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A systematic technique is developed for studying particle dynamics as induced by a turbulent liquid flow, in which transport, 

agglomeration and breakup are considered. An Eulerian description of the carrier phase obtained using large eddy simulation 

is adopted and fully coupled to a Lagrangian definition of the particle phase using a pointwise discrete particle simulation. An 

efficient hard-sphere interaction model with deterministic collision detection enhanced with an energy-balance agglomeration 

model was implemented in an existing computational fluid dynamic code for turbulent multiphase flow. The breakup model 

adopted allows instantaneous breakup to occur once the transmitted hydrodynamic stress within an agglomerate exceeds a 

critical value, characterised by a fractal dimension and the size of the agglomerate. The results from the developed technique 

support the conclusion that the local turbulence kinetic energy, its dissipation rate and the agglomerate fractal dimension control 

the kinetics of the agglomeration and de-agglomeration processes, and as well as defining with time the morphology of the 

particles and their resultant transport. Overall, the results are credible and consistent with the expected physical behaviour and 

with known theories. 

 

I. INTRODUCTION 

Turbulent solid-liquid flows are encountered in numerous natural, industrial and biomedical processes. 

Our interest is in the prediction of particle transport with a physically-sound description of both particle-

particle interactions (e.g. collision and agglomeration) and fluid-particle interactions (e.g. breakup). In 

addition, particle-wall interactions may occur leading to wall deposition, wall erosion or particle re-

suspension depending on the magnitude of the short-range particle-surface interactions 1. These multiscale 

particle interactions (with the wall, other particles and the fluid) define with time the morphology of the 

particles and their resultant transport within the system, as well as any turbulence modulation 2 of the 

carrier phase. The general description of the multiscale interaction of the dispersed phase with the 
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turbulent fluid flow is a challenging task, however, due to inherent nonlinearities, inhomogeneities and 

coupling over disparate temporal and spatial scales 3, 4. 

In most systems, there is competition between agglomeration and breakup. Agglomeration is greatly 

enhanced by the way individual particles interact with turbulence structures, and in particular due to their 

segregation into regions of strain where they either breakup through the high shearing of the flow or 

continue to grow with enhanced collision rates 5, 6. The rate of agglomeration and breakup in pumps and 

in pipe flow, for example, are important flow characteristics that feed into transport prediction models 

used in industry 7. 

For predicting and investigating particle transport, agglomeration and breakup, computational fluid 

dynamic (CFD) methods have been developed, alongside advanced experimental approaches. It is 

important that numerical simulations replicate actual physical experiments in order to improve confidence 

in their use in practical applications. However, detailed experimental data for wall-bounded turbulent 

multiphase flows is scarce, and what is available is often incomplete, and hence unsuitable for the thorough 

validation of numerical simulations. In addition, particle-fluid and particle-particle interaction-related 

simulations are very difficult to validate given the inherent difficulties in measuring such phenomena 

experimentally. To overcome these challenges, the numerical methods underlying the simulation 

approaches adopted must be carefully selected and assessed to improve the integrity of the simulations 

and the findings that result therefrom. In addition, and in the absence of appropriate experimental data for 

model validation, efforts must be made to ensure that simulations are qualitatively correct as a first 

necessary step in ensuring their quantitative accuracy. 

One of the main CFD tools being used to underpin the understanding of turbulent flows is direct 

numerical simulation (DNS). Several established methods have been developed for simulating the 

transport of the dispersed phase in turbulent two-phase flows in conjunction with DNS, including 
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pointwise particle tracking 8, interface tracking 9 and the lattice Boltzmann method 10. Each of these 

methods has its limitations in terms of its robustness and its numerical accuracy and efficiency. Numerical 

complexity also limits the DNS of turbulent multiphase flows to small Reynolds number ሺܴ݁ఛ ൑ ͷͻͲሻǡ 
e.g. 11, 12. DNS of a turbulent channel flow (single phase) up to ܴ݁ఛ ൎ ͷʹͲͲ has appeared recently 13. 

However, because of the presence of complex physical phenomena interacting with turbulence 

(multiphase flow, inter-particle collision, complex geometries) and the fact that the Reynolds number of 

industrial scale flows is a few orders of magnitude larger than is currently achievable, the use DNS in 

general is not feasible 4. 

Large eddy simulation (LES) has been adopted to study industrial and natural flow applications, and 

for the study of complex physics. LES with modelling of the sub-grid scale (SGS) and of the SGS 

influence on particle dispersion can reproduce the results of DNS and experiment with reasonable 

accuracy and computational efficiency for turbulent particle-laden flow. Recently, Schutte et al. 14 have 

demonstrated that the properties of the agglomerates formed in such flows change when two-way coupling 

between the discrete and continuous phases is considered rather than one-way coupling. The authors 

further reported that no significant difference was observed in the properties of the agglomerates formed 

based on results obtained using LES or DNS. The work of Schutte et al. 14 therefore shows that eddy-

resolving simulations (LES and DNS) can successfully capture particle-particle and particle-turbulence 

interactions. 

To model inter-particle collision and agglomeration using a microscopic approach, both the hard-

sphere and soft-sphere collision models can be used. LES coupled to the hard-sphere collision model 15-17 

and energy-balanced and momentum-balanced agglomeration models 4, 18-20 have been used to study inter-

particle collision and particle agglomeration in turbulent channel flow. Afkhami et al. 21 and Hellestø et 

al. 22 applied LES coupled to the discrete element method based on the soft-sphere collision model 23 to 
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model particle agglomeration in solid-liquid turbulent channel flow. Ho and Sommerfeld 24, and 

Sommerfeld and Stübing 25, also used a macroscopic approach to model particle agglomeration processes 

in homogeneous isotropic turbulence based on stochastic collision model 26. 

Agglomeration is favoured when the cohesive force between particles is stronger than the kinetic 

energy between colliding particles 18. Once formed, the individual agglomerates can interact with turbulent 

structures which may cause them to segregate into straining regions where they either breakup through 

the high shearing of the flow in these regions or continue to grow with enhanced collision rates 6. Stresses 

passed from the turbulent flow to the agglomerates are induced by shear stress from fluid flow, particle-

particle and particle-wall collisions 7, 27, 28. Agglomerates breakup when the hydrodynamic stresses exceed 

a critical stress which characterises the agglomerate’s strength 28-30.  

