
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S
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Eigenvectors

Figure 3: Convergence of the discrete Gram matrix and its eigen-

vectors and eigenvalues as K→∞ for the SCAPE dataset shown

in Fig. 5. We show RMS relative error, using Kmax = 16 as pseudo

ground truth. Second order convergence is illustrated by the green

triangle.

actually depends on K) as

Gi j =
W [s̄,si

1]+W[s̄,s
j
1]−

1
2

(

W[si
1,s

j
1]+W[s

j
1,s

i
1]
)

2nσ2
(11)

for i, j = 1, . . . ,n. The additional symmetrisation in the last terms
ensures symmetry of G. Again, due to the rigid body motion in-
variance (9) the resulting G does not depend on the chosen rep-
resentation of the equivalence classes of discrete shells. As be-
fore we obtain approximate eigenvalues {λ j} j and correspond-
ing (orthonormal) eigenvectors {w j} j ⊂ R

n with Gw j = λ jw j for
j = 1, . . . ,n. Applying the convergence theory for the discrete cal-
culus developed in [RW15] one obtains that s̄ converges to the
Fréchet mean and G converges to the original Riemannian Gram

matrix
(

1
n g(u j,ui)

)

i j
for K → ∞. We demonstrate this conver-

gence empirically in Fig. 3.

Principal variations instead of principal components. Next,
we replace the principal component (eigenmode) v j in the tangent
space at the Fréchet mean by a (nonlinear) discrete principal vari-
ation on the shape manifold M. Let us start with a straightfor-
ward observation. For some α ∈ R

n with ∑i=1,...,n αi = 1, we con-

sider the linear combination u[α] = ∑i=1,...,n αiu
i of tangent vectors

ui = logs̄ si. Then u[α] can be characterized as the minimizer of the
quadratic functional u 7→∑i=1,...,n αig(u−ui,u−ui). Using Taylor
expansion in σ for a given α ∈ R

n this implies that for

p
σ[α] := arg min

p∈M
∑

i=1,...,n

αi dist2(si(σ), p), (12)

the rescaled logarithm 1
σ logs̄ pσ[α] converges to u[α] for σ→ 0.

Hence, pσ[α] ∈M can be considered as a nonlinear variation of
the Fréchet mean corresponding to the linear infinitesimal variation
u[α] in the tangent space at the Fréchet mean.

Again, we replace dist2 in (12) by its local approximationW as

well as si(σ) by the discrete geodesic interpolation s
j
1 = I(s̄,s j,σ)

with σ = 1/K and obtain

p[α] := arg min
p∈M

∑
i=1,...,n

αiW [si
1, p] (13)

for some coefficient vector α ∈ R
n. However, we have to proceed
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M
MJ

sm

sn

sn
1

sl

sl
1

p− j p j

pi

s̄

∂CJ

Figure 4: Submanifold MJ (yellow) and polyhedron CJ ⊂ MJ

(with red boundary) spanned by nonlinear combinations of prin-

cipal variations {p j} j. Note that the input shapes {sk}k ⊂M do

not lie on MJ in general. The polygonal spider connecting input

shapes and Fréchet mean is drawn in grey.

Figure 5: Time-discrete PGA models built on TOSCA cats

[BBK08] and SCAPE [ASK∗05]. Input training shapes (yellow),

mean shape (orange) and first five principal variations (green).

with special care in particular for entries of α that might be nega-
tive. If αi < 0 for some i we replace αi by |αi| and si

1 = I(s̄,si,σ)
by its discrete geometric reflection at s̄ involving extrapolation via
a discrete exponential map (see Section 8), i.e. I(s̄,si,−σ). This
is necessary because W is no longer quadratic and there is no a
priori control of the growth of W for general coefficients αi ∈ R.
Thus, without this modification existence of minimisers in (13) are
not guaranteed. Finally, we define discrete principal variations by
choosing α to be the eigenvectors w j = (w j,i)i=1,...,n of the approx-
imate Gram’s matrix G, i.e.

p j :=arg min
p∈M

∑
i=1,...,n

|w j,i|W
[

I
(

s̄,si,sgn(w j,i)/K
)

, p
]

(14)

for j = 1, . . . ,J, where we have rescaled w j ∈ R
n such that its en-

tries sum to 1 (which does not affect the minimiser).