Particles collide by different mechanisms and stick together forming irregular-shaped or fractal-like 7, 

30. The structure of these agglomerates is characterised by the fractal dimension, ݀௙, and pre-exponential 

factor, ݇ ௡, of simulated agglomerates of monodisperse primary particles for ballistic or diffusion-limited 

particle-agglomerate and agglomerate-agglomerate collision mechanisms 31. Rector and Bunker 7 in 

studying how colloidal particles in sludge suspensions interaction with each other have shown that the 

primary particle size, agglomerate diameter and the fractal dimension of the agglomerate influence many 

of the key sludge properties, such as viscosity, sedimentation rate, and sediment density. Inci et al. 32 used 

Langevin dynamics to investigate the aggregation of soot nano-particles in turbulent flows, with the 

morphology of the aggregates again characterised by the fractal dimension, ݀௙. The fractal dimension of 

agglomerates formed by diffusion-limited agglomerate-agglomerate agglomeration is typically ͳǤ͹ͺ, and 

for diffusion-limited particle-agglomerate agglomeration ݀௙ ൌ ʹǤͷ, for ballistic agglomerate-agglomerate 

agglomeration ݀௙ ൌ ͳǤͻͲ, and for ballistic particle-agglomerate agglomeration ݀௙ ൌ ͵ǤͲ, as reviewed by 

Eggersdorfer and Pratsinis 31. The use of ݀௙ to characterize agglomerates has become standard practice 
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even though such particles may not fully obey fractal theory, but they are considered to be sufficiently 

close to it to be judged fractal-like. Therefore, our interest is in how the fractal dimension influences 

agglomerate breakup and, subsequently, particle collision and agglomeration processes. 

Contrary to previous collision only 17, agglomeration only 4, 18-21 and breakup only 27, 29, 33, 34 studies, 

or studies based on phenomenological approaches (e.g. population balance equation) 35, the present work 

investigates both particle agglomeration and breakup in order for the predictive technique employed to be 

applicable to practical processes. In this paper, therefore, we investigate the competition between 

agglomeration and breakup using a previously well-validated LES 36 coupled to a discrete particle 

simulation (DPS) 4, an energy-balanced agglomeration model 18 and a shear-induced agglomerate breakup 

approach 33, 37. The adopted breakup model has been implemented by Babler et al. 29 for estimation of the 

breakup rate of small aggregates in fully developed bounded and unbounded turbulence, and by Marchioli 

and Soldati 34 for the breakup of ductile agglomerates. This study is motivated by the fact that 

agglomeration and breakup define with time the morphology of the particles, and the transport and settling 

dynamics of particle suspensions and sludges encountered in nuclear waste treatment. The techniques 

proposed in this paper are, however, fundamental and generic and can be applied to particle agglomeration 

and agglomerate breakup under aerodynamic and hydrodynamic conditions that occur in various other 

industrial and natural processes. 

II. MATHEMATICAL MODEL 

A. Large Eddy Simulation 

In large eddy simulation, the filtered governing equations of mass and momentum of an 

incompressible flow, with the contribution of the dispersed phase included, can be written as: 

 
௜ݔത௜߲ݑ߲ ൌ Ͳ (1) 
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ݐത௜߲ݑ߲ ൅ ത௝ݑ ௝ݔത௜߲ݑ߲ ൌ െͳߩ ௜ݔҧ߲݌߲ ൅ ߲ ҧ߬௜௝߲ݔ௝ െ ߲߬௜௝௦௚௦߲ݔ௝ ൅ ݂ҧ௜ ൅Ȉߜ௜ଷ (2) 

where ݑ ,ߩ and ݌ represent the fluid density, velocity and pressure, respectively. The tensors ҧ߬௜௝ and ߬ ௜௝௦௚௦ 
are the viscous stress and the unknown sub-grid scale (SGS) stress tensors. The SGS stress tensor, defined 

as ߬ ௜௝௦௚௦ ൌ ௝ݑ௜ݑ െ  ,௝, is closed using the dynamically calibrated version of the Smagorinsky model 38, 39ݑ௜ݑ

where the anisotropic part of the SGS stress is related to the filtered rate of strain tensor via ߬௜௝௦௚௦ ൌʹߥ௦௚௦ܵҧ௜௝ with the SGS kinematic viscosity given by ߥ௦௚௦ ൌ  ௌ is the Smagorinsky constantܥ .ௌȟଶฮܵҧ௜௝ฮܥ

and ฮܵҧ௜௝ฮ represents a Frobenius norm ฮܵҧ௜௝ฮ ൌ ൫ʹܵҧ௜௝ܵҧ௜௝൯ଵȀଶ of the filtered rate of strain tensor, ܵҧ௜௝ ൌͳȀʹ	ሺ߲ݑത௝Ȁ߲ݔ௜ 	൅ ௝ݔത௜Ȁ߲ݑ߲ 	ሻ. The dynamic version of the Smagorinsky model 38, 39, allows the value of the 

parameter ܥௌ to be determined as a function of time and position, ܥௌ ൌ ௜ݔௌሺܥ ǡ  ሻ. Coupling between theݐ

fluid and particle phases is incorporated by the addition of a momentum source, ݂ҧ௜. The momentum source 

term is evaluated from ݂ҧ௜ ൌ ሺͳȀȟ͵ሻσ ௜ܵሺ݌ሻே೛௣ୀଵ , where the summation is performed over the number of 

particles present within a specific control volume, and ȟ ൌ ൫ȟ௫ ൈ ȟ௬ ൈ ȟ௭൯ଵȀଷ is the filter width and ܵ௜ሺ݌ሻ 
is the momentum source term arising from the ݌௧௛ particle. In this paper, the contribution of the SGS 

stress momentum exchange was not accommodated. The source term ȫߜ௜ଷ is the mean pressure gradient 

imposed that drives the flow and ߜ௜ଷ is the Kronecker function (ߜ௜௝ ൌ ͳ for ݅ ൌ ௜௝ߜ ,݆ ൌ Ͳ for ݅ ് ݆). 
B. Discrete Particle Simulation 

The discrete particle motion is governed by the following Lagrangian equations: 

dܞ ൌ ቊሺܝഥ െ ሻ߬௣ܞ ஽݂ ൅ ௌ௅ܥ ௣ߩͶߩ͵ ሾሺܝഥ െ ሻܞ ൈ ૑ഥሿ ൅ ௣ߩߩ DܝഥDݐ ൅ ௣ߩʹߩ ൬dܝഥdݐ െ dܞdݐ൰ቋ dݐ ൅ ቆܥ଴ ݇௦௚௦߬௧ ቇ଴Ǥହ d܅௧ (3)

dܠ௣ ൌ (4) ,ݐdܞ
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where the derivatives dȀdݐ	 and DȀDݐ represent Lagrangian derivatives following the particle and the fluid 

element, respectively, and bold symbols denote vector quantities, with dܝഥȀdݐ ൌ ݐഥȀ߲ܝ߲ ൅ ܞ ڄ ݐഥȀDܝഥ and Dܝ׏ ൌ ݐഥȀ߲ܝ߲ ൅ ഥܝ ڄ  ഥ. The terms on the right-hand side of Eq. (3) are, respectively, contributionsܝ׏

from the drag, shear lift, pressure-gradient, and added-mass forces, and a stochastic force term accounting 

for the influence of the SGS fluid velocity fluctuations on particle acceleration 36. Gravity and buoyancy 

forces were not included as the focus of this paper is limited to turbulence effects on collision, 

agglomeration and breakup events. ܞ and ܠ௣ are the particle instantaneous velocity and position, and ܝഥ 

and ૑ഥ ൌ ͲǤͷሺ׏ ൈ  .ഥሻ are known resolved fluid velocities and rotation interpolated at the particle positionܝ

The terms ݂஽ and ܥௌ௅ are, respectively, the drag and shear lift forces taken from the Schiller and Naumann 

drag correlation and the Mei 40 shear lift force correlation, both due to the particles’ finite Reynolds 

number. 

For the stochastic term, ܥ଴ ൌ ͳ is a dispersion coefficient 36 and the unresolved turbulence kinetic 

energy, ݇ ௦௚௦ ൌ ʹȟଶܥௌଶȀଷܵҧ௜௝ܵҧ௜௝, of the continuous phase is computed assuming equilibrium of the small 

scalesǤ The Smagorinsky constant, ܥௌ ൌ ǡܠௌሺܥ  ሻ, is closed using the dynamic calibration of theݐ

Smagorinsky model constant 38, 39, with the filter width ȟ and the filtered strain tensor ܵҧ௜௝ as defined in 

the previous subsection. The term d܅௧ ൌ ૆ ൈ ξdݐ is an incremental Wiener term, where ૆ is a random 

vector sampled with zero mean and a variance of unity, independently for each time step.. The interaction 

between particles and the fluid phase turbulence is considered using the following time scale, ߬ ௧ ൌ ߬௣. 

Other alternative time scales are reported in Bini and Jones 36. 

C. Particle Collisions 

Particle-particle interaction is modelled using the deterministic hard-sphere collision model assuming 

binary collisions and neglecting particle angular momentum. The concept of virtual cells 16 is adopted, 

where the computational domain is decomposed into ݀௫ ൈ ݀௬ ൈ ݀௭ virtual cells. The standard 
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deterministic collision detection procedure is limited to the particles in each virtual cell. The use of the 

concept of virtual cells enables the cost of checking for collisions to be reduced from ܱሺ ଴ܰଶሻ, when 

collisions between all possible particle pairs are considered, to ܱሺ ଴ܰሻ. 
In order for two particles within a virtual cell to collide, two conditions have to be fulfilled 16. The first 

condition is that they must approach each other, expressed as ሺܚܠ ڄ ܚܞ ൏ Ͳ), where ܚܠ and ܚܞ	 are the 

relative separation distance and relative velocity between the two particles, respectively. The second 

condition is that the minimum separation distance, ܠ୰ǡ୫୧୬, occurring at ȟݐ୫୧୬ within a time step, Ǽݐ, must 

be less than the sum of the particles radii, ݀ଵଶ ൌ ሺ݀௣ǡଵ ൅ ݀௣ǡଶሻȀʹ. Therefore, contacts between 

neighbouring particles within a time step are detected by satisfying the conditions 16: 

 ሺܚܠ ڄ ܚܞ ൏ Ͳሻ	Ƭ	൫หܠ୰ǡ୫୧୬ห ൑ ݀ଵଶ൯ and ሺǼݐ୫୧୬ ൑Ǽݐሻ (5)

If a collision is detected, the position and velocity vectors of the colliding particles are updated as per the 

hard-sphere model. 

D. Particle Agglomeration 

Agglomeration of the colliding particles is based on an expression which permits agglomeration if the 

elastic energy (i.e. the relative kinetic energy before the collision minus the dissipated energy) after the 

compression period of the collision is less than the work required to overcome the van der Waals forces 

18: 

ሺܞଶି െ ଵିܞ ሻଶ െ ሾሺܞଶି െ ଵିܞ ሻ ڄ ୡሿଶሺͳܖ െ ݁௡ଶሻȁሺܞଶି െ ଵିܞ ሻ ڄ ୡȁܖ ൑ ଶכ଴ߜ͸כܪ ቈሺͳ െ ݁௡ଶሻ ͸ߨଶߩ௣݌כҧכ ݀௣ǡଵכଷ ൅ ݀௣ǡଶכଷ݀௣ǡଵכଶ ݀௣ǡଶכଶ ൫݀௣ǡଵכ ൅ ݀௣ǡଶכ ൯቉ଵȀଶ (6)

where quantities with the superscript * are made dimensionless in the integral scale using the channel half-

height, ݄ , fluid bulk velocity, ݑ௕ǡ and fluid density, ܪ .ߩ is the particle Hamaker constant, ݌ҧ is the 

maximum contact pressure at which plastic deformation occurs, ߜ଴ is the minimal contact distance and ݁௡ 
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is the normal restitution coefficient. Note the superscript (–) denotes quantities before the collision, and 

the subscripts 1 and 2 denote particles number one and two. The agglomerate size, ݀௣ǡଷǡ and structure are 

based on a volume-equivalent sphere, ݀௣ǡଷ ൌ ൫݀௣ǡଵଷ ൅ ݀௣ǡଶଷ ൯ଵȀଷ. 
E. Agglomerate Breakup 

Breakup is defined as a singular event in time, i.e. there is an exact moment in time when an 

agglomerate turns from being intact into being broken. We assume that this happens when the local 

hydrodynamic stress ߤ̱ߪሺ߳ȀߥሻଵȀଶ, i.e. the applied breaking force at the agglomerate position acting on 

the agglomerate, exceeds a critical stress, ߪ௖௥ 29, i.e. the mechanical strength of the agglomerate. Here, ߳ ൌ ʹ൫ߥ ൅  ௦௚௦൯ܵҧ௜௝ܵҧ௜௝ is the instantaneous turbulence kinetic energy dissipation rate at the position of theߥ

agglomerate, and ߤ and ߥ are the dynamic and kinematic viscosities, respectively. The critical stress ߪ௖௥ 
is a characteristic of the considered agglomerate, i.e. ߪ௖௥ is a function of the aggregate properties such as 

size, structure, type of the constituent particles, and the chemical environment. Among these variables, 

the size of the aggregate is the most crucial. A large body of experimental, numerical and theoretical 

studies, see Babler et al. 29 and cited references, suggest a power law dependency of the form: 