Due to the convergence of the discrete Fréchet mean and the dis-
crete Gram matrix we expect that for an eigenvalue of multiplicity
1 for K→∞ the eigenvalues λ j converge to their continuous coun-
terparts and K logs̄ p j converges (up to scaling) to a representative
of the corresponding principal component v j.

Evaluation. In Fig. 5 we show two time-discrete PGA models
(average and first five principal variations for K = 4). We visualise
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Figure 6: Model compactness with respect toW for models shown

in Fig. 5 (left and centre) and Fig. 1 (right). Number of model di-

mensions on x axis, proportion of variance captured on y axis.

the jth principal variation by using the geodesic interpolation oper-
ator t 7→ I(s̄, p j,±t) to sample along the one dimensional principal
geodesic and overlay the resulting shapes. Note that they clearly
correspond to nonlinear motions present in the training data. In
Fig. 6 we show model compactness as a function of the number
of retained modes for these two models and the one used in Fig. 8
and Fig. 12. Note that, in all three cases, we are able to compress a
significant proportion of the variance into a small number of modes.

5. Submanifold projection

In this section we define a local submanifold “spanned” by the prin-
cipal variations defined in (14) as illustrated in Fig. 4. This is the
nonlinear counterpart of the linear subspace spanned by the princi-
pal components in classical PCA or standard PGA. The projection
onto this submanifold returns a discrete shell which is uniquely
determined by a small set of weights and approximates the input
shape on the basis provided by our Riemannian statistical analysis.

Defining the submanifold. We consider (14) for the J domi-
nant principal variations and also their associated reflections p− j =
I(s̄, p j,−1) (the sign of a principal component is arbitrary so our
submanifold includes variations in both directions). At first we de-
fine the convex Riemannian polyhedron induced by the vertices
{p j | j = −J, . . . ,−1,1, . . . ,J}. Discrete shells on the polyhedron
are obtained by computing “variational Riemannian” combinations
of the p j for weights α = (α−J , . . . ,α−1,α1, . . . ,αJ) ∈ R

2J subject
to ∑ j=−J,...,J α j = 1 and α j ≥ 0, i.e.

CJ =

{

arg min
p∈M

J

∑
j=−J

α jW[p j, p]
∣

∣

∣

J

∑
j=−J

α j = 1, α j ≥ 0

}

(15)

with the notational convention α0 = 0 and p0 staying undefined.
Note that in particular s̄ ∈ CJ , e.g. for α j = α− j =

1
2 and αi =

α−i = 0 if i 6= j for an arbitrary j ∈ {1, . . . ,J} as an example that
different choices of α might represent the same shell on CJ .

Now, the actual submanifoldMJ is defined via discrete geodesic
extrapolation of the convex polyhedron CJ using the interpolation I

for a discrete shell p ∈ CJ and times t > 0 (cf. Fig. 4):

MJ :=
{

I(s̄, p, t) | p ∈ CJ , t > 0
}

. (16)

We might allow for non vanishing α0 and p0 := s̄, which does not
alter the definition of CJ . Note that (15) can also be constructed
directly from the input data without computing principal variations
first. This might be reasonable if the number of input data is small.
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M
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x=(xℓ)ℓ

R
3L

Ploc[sloc]

P [s]

sloc

s

MJ

s∗

Figure 7: Right: Projection of an unseen shape s onto the model

spaceMJ: scale s to sloc, project sloc locally toPloc[sloc]∈C
J , and

finally rescale to get P [s] ∈MJ . Left: Model fitting of s∗ driven by

sparse landmarks X ∈ R
3L depending on fitting parameter γ > 0.

The tangent space toMJ at s̄ is spanned by the logs̄ p j (which
converge to v j for K→∞). Altogether, we get that

K logs̄

(

MJ
)

→ span({v1, . . . ,vJ}) for K→∞ .

That both principal variations p j and their reflections p− j are in-
dispensable to our submanifold construction reflects the fact that
the infinitesimal counterpart, the principal components v j, generate
one dimensional geodesic subspaces and not just geodesic rays.

Defining a projection onto the submanifold. In what follows,
we will derive a suitable projection of a given discrete shell s ∈M
on the (approximate) submanifold MJ as defined in (16). The
classical Riemannian projection or projection onto the submani-
fold defined as exponential map of the subspace of the tangent
space spanned by the dominant J principal components v1, . . . ,vJ

would work as follows: First compute an infinitesimal representa-
tion v = logs̄ s of s in the tangent space at the Fréchet mean, then
project v (locally) onto the subspace span{v1, . . . ,vJ} via the for-
mula vJ = ∑ j=1,...,J gs̄(v,v j)v j and finally compute the actual pro-

jection P [s] = exps̄ vJ . Note that this closed-form projection iden-
tity for vJ only holds if {v1, . . . ,vJ} is an orthonormal system.

Once more the incorporation of rigid body motion invariance is
a very delicate undertaking. Just replacing the metric gs̄(·, ·) by the
approximation used in the definition of the discrete Gram matrix in
(11) does not lead to a satisfactory solution. Indeed, the expected
orthogonality relation gs̄(vi,v j) = δi j holds only approximately and
that deteriorates the Gram-Schmidt orthogonalisation procedure to
compute the linear projection vJ (see paragraph above). Instead,
we propose to perform a nonlinear projection on the approximating
manifold MJ consisting of three elementary steps: scaling, local

projection, and rescaling. These steps are illustrated in Fig. 7 and
defined in detail as follows.

[Scaling] Firstly, we scale the given shape s in order to make sure
that it can be locally projected onto the polyhedron CJ (i.e. we en-
sure αi ≥ 0). This is done by means of the discrete geodesic inter-
polation (see Section 8), i.e we define sloc = I(s̄,s,ρ) where

ρ := κ
min j dist(s̄, p j)

dist(s̄,s)
(17)

for sufficiently small κ > 0. The resulting scaling factor ρ is in gen-
eral not a multiple of 1

K . Hence, a discrete geodesic interpolation
I(·, ·, t) for general t ∈ R is needed (see also Section 8).

[Local projection] Secondly, we aim at computing a local projec-
tion as the best approximation of sloc on CJ . Let us first review the
projection onto a convex set C = {∑ j α jq j | ∑ j α j = 1,α j ≥ 0} in

Euclidean space for a given set of points q1, . . . ,qJ ∈ R
N . For some

arbitrary point p ∈ R
N the projection can be written as

PEucl [p] = argmin
q∈C

dist2(p,q) ,

where dist2(·, ·) is the squared Euclidean distance. Note that the
projection coincides with the usual orthogonal projection onto the
linear space span(q1, . . . ,qJ)⊃ C if PEucl [p] is an interior point in
C (in the relative topology of C). This formulation translates one-
to-one to the local projection of a shell sloc ∈M onto CJ ⊂MJ

for small κ, again by replacing dist2 by the local approximationW .
We define

Ploc[sloc] = arg min
q∈CJ
W [sloc,q] , (18)

where the constraint q ∈ CJ is equivalent to

q ∈
{

arg min
p∈M

J

∑
j=−J

α jW [p j, p]
∣

∣

∣

J

∑
j=−J

α j = 1, α j ≥ 0
}

. (19)

In our applications κ = 1
2 in (17) already implies that Ploc[sloc] is

an interior point in CJ .

[Rescaling] Finally, we rescale the local projection to define the
desired projection

P [s] = I(s̄,Ploc[sloc],1/ρ) . (20)

By means of this nonlinear projection method we are able to rep-
resent an arbitrary shape s in terms of 2J + 1 scalar variables, i.e.
α ∈ [0,1]2J to represent Ploc[sloc] ∈ C

J and ρ > 0 as in (17), which
allows for a substantial compression rate. For example, we visu-
alise α for J = 5 in Fig. 1 (bottom, left).

Let us emphasise that the constrained optimisation problem in-
corporated in the projection Ploc does not require any treatment
of tangent vectors and is built on the rigid body motion invariant
energy functionalW .