௤ିݎ௖௥̱ߪ  ൌ ௣ܰ௣ି௤Ȁௗ೑  (7)

where ܰ ௣௣̱ݎௗ೑ is the number of primary particles constituting the agglomerate, ݀௙ is the agglomerate 

fractal dimension, ݎ is the radius of the primary particle, and ݍ ൌ ሾͻǤʹሺ͵ െ ݀௙ 	ሻ ൅ ͳሿȀʹ	 is a scaling 

exponent that depends on the agglomerate structure 29. There are no exact models to effect breakup, and 

recent research 29 has been limited to detecting the moment break-up events are likely to occur. We adopt 

this model for detecting breakup events for small agglomerates and subsequently breakup the parent 

agglomerate into two smaller particles. This method of breaking an agglomerate into two parts is a popular 

modelling assumption adopted mainly because of the lack of data for other types of breakup mode. 
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III. NUMERICAL SIMULATIONS 

The simulation treats the continuous phase in an Eulerian framework based on large eddy simulation, 

using the BOFFIN (Boundary Fitted Flow Integrator) LES code 41. BOFFIN is a block-structured and 

boundary conforming coordinate code parallelised by domain decomposition using message passing 

interface routines. It comprises a second-order accurate finite-volume method, based on an implicit low-

Mach-number formulation using a co-located storage arrangement. For the momentum equation 

convection terms, an energy-conserving discretisation scheme is used, and all other spatial derivatives are 

approximated by standard second-order central differences. Time derivatives are approximated by a three-

point backward difference scheme with variable time step to ensure that the maximum Courant number, 

based on the filtered velocity, always lies between 0.1 and 0.2. This LES solver has been validated 

thoroughly for many different flows, e.g. 42, 43. In this paper, we extend the BOFFIN code to handle four-

way coupling with deterministic collision, agglomeration and shear-induced breakup of solid particles. 

We simulate a turbulent channel flow at ܴ݁ఛ ൌ ͵ͲͲ for validation purposes and at ܴ݁ఛ ൌ ͷͻͲ for the 

particle agglomeration and agglomerate breakup cases. We adopt ݕ ,-ݔ- and ݖ-axes as the wall-normal, 

spanwise and streamwise directions, respectively. The dimensions of the computational domains and mesh 

resolution are given in Table 1. For the DPS validation, we matched the parameters used for the DNS at ܴ݁ఛ ൌ ͵ͲͲ and density ratio, ߩ௣Ȁ̱ߩ͹ͻͲǡ employed by Marchioli and Soldati 44. Two particle sets were 

considered, characterised by different non-dimensional relaxation times, ߬௣ା, in a one-way coupled 

simulation, as listed in Table 2. For the DPS in the ܴ݁ఛ ൌ ͷͻͲ case, a total number ଴ܰ ൌ ʹǡ͹Ͷ͹ǡͷ͹Ͳ of 

spherical primary calcite particles of diameter ݀௣ ൌ ͸Ͳ	݉ߤ, a simulant representative of UK legacy waste 

sludge, at volume fraction ߙ௣ ൌ ͳͲିଷ was used, with the mechanical properties for this simulation listed 

in Table 324, 46.. In all the simulation cases, periodic boundary conditions were applied in the spanwise 
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and streamwise directions for both the continuous and dispersed phases. The no-slip condition and perfect 

elastic wall conditions were imposed on the walls for the continuous and dispersed phases, respectively. 

Table 1: Grid parameters for LES of turbulent channel flow. ܮ௫ሺ௬ǡ௭ሻ, ܰ ௫ሺ௬ǡ௭ሻ	and ȟ௫ሺ௬ǡ௭ሻା  are the size 

of the domain, the number of grid points and filter widths in wall units, respectively. Grid parameters 

used for DNS at ܴ݁ఛ ൌ ͵ͲͲ by Marchioli and Soldati 44 and ܴ ݁ఛ ൌ ͷͻͲ by Moser et al. 45 are also 

provided for reference. ܴ݁ఛ ܮ௫ ൈ ௬ܮ ൈ ௭ ௫ܰܮ ൈ ௬ܰ ൈ ௭ܰ ȟ௫ା ȟ௬ା ȟ௭ା 

Current LES 

300 ʹ݄ ൈ ݄ߨ ൈ ͳʹͻ ݄ߨʹ ൈ ͳʹͺ ൈ ͳʹͺ 0.14 – 14.2 14.84 29.68 

590 ʹ݄ ൈ ݄ߨ ൈ ͳʹͻ ݄ߨʹ ൈ ͳʹͺ ൈ ͳʹͺ 0.26 – 26.39 29.19 58.38 

DNS 

300 ʹ݄ ൈ ݄ߨʹ ൈ Ͷ݄ߨ ʹͷ͹ ൈ ʹͷ͸ ൈ ʹͷ͸ 0.02 - 3.68 7.39 14.78 

590 ʹ݄ ൈ ݄ߨ ൈ ͷ͹ʹ ݄ߨʹ ൈ ͵ͺͶ ൈ ͵ͺͶ 0.04 - 7.20 4.80 9.70 

 

Table 2: Particle parameters for validation at ܴ݁ఛ ൌ ͵ͲͲ. ߬௣ା ߬௣	ሺݏሻ ݀௣ା ݀௣ ሺ݉ߤሻ ߩ௣/ߩ 

1 ͳǤͳ͵ ൈ ͳͲିଷ 0.153 20.4 790 

25 ʹǤͺ͵ ൈ ͳͲିଶ 0.765 102.0 790 

 

Table 3: Particle (calcite) mechanical properties and associated parameters used in studying particle 

agglomeration and breakup for the ܴ݁ఛ ൌ ͷͻͲ case. 