Evaluation. We show a qualitative example of submanifold pro-
jection in Fig. 8. The input shape (gray) is projected onto the sub-
manifold obtained by building a discrete PGA model (with K = 4)
using the Dyna dataset (model shown in Fig. 1). We vary the
model dimensionality over J = 5,11,17 and show the approximated
shape in yellow. The subtleties of the shape are correctly recon-
structed as J increases, yielding a smooth residual energy. We eval-
uate the generalisation ability of our model in Fig. 9. We compare
against [FB12] with 60 dimensions retained, the data-driven ap-
proach of [GLL∗16] using all training shapes and the Shell PCA
model [ZHRS15]. Using only 20 dimensions, our model gener-
alises almost as well as [GLL∗16] and outperforms the other two
models substantially.
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Figure 8: Qualitative visualisation of input shape (gray) projected

onto model in Fig. 1 with (cols 2-4) J = 5,11,17 dimensions. Col 5

shows residual energy of projection with J = 17.
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Figure 9: Leave-one-out evaluation of generalisation error on the

SCAPE data set compared to [GLL∗16] (using all shapes), [FB12]

(60 dimensions) and [ZHRS15]

.

6. Mesh editing via hard constraints

Our method can be used for model-based mesh editing. Assume
we are given a discrete PGA model and a set of handle vertex posi-

tions. Now, one positions (a subset of) the handle vertices manually
and asks for a shell obeying the new handle positions while being
a physically plausibly deformation of a shell lying on the statisti-
cal submanifold. Using the submanifold projection introduced in
Section 5 we define this shell as the minimiser s of the energy

W [s,P [s]] (21)

subject to the constraint positions of the deformed handle vertices.
Thus, we ask for the “closest” (in terms of the elastic energy func-
tionalW) discrete shell s to the nonlinear submanifold associated
with the dominant J principal variations of our training data. Note
that (21) is again an approximation to the actual (squared) distance.

Depending on the application one can either regard s or P [s]
as a solution. Indeed, s exactly obeys the prescribed handle ver-
tex positions but s /∈MJ in general, whereas P [s] ∈MJ and can
be represented by the 2J weights α j but the constraint of the pre-
scribed handle vertex positions is usually fulfilled only approxi-
mately. Note that this mesh editing tool comes with a selection of
a particular representative s from its equivalence class [s], which is
determined by the handle vertex positions (as long as there are at
least 3 handle vertices not lying on a line).

Fig. 10 shows mesh editing results for five comparison meth-
ods and our proposed approach. [SA07] and [SSP07] are classical
mesh editing approaches that use only a single reference mesh. The

a b c d e

f g h i

Figure 10: Comparison of mesh editing results. (a) initial pose, (b)

[SA07], (c) [SSP07], (d) [SZGP05], (e) [FB11], (f-g) [GLL∗16],

(h-i) Ours (with K = 4, J = 20).

a b c d

Figure 11: Mesh editing with five (a-b) vs. six (c-d) handle posi-

tions to be fitted, where the handle at the tail is shifted.

challenging configuration of handles causes these methods to fail
dramatically. [SZGP05], [FB11] and [GLL∗16] are data-driven and
use the same set of training shapes as we use to build our model.
These provide more natural results but [SZGP05] and [FB11] pro-
duce significant distortions and self-intersections while even the
state of the art [GLL∗16] loses details, causes the arms to thin and
the back to curve and deforms the head. Our result preserves de-
tails and retains plausible arms and head and a straight back. Note
though that the thickening of the left foot is an artefact. This is a
result of the training data not including examples with such severe
bending at the hip. To fit the handle on top of the foot, the solution
deforms the foot rather than further bending the upper leg.

To obtain the desired result of the edit, it might be necessary to
take into account sufficiently many handles as indicated in Fig. 11.
Here, we consider the cat model (cf.Fig. 5) first with five handles
and fit to modified handle positions in which the tail tip is moved.
To minimise in particular the bending energy our method signif-
icantly bends the whole object. This can easily be prevented by
adding a sixth handle on the back of the cat (cf. Fig. 11, c and d).

7. Model fitting via soft constraints

In this section we relax the hard constraint for the handle vertices in
the mesh editing application by means of a soft penalty approach.
In particular, this allows us to reconstruct a discrete shell from (po-
tentially noisy) input data from a motion capture device. In this
case, the input data is given as a vector of L sparse marker posi-
tions, i.e. x = (xℓ)ℓ=1,...,L, corresponding to vertex positions Xℓ(s)
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Figure 12: Qualitative results of fitting to motion capture data.