Parameter Symbol Units Value 

Particle density ߩ௣ kg m-3 2710 

Hamaker constant ܪ J ͵Ǥͺ ൈ ͳͲିଶ଴ 
Mean yield stress ߪത Pa ͵ǤͲ ൈ ͳͲ଼ 

Minimal contact distance ߜ଴ m ʹǤͲ ൈ ͳͲିଵ଴ 
Primary particle diameter ݀௣ µm 60 
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Normal restitution coefficient ݁௡ - 0.4 

Particle volume fraction ߙ௣ - ͳǤͲ ൈ ͳͲିଷ 
Agglomerate fractal dimension ݀௙ - 2.0, 2.5, 2.8, 3.0 

 

The particle equations of motion, Eqs. (3) and (4), were integrated using a fourth-order Runge-Kutta 

scheme. Sixth-order Lagrangian polynomial and trilinear interpolation schemes 47 were used to obtain the 

fluid properties at a particle’s position for the ܴ݁ఛ ൌ ͵ͲͲ and ܴ ݁ఛ ൌ ͷͻͲ cases, respectively. The 

particle’s initial position was random, and the initial velocity was set equal to that of the fluid at the 

particle’s position. The particles’ trajectories were tracked, including inter-particle collisions, for כݐ ൐ͷͲ00 to allow for proper mixing before particle agglomeration and breakup were allowed to occur. The 

time counter was the readjusted to כݐ ൌ Ͳ at the start of the particle agglomeration and breakup 

computation. 

The agglomeration kinetics, as illustrated in Fig. 1(a), are such that during the agglomeration process 

two primary particles (monomers, ௔ܰǡ௜ୀଵ) collide and agglomerate to form a dimer, ௔ܰǡ௜ୀଶ, while a 

monomer and a dimer collide to form a trimer, ௔ܰǡ௜ୀଷ, which is an agglomerate of three primary particles, 

and so on. The breakup kinetics, as illustrated in Fig. 1(b), are in direct opposition to that of agglomeration, 

such that a trimer breaks up into a monomer and a dimer, and so on. 

    

(a) (b)
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Fig. 1: Schematics of (a) particle agglomeration process and (b) agglomerate breakup process. 

Throughout this paper, the velocity, length and time scales are made dimensionless using either wall 

variables as ݑା ൌ ାݔ ,	ఛݑȀݑ ൌ ାݐ and ߥఛȀݑݔ ൌ כݑ or using integral scales as ,ߥఛଶȀݑݐ ൌ כݔ ,	௕ݑȀݑ ൌ  ,Ȁ݄ݔ

and כݐ ൌ  .௕Ȁ݄ݑݐ

IV. RESULTS AND DISCUSSION 

A. Validation of Fluid and Particle Velocity Statistics 

Turbulence properties are characterised by the turbulence kinetic energy, with its SGS component, ݇௦௚௦, shown in Fig. 2(a). It represents the intensity of the fluid fluctuation velocity. The turbulence kinetic 

energy dissipation rate, ߳, shown in Fig. 2(b), determines the intensity of the turbulence shear gradient, 

turbulent length and time scales. The turbulence properties have a significant influence on the particle 

transport, agglomeration and breakup processes. The turbulence kinetic energy facilitates collisions 

amongst particles 20, a precursor to particle agglomeration. while its dissipation rate induces breakup of 

the formed agglomerates 29. This makes it imperative to ensure that the solid-liquid flow simulation is 

validated. 
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Fig. 2: Instantaneous contours on an כݔ െ ܴ plane: (a) non-dimensional SGS turbulence kinetic energy, ݇௦௚௦Ȁ݇௦௚௦ǡ୫ୟ୶, and (b) non-dimensional turbulence kinetic energy dissipation rate, ߳Ȁ߳୫ୟ୶, for כݕ ݁ఛ ൌͷͻͲ, sliced at ̱כݖͶǤ͸. 

The computed statistics of the mean streamwise velocity, ݑۃ௭ାۄ, of the root mean square values of the 

velocity fluctuations along the wall-normal, ݑۃ௫ᇱାۄ, spanwise, ݑۃ௬ᇱାۄǡ and streamwise, ݑۃ௭ᇱାۄ, directions, and 

of the ݔ െ  are shown in Fig. 3. Note that the statistics	ǡۄ௭ᇱାݑ௫ᇱାݑۃ ,component of the Reynolds shear stress ݖ

presented here were gathered for over ͳͲܪȀݑఛ containing samples taken after each time step (Ǽ̱ݐ͵ǤͲ ൈͳͲିସ s for ܴ ݁ఛ ൌ ͵ͲͲ and Ǽݐ ൌ ͵Ǥͷ ൈ ͳͲିସ s for ܴ ݁ఛ ൌ ͷͻͲ). The 10 cycles mentioned here refers only 

to the sampling interval for the fluid and particle velocity statistics presented in Figs. 3 and 4 and not to 

the agglomeration and breakup events to be described in later sections. This time interval ሺͳͲܪȀݑఛሻ	is 

more than enough to obtain a statistically steady state result. The results are time- and space-averaged 

(denoted by ۄڄڄڄۃ) as well as averaged over the two halves of the channel, to increase the reliability of the 

(a) (b) 
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statistical sample. These statistical moments from the present LES are compared with DNS results for a 

turbulent channel flow at ܴ݁ ఛ ൌ ͵ͲͲ 44, in Fig. 3(a, b), and at ܴ݁ఛ ൌ ͷͻͲ 45, in Fig. 3(c,d), with good 

agreement found. 

 

   

   

Fig. 3: Statistics of fluid phase in turbulent channel flow simulations: (a, c) mean streamwise velocity, ݑۃ௭ାۄ, and (b, d) root mean square of velocity fluctuations along wall-normal, ݑۃ௫ᇱାۄ, spanwise, ݑۃ௬ᇱାۄ, and 

streamwise, ݑۃ௭ᇱାۄ, directions, and Reynolds shear stress, ݑۃ௫ᇱାݑ௭ᇱାۄǤ Simulations at ܴ݁ఛ ൌ ͵ͲͲ (a, b) and ܴ݁ఛ ൌ ͷͻͲ (c, d). 

Similarly, the velocity profiles of the particles at Stokes numbers ߬௣ା ൌ ͳ and ʹ ͷ are compared with 

equivalent values obtained from the DNS database of Marchioli and Soldati 44 at ܴ ݁ఛ ൌ ͵ͲͲ in Fig. 4. As 

previously reported in Njobuenwu and Fairweather 4, the comparisons show very good agreement, 

(a) (b) 

(c) 
(d) 
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confirming that the use of a highly resolved LES and dynamic modelling of the SGS term gives reliable 

results. Note that the results shown in Figs. (3) and (4) have appeared in an earlier paper4 and are 

reproduced here for completeness. 

 

 

Fig. 4: Statistics of particle phase in turbulent channel flow simulations at ܴ݁ఛ ൌ ͵ͲͲ with density ratio, ߩ௣/̱ߩ͹ͻͲ: (a, c) mean streamwise velocity, ሺݒ௭ାሻ, and (b, d) root mean square of velocity fluctuations 

along wall-normal, (ݒ௫ǡ୰୫ୱᇱା ሻ, spanwise, (ݒ௬ǡ୰୫ୱᇱା ሻǡ	and streamwise, (ݒ௭ǡ୰୫ୱᇱା ሻǡ	directions, and Reynolds shear 

stress, (ݒ௫ᇱାݒ௭ᇱାሻ. Simulations for (a, b) ߬௣ା ൌ ͳǡ and (c, d) ߬௣ା ൌ ʹͷ. 
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B. Particle-Particle Interactions and Agglomerate Breakup 

To examine the extent to which the agglomerate fractal dimension, ݀௙, during agglomerate breakup 

influences the global agglomeration process, as well as the transient and steady-state behaviour of the 

system, a series of simulations were carried out. The work of Soos et al. 30 was considered, which reported 

that agglomeration of solid primary particles in a typically random process results in agglomerate 

structures with fractal dimensions around 2.0. Under flow conditions, the authors reported that the value 

of the fractal dimension can be significantly larger, even up to its threshold value of 3.0, due to the 

restructuring and breakage processes. Hence, in this work, the values of ݀௙ were set to ݀௙ ൌ ʹǤͲ, ʹ Ǥͷ, ʹ Ǥͺ 

and ͵ ǤͲ. A fifth simulation, used as a control, is the case of no-breakup in which case ݀௙ ՜ λ. All other 

parameters such as fluid properties and particle properties were kept constant at the values listed in Tables 

1 and 3. Note that the results for particle agglomeration and breakup were sampled for a time interval of 

up to ̱כݐ͵ͲͲ, i.e. ̱כݐͳͲͲ greater than the ̱כݐʹͲͲ reported in previous works 18,19. 

1. Effect of Fractal Dimension on Agglomerate Breakup 

Figure 5 shows the critical stress that the local hydrodynamic stress must overcome to restructure or 

breakup an agglomerate held together by van der Waals forces as a function of the number of primary 

particles in the agglomerate, ௣ܰ௣, for four values of the fractal dimension, ݀௙. The factors influencing the 

critical stress, based on the empirical correlation in Eq. (7), are the number of primary particles in the 

agglomerate and the agglomerate fractal dimension. Interestingly, keeping ௣ܰ௣ constant and increasing ݀௙ from a value of ʹ ǤͲ to ͵ǤͲ results in larger values of ߪ௖௥, signifying an increase in the difficulty of 

breaking up an agglomerate. Conversely, the agglomerate strength becomes weaker with an increase in 

௣ܰ௣ for a given ݀ ௙. However, at higher value of the fractal dimension, e.g. ݀௙ ൌ ʹǤͺ and 3.0, ߪ௖௥ follows 

a trend almost independent of ௣ܰ௣, especially at higher values of ௣ܰ௣. The variation of ߪ௖௥̱݂ሺ݀௙ ǡ ௣ܰ௣ሻ 
therefore indicates that the fractal dimension and size of the agglomerate are key parameters that control 
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the breakup process, and that the fragmentation dynamics of an agglomerate become slower as the fractal 

dimension increases. On the balance of probability, it can be concluded that the influence of the fractal 

dimension of the agglomerate on agglomerate breakup is more significant than that of agglomerate size 

30. 

 

Fig. 5: Variation of agglomerate critical shear stress, ߪ௖௥ǡ as a function of number of primary particles in 
an agglomerate, ܰ௣௣, for a given agglomerate fractal dimension, ʹǤͲ ا ݀௙ ا ͵ǤͲ. 

The effect of the fractal dimension on the location where breakup events occur, irrespective of the 

agglomerate type (or size) involved, is shown in the probability density functions, ܲ  .ሻǡ in Fig. 6כݔሺܨܦ

With respect to the contours of the turbulence kinetic energy dissipation rate shown in Fig. 2(b), it is 

evident in Fig. 6 that the fractal dimension has a large effect on the probability of the location along the 

wall-normal direction, כݔ, at which agglomerate breakup occurs. For a fractal dimension ݀௙ ൌ ʹǤͲ, Fig. 

6(a) shows that agglomerate breakup occurs at all positions between the two parallel walls bounding the 

channel flow. Most of the breakup presented in Fig. 6(a) occurs in the near-wall regions. This observation 

is significantly different when compared to all other cases where ݀௙ ൐ ʹǤͲ. In relation to the agglomerate 
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critical stress, ߪ௖௥ǡ given in Fig. 5, the agglomerate strength is strongly dependent on ݀௙, hence, breakup 

occurs mostly in the near-wall regions where the hydrodynamic stress, ̱߳ߪଵȀଶ, resulting from the local 

turbulence kinetic energy dissipation rate, ߳, is largest, as shown in the contours of Fig. 2(b). For the ݀௙ ൌʹǤͺ and ͵ ǤͲ cases, agglomerate breakup occurs at the plane closest to both walls where the stresses are at 

a maximum value. 

  

  

Fig. 6: Influence of fractal dimension, ݀௙, of the agglomerate structure on the probability density 

function, ܲ  ሻ, of the non-dimensional position in the wall-normal direction where agglomerateכݔሺܨܦ
breakup occurs. ݀௙ ൌ (a) ʹ ǤͲ, (b) 2.5, (c) 2.8 and (d) 3.0. 

Overall, Figs. 5 and 6 clearly show that the number of agglomerate breakup events increases as the 

agglomerate fractal dimension, a measure of the agglomerate strength, decreases, with a significant 
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difference between the two low strength (݀௙ ൌ ʹǤͲ and ʹ Ǥͷ) cases, shown in Fig. 6(a) and (b), and the two 

high strength cases (݀௙ ൌ ʹǤͺ and ͵ ǤͲ), shown in Fig. 6(c) and (d). This observation is consistent with 

those reported in literature 30. 

 

Fig. 7: Influence of fractal dimension, ݀௙ ǡ of the agglomerate structure on the time history of breakup 

events, ܰ ௕௞௣, normalised by the initial number of primary particles, ଴ܰ. 
The time evolution of the cumulative normalised number of agglomerate breakup events, ௕ܰ௞Ȁ ଴ܰ, 

irrespective of the agglomerate type (or size), against the normalised time, כݐǡ is shown in a log-linear plot 

in Fig. 7 for various agglomerate fractal dimensions. The results in Fig. 7 show, as expected, that the 

number of breakup events decreases with increasing agglomerate fractal dimension from ݀௙ ൌ ʹǤͲ to ͵ ǤͲǡ 
and further confirms the findings reported in relation to the results of Figs. 5 and 6. 