Frames from original sequence (top) shown with corresponding re-

construction (bottom, using the same model as Fig. 8 with K = 4,

J = 10).

on the mesh s. Knowing these correspondences, we measure the
mismatch of some discrete shell s ∈M and the given landmarks
by Fx[s] = ∑

L
ℓ=1 ‖Xℓ(s)− xℓ‖

2
R3 . Now, we considerW [s,P [s]] as a

prior for the identification of a reconstructed discrete shell. Hence,
we seek a minimizer s of the model fitting energy given by

Fx[s]+ γW [s,P [s]] (22)

for some weight γ > 0, which controls the proximity of s with re-
spect to our submanifold MJ for given training data, cf. Fig. 7
(left). Again this ansatz comes with a selection of a particular rep-
resentative s from its equivalence class [s], which is driven by the
data term. For the numerical solution of this problem, we make
use of the following alternating scheme (based on the initial guess
P [s] = s̄): First, we minimize (22) in s for fixed P [s]. If necessary,
we re-compute P [s] (see Sec. 5) and go back to the first step. In
our application this scheme quickly converges and only very few
iterations already give very satisfactory fitting results. In practice,
we use two iterations for the results shown.

In Figures 12 and 13 we show qualitative results of fitting to 41
markers in sequences from the CMU mocap dataset and 89 markers
from MPI MoSh dataset [LMB14] respectively. Fig. 12 shows a
result in which the learnt body model has quite different geometry
to that of the performer. Note that the video frames are just shown
for comparison - we use only the 3D marker data as input. Our fitted
model is still able to capture the dynamic poses of the performance.

In Fig. 13 we compare against [LMB14]. It should be noted that
this method uses a model of substantially higher complexity than
ours. It is trained on 3,803 body scans in neutral pose and 1,832
body scans in dynamic poses and uses a 19 parameter skeleton
model and retains up to 300 dimensions of the statistical defor-
mation model (10 used in Fig. 13). Our result is obtained using a
model trained on 20 scans of a single person (chosen to match the
body shape of the performer), is entirely mesh-based (we have no
articulation model) and we also retain only 10 principal variations.
Nevertheless, our results are qualitatively very similar.

Figure 13: Comparison of reconstruction from motion capture data

with the MoSh model [LMB14]. Although MoSh (top) is trained

on more than 5,000 scans and uses an additional skeleton model,

our method with K = 4 (bottom) obtains similar results using 10

principal variations only, trained on a subset of 20 shapes from

Dyna.

8. Computational tools

Here, we collect all algorithmic ingredients of the presented ap-
proach and discuss their computational complexity.

Discrete geodesic interpolation. A discrete K-geodesic is de-
fined as the minimisers of the discrete path energy (7). Thus, the
unknowns s1, . . . ,sK−1 determining the polygonal path s solve the
system of Euler–Lagrange equations

W,2[sk−1,sk]+W,1[sk,sk+1] = 0 (23)

for k = 1, . . . ,K − 1 with s0 = sA ∈ M and sK = sB ∈ M
being fixed. Here, W,i denotes the variation with respect to
the ith argument. For t = k/K for some 0 ≤ k ≤ K we set
I(sA,sB,k/K) = sk. For t = m/K with arbitrary m ∈ Z we define
a discrete extrapolation by an iterative scheme based on the fol-
lowing induction: Assume k ≥ K, such that sk−1 and sk are al-
ready known, then we compute sk+1 to be the solution of (23).
Likewise, for k ≤ 0, such that sk and sk+1 are already known,
we define sk−1 to be the solution of (23). With these extrapo-
lated discrete shells at hand we define I(sA,sB, t) for arbitrary

s−1
s0

sK

sA

sB t

s⌊tK⌋s⌊tK⌋+1

multiples t of 1
K . Finally,

for general t ∈ R we de-
note t(K) = tK − ⌊tK⌋
(where the floor function
⌊·⌋ returns the largest inte-
ger less than or equal to the

argument) and define I(sA,sB, t) as the midpoint s of a discrete 3-
geodesic (s⌊tK⌋,s,s⌊tK⌋+1) minimising

(1− t(K))W [s⌊tK⌋,s]+ t(K)W [s,s⌊tK⌋+1] , (24)

where sm = I(sA,sB,m/K) for m ∈ Z, as described above. In
particular, I(sA,sB,−1) defines a discrete Riemannian reflection of
sB about sA. Computationally, we use Newton’s method to solve
the nonlinear system (23) with (K−1)3M unknowns, which yields
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the evaluation of I(·, ·, t) for t = k/K with 1≤ k ≤ K−1. A single
step of extrapolation requires to solve (23) which is obtained by
solving a nonlinear system with 3M variables.

Discrete Fréchet mean. The most costly task is the computation
of the discrete Fréchet mean s̄ defined in (10). The degrees of free-
dom (dofs) are the shells defining the n polygonal paths s

i (with
3n(K−1)M dofs) connecting the input shells si and s̄ (with its 3M

dofs). Each arc of the polygonal spider has to solve the system of
Euler–Lagrange equations for a single discrete K-geodesic (i.e (23)
for 0 < k < K) and the coupling at the center is described by the
Euler–Lagrange equation

0 =
n

∑
i=1

βiW,2[s
i(1/K), s̄] (25)

with βi = 1/n and s
i(1/K) is the first discrete shell along the

discrete path from s̄ to the ith input shape si. This coupled problem
is again solved by Newton’s method.

Gram’s matrix and spectral analysis. The evaluation of
the approximate Gram’s matrix (11) only consists of scaling
based on the discrete geodesic interpolation and of evaluations
ofW . The spectral decomposition of G∈R

n,n can easily be solved.

Principal variations. The computation of principal variations
p j via (14) again involves a discrete geodesic scaling as well
as computing a local weighted average similar to (25) but with
non-constant weights βi = |w j,i|.

Submanifold projection. We solve the constrained optimisation
problem (18) using a Quasi Newton method. To this end, we define
the objective functional J [α] =W [sloc,q[α]] for α ∈ R

2J and q =
q[α] ∈ R

3M as the (locally unique) minimiser of

q 7→ A[α,q] = ∑
j=−J,...,J

α jW [p j,q] (26)

for fixed α0 = 0. To apply a Quasi Newton scheme we have to
evaluate the partial derivatives of J with respect to αi. For α∈ R

2J

the constraint on q = q[α] is given by G[α,q] := ∂qA[α,q] = 0.
The solution of (18) is linked to a saddle point of L[q,α;µ] :=
W[sloc,q] + G[α,q] · µ, where µ is the vector of Lagrange multi-
pliers. This leads to the nonlinear system 0 = D(q,α,µ)L[q,α;µ], i.e.

0 =DqL[q,α;µ] =W,2[sloc,q]+ ∑
j=−J,...,J

α jW,22[p j,q]·µ , (27)

0 =Dα jL[q,α;µ] =W,2[p j,q]·µ , j = 1, . . . ,J , (28)

0 =DµL[q,α;µ] = ∑
j=−J,...,J

α jW,2[p j,q] , (29)

where W,22 denotes the Hessian with respect to the second argu-
ment. By a classical result of constrained optimisation the right
hand side of (28) returns the derivatives of the cost functional J
with respect to α j . Thus, to evaluate ∂α jJ we first solve the non-
linear equation (29) for q via Newton’s method, the linear equation
(27) for µ via the conjugate gradient method and then apply (28) to
obtain ∂α jJ [α] =W,2[|p j,q] ·µ.

Multilevel algorithms. Solving a nonlinear system in O(3MnK)
variables directly is inefficient at least for larger M, n, and K. For

this reason, we use a multi-resolution approach for all nonlinear
optimisation problems above. First, we coarsen all of the input
shapes simultaneously by applying an iterative edge collapse ap-
proach based on the minimisation the quadric error metric [GH97]
and computed groupwise, as in [MG03], to preserve the dense cor-
respondence between input shapes. We then solve the nonlinear
optimisation problem on resulting meshes with reduced resolution
with < 1000 vertices. Afterwards, the coarse solution is then pro-
longated to the original resolution, using the prolongation scheme
from [FB11]. Then a fine scale optimisation can optionally be per-
formed using the prolongated result as initialisation. For a discus-
sion of the accuracy of this approach we refer to [FB11, Table 2].

Furthermore, for the computation of the discrete Fréchet mean
we make use of an alternating relaxation and a cascadic approach
along the discrete curves of the “spider”. For the alternating scheme
we first relax the average by solving (25). Secondly, we relax the
n geodesic paths (while fixing the average) by solving (23) for k =
1, . . . ,K−1. For the cascadic approach in time, we begin with K =
1 such that (25) is solved for si(1/K)= si. Then, at each refinement,
we subdivide the geodesic paths such that K← 2K. In detail, we set
s2k = sk for k = K, . . . ,0 and initialise the new intermediate shapes
s2k+1 as the discrete geodesic average of s2k and s2k+2 for k < K.