The influence of the agglomerate structure fractal dimension (݀௙ ൌ ʹǤͲǡ ʹǤͷǡ ʹǤͺ	and	͵ǤͲሻ on the total 

number of accumulated agglomerate breakup events, ௕ܰ௞௣ǡ of the same type (i.e. double (2), triple (3), 

quadruple (4), etc. particles) after a simulation time כݐ ൌ ͵ͲͲ is shown in Fig. 8. The average number of 
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accumulated breakup events of any agglomerate type is highest for agglomerate type (2) and reduces as 

the agglomerate size increases up to type (20). This trend is to be expected as the primary event of 

agglomeration must occur first before the secondary event of breakup. The initial phase of particle pair 

formation, for all values of the fractal dimension, favours agglomerates of smaller sizes which are then 

subjected to breakup processes before undergoing subsequent phases of agglomeration. As will be shown 

later in Fig. 13 which considers the temporal particle size distribution, the smaller agglomerates 

outnumber the larger agglomerate sizes. A large number of smaller sized agglomerates is a prerequisite 

for the large number of small agglomerate breakups, assuming favourable breakup conditions with 

reference to Figs. 2, 5 and 6. Hence, at any reference time, כݐ, the agglomerates of smaller size first 

undergo breakup before the formation of larger agglomerates is possible for a given fractal dimension. 

 

Fig. 8: Influence of fractal dimension, ݀௙, of the agglomerate structure on the number of agglomerates 

of the same type (double (2), triple (3), quadruple (4), etc. particles) that undergo breakup. 

In addition, for each agglomerate type, e.g. double (2) agglomerates, the number of breakup events 

decreases as the fractal dimension increases from ʹǤͲ to ͵ ǤͲ. This observation corroborates those made in 

relation to the results of Fig. 5 where small values of ݀௙ were noted to promote breakup. In the case of 
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particular fractal dimensions, no-breakup was recorded for agglomerates of the triple (3) type for ݀௙ ൌʹǤͷ, while type (7) was the largest agglomerate size to undergo breakup. For ݀௙ ൌ ʹǤͷ, agglomerates of 

type (7, 10, 15, 17 and 20) did not undergo breakup, whilst for ݀௙ ൌ ʹǤͺ and ͵ ǤͲ, all agglomerate types 

were involved in breakup apart from type (3), for ݀௙ ൌ ʹǤͺ, and for types (10 and 17), for  ݀௙ ൌ ͵ǤͲ. 

Further inspection of Fig. 8 also suggests that breakup events for large values of the fractal dimension, 

i.e. ݀ ௙ ൒ ʹǤͺ, involve a wider spectrum of agglomerate types when compared to those with small values 

of the fractal dimensions, i.e. ݀௙ ൑ ʹǤͷ. 

2. Effect of Fractal Dimension on Particle-Particle Interactions 

 

Fig. 9: Influence of fractal dimension, ݀௙ǡ of the agglomerate structure on the time history of the number 

of collisions, ܰ ௖௢௟, normalised by the initial number of primary particles, ܰ଴. 
Figure 9 shows the influence of the fractal dimension of the agglomerate structure on the total number 

of accumulated particle-particle collisions, ௖ܰ௢௟, normalised by the initial number of primary particles 

injected, ܰ ଴, as a function of time. These results show that breakup model with ݀௙ ൌ ʹǤͲ predicts the 



23 
 

largest number of particle-particle collisions, consistent with the breakup events mentioned in relation to 

Figs. 6-8. More collisions occur with decreasing fractal dimension from the limit case of no-breakup ሺܰ݋	݌ܾ݇	ሻ through ݀ ௙ ൌ ͵ǤͲ to ݀ ௙ ൌ ʹǤͲ. It is obvious that the breaking up of an agglomerate in the flow 

populates it with smaller agglomerates containing a smaller number of primary particles which have a 

higher propensity to collision and subsequent agglomeration 4, 18, 48. Hence, as most breakup occurs 

towards the end of the reported breakup time history in Fig. 7, its effect on the number of collisions in 

Fig. 9 is more pronounced at high t* than at earlier simulation times. 

Figure 10 shows the temporal development of the population of inter-particle collisions leading to 

agglomeration, ܰ௔௚௚Ȁ ଴ܰ, hereafter called agglomeration events, for four values of the fractal dimension 

and the no-breakup case. Similarly, the time history of the normalised total number of agglomerates, 

௔ܰȀ ଴ܰ, independent of their type (or size), as a function of time and as a consequence of particle 

agglomeration and breakup events is shown in Fig. 11. Similar to the relationship between ௖ܰ௢௟Ȁ ଴ܰ and ݀௙, the agglomeration events, ௔ܰ௚௚Ȁ ଴ܰ, in Fig. 10 decrease as ݀௙ decreases from ʹǤͲ to ͵ǤͲǡ	 with the 

lowest values occurring for the no-breakup case. The case with ݀௙ ൌ ʹǤͲ has the greatest number of 

agglomeration events consistent with the largest number of inter-particle collisions, as in Fig. 9, as well 

as the highest number of breakup events, as in Fig. 7. A high number of inter-particle collisions is a 

prerequisite for a large number of agglomeration processes, assuming that the sticking force is sufficiently 

large 18, while breakup events populate the flow with agglomerates with fewer numbers of primary 

particles, a precursor to high collision rates 4, 20.  
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Fig. 10: Influence of fractal dimension, ݀௙ǡ of the agglomerate structure on the time history of the total 

number of particle-particle collisions leading to agglomeration, ௔ܰ௚௚, normalised by the initial number 

of primary particles, ܰ଴. 

 

Fig. 11: Influence of fractal dimension, ݀௙ǡ of the agglomerate structure on the time history of the total 

number of agglomerates, ௔ܰ, normalised by the initial number of primary particles, ଴ܰ. 
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In Fig. 11, a smaller fractal dimension, synonymous with a weaker agglomerate bonding strength, 

predicts a significant decrease in the number of agglomerates in the system with time. The results in Fig. 