Timings. The components of our approach, projection onto the
model or fitting the model to data could not be performed in real-
time based on the current implementation. For proof of concept,
the results in this paper were prepared using a prototype imple-
mentation in MATLAB. We make this implementation available
as open source to aid reproducibility and to enable others to build
and fit their own Shell PGA models (https://github.com/
cazhang/shellGCA). In Table 1, timings of all experiments are
shown to give some idea of computational cost using MATLAB.
Model building is performed on a linux machine with 12 cores (In-
tel Xeon CPU E5-2680 2.4GHz ) for parallel computing geodesic
paths. All other results are computed on a single CPU (Intel Core
i7-6700 3.4GHz). Timings of both offline model building (i.e. com-
puting the discrete Fréchet mean and the principal variations) as
well as the online model fitting or editing are shown. For model
fitting as shown in Fig. 12 and Fig. 13, averages over all frames are
reported. To give some idea of computational speed-up, we have re-
computed some experiments in C++ (on a Dell Intel Core i7-2600
3.4GHz). For example, the results shown in Fig. 8 can be obtained
in roughly 2 minutes offline and 30s online cost.

9. Conclusions

We have shown how to perform principal geodesic analysis in the
space of discrete shells. In so doing, we derived an alternate formu-
lation of PGA that avoids performing any operations in the tangent
space and works directly with objects lying on the manifold. The
whole approach is based on an elastic energy functional measuring
membrane and bending distortion. The result is a physically-guided
statistical shape model, that is able to generalise across datasets
containing large nonlinear articulations and deformations. The cen-
tral tool - the projection onto a submanifold of discrete shells - is
well suited as the key ingredient in mesh editing or model fitting.

Once again, a metric derived from an elastic thin shell model pro-
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Dataset n / J Offline Online

Fig. 5
SCAPE 71 / - 73 m -

TOSCA_Cat 10 / - 66 m -
Fig. 8 Dyna_50009 29 / 10 21 m 70 s
Fig. 9 SCAPE 70 / 20 72 m 232 s

Fig. 10 SCAPE 71 / 20 73 m 919 s
Fig. 11 TOSCA_Cat 10 / 5 66 m 154 s
Fig. 12 Dyna_50009 29 / 10 21 m 100 s
Fig. 13 Dyna_50021 20 / 10 99 m 321 s

Table 1: Timings obtained with our prototype MATLAB implemen-

tation for fixed K = 4, but different numbers of training shapes n

and principal variations J.

vides a representation of volumetric objects and their deformations
which retains physical plausibility. In particular, Fig. 13 shows that
our results are comparable to MoSh [LMB14] which models bones
and muscles explicitly. If the training data set contains large bend-
ing distortions at joint locations (see e.g. the armpits in Fig. 2b),
this will be picked up by the first few principal variations since
they account for a lot of the variance in the Gram matrix (see Fig. 1
and Fig. 5). For example, one can see in Fig. 10 that joints are fairly
easy to bend while showing realistic muscle deformation.

In comparison to the original PGA model [FLPJ04], which deals
with a low dimensional medial axis description, we consider high
dimensional shape manifolds. Furthermore, we extend PGA to the
time-discrete setting and introduce a rigid body motion invariant
distance measure. This invariance is a substantial advantage over
the Shell PCA model [ZHRS15], which is based on vertex displace-
ments and hence alignment-dependent. To this end, the Shell PCA
model [ZHRS15] only allows for small deformations, i.e. mesh
editing and model fitting applications are out of reach of this purely
elastic PCA approach.

There are many avenues for future work. It would be interesting
to translate the concept of the Mahalanobis distance to our sub-
manifold so that we have a notion of the likelihood of a recon-
structed shape. Although we have used the space of discrete shells
as our motivating example, our proposed time-discrete PGA may
have other applications in machine learning with a modified energy
functional W approximating an alternate measure of squared dis-
tance with a potentially different invariance principle. In terms of
efficiency, the model reduction technique proposed in [vRESH16]
would be ideal for speeding up our method. Since our submanifold
works with convex combinations of principal variation shapes, a
subspace of deformations trained on samples from the submanifold
would dramatically reduce the computational cost and probably al-
low for real-time performance.
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