7 indicate that agglomerates with smaller ݀௙, as in the case where ݀௙ ൌ ʹǤͲ, favour agglomerate breakup 

which then populate the flow with particles of relatively smaller size. Smaller particles which have higher 

surface areas have been shown to favour particle collision and agglomeration, and hence have higher 

agglomeration rates, as shown in Fig. 12 and in previous works 4, 18, 48. Subsequently, these smaller 

particles that evolved because of breakup events collide and re-agglomerate. Hence, this supports the 

results of Fig. 9 where the case with ݀௙ ൌ ʹǤͲ exhibits the highest collision rates, and the results of Fig. 

10 where the same case shows the greatest cumulative number of agglomeration events. Note that the 

curve for ݀ ௙ ൌ ʹǤͲ in Fig. 11, as well as in Figs. 12 and 13, is not smooth when compared to the other 

fractal dimension cases. This is because for the former case, after the onset of agglomeration, the 

agglomeration process is in strong competition with the breakup process since, as noted in relation to Figs. 

5 and 6, the agglomerates formed at ݀௙ ൌ ʹǤͲ are highly susceptible to breakup. Hence, the apparent 

equilibrium between the rates of agglomeration and breakup causes the small variations in ௔ܰȀ ଴ܰ	with 

time as agglomeration events are quickly undone by the breakup mechanism. 

The results in Fig. 11 show a strong dependency between ݀௙ and the cumulative number of 

agglomerates present in the system at any time, ௔ܰ. Such behaviour is consistent with that observed by 

Soo et al. 30 who used a population balance equation method and found a strong dependency of 

agglomeration processes on the fractal dimension. As noted, this is consistent with ௖ܰ௢௟ and ܰ ௔௚௚ in Figs. 

9 and 10. As more agglomerates are broken up, the number of agglomerates in the system is depleted, 

leaving the number of agglomerates remaining to be lower at small ݀௙ than at larger valuesǤ The difference 

in the number of agglomerates in the system for the various ݀௙ values increases with time. Hence, in Fig. 

11 the case with ݀௙ ൌ ʹǤͲ results in smaller ܰ௔Ȁ ଴ܰ values than for the case with ݀௙ ൌ ͵ǤͲǤ The no-breakup 



26 
 

caseǡ	as expected, shows the largest ௔ܰȀ ଴ܰ values with time as all agglomerates are only consumed by 

forming larger structures and none are consumed in forming smaller agglomerate sizes. 

Figure 12 shows the accumulated collision efficiency (also known as the agglomeration rate), 

௔ܰ௚௚/ ௖ܰ௢௟, defined as the ratio of the total number of accumulated particle-particle collisions leading to 

agglomeration to the total number of the accumulated particle-particle collisions, as a function of time for 

four values of the fractal dimension, ݀௙. It is clear that the largest agglomeration rate is predicted by the ݀௙ ൌ ʹǤͲ case, followed by the ݀௙ ൌ ʹǤͷ, ʹ Ǥͺ, ͵ ǤͲ and the no-breakup cases. 

 

Fig. 12: Influence of fractal dimension, ݀௙ ǡ of the agglomerate structure on the time history of the 

agglomeration ratio rate, expressed as the inverse of the ratio of the total number of particle-particle 
collisions, ܰ ௖௢௟, to the total number of collisions leading to agglomeration, ௔ܰ௚௚. 

The rate of agglomerate formation starts at ௔ܰ௚௚Ȁ ௖ܰ௢௟	̱	ͲǤͲ͹ and reduces at the same rate during the 

initial (pair-formation) phase for all the five breakup cases (no-breakup included). However, as time 

progresses into the breakup phase of the newly formed agglomerates and the cluster-cluster agglomeration 

phase, the agglomeration rate of the ݀௙ ൌ ʹǤͲ case reverses from decreasing to steadily increasing with 
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time. At the same time, the agglomeration rate for the other cases ሺ݀௙ ൌ ʹǤͷ െ ͵ǤͲǡ and	݀௙ ՜ λሻ 
continues to decrease with time. This decrease is maintained until at about ̱כݐͳͲͲ when it shifts to an 

increasing trend with time when the breakup process for the ݀௙ ൌ ʹǤͷǡ ʹǤͺ	and	͵ǤͲ cases has increased 

significantly due to the availability of agglomerates of larger sizes. During this time, the base case of no-

breakup maintains the previously observed agglomeration rate – time relationship 4, 18-20, 48, i.e. in cases 

where appropriate initial conditions for the particle-particle interactions and no agglomerate breakup are 

considered, the agglomerate rate has been reported 4, 18-20, 48 to reduce with time. Overall, the value of the 

agglomeration rate decreases significantly when increasing the fractal dimension from ݀௙ ൌ ʹǤͲ through ݀௙ ൌ ͵ǤͲ to the no-breakup case. Similar behaviour, with a strong dependency of the agglomeration 

process on the fractal dimension, was also observed in Soo et al. 30 where for fractal dimension ݀௙ ൌ ͳǤͺ 

the initial dynamics of the moment ratio was significantly different from all other cases with ݀௙ ൐ ͳǤͺ. 

This behaviour is attributed to the fact that at a very small fractal dimension, e.g. ݀௙ ൑ ʹǤͲ, the 

agglomerate structure is so weak that the agglomerate undergoes breakup easily, hence, populating the 

system with particles of smaller sizes. These smaller sized particles are subsequently susceptible to 

collision and agglomeration, having a higher agglomeration rate than cases with a larger fractal dimension, ݀௙ ൐ ʹǤͲǤ In addition, as shown in Fig. 5 and in Eq. (7), the relationship between agglomerate breakup 

and fractal dimension is not linear but a power function. Hence, there is a large difference in breakup 

processes occurring at lower and higher ݀௙. 
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Fig. 13: Influence of fractal dimension, ݀௙, of the agglomerate structure on the time history of the 

particle size distribution, ܰ௔ǡ௜ ǡ expressed as: (a) a percentage of the evolution of the primary particle size, ௔ܰǡ௜ୀଵǡ normalised by the initial number of primary particles, ଴ܰǡ and (b, c, d) a percentage of the 

population of agglomerate size, ௔ܰǡ௜வଵ, normalised by the total number of agglomerates present, ௔ܰǤ Key 

as Fig. 12. 

The transient particle size distribution, with the primary particles (single(1)), ௔ܰǡ௜ୀଵ, presented as a 

percentage of the initial number of all primary particle, ܰ଴, and the agglomerates (double (2), triple (3), 

etc), ܰ ௔ǡ௜வଵ, presented as a percentage of the total number of all agglomerates, ௔ܰ, with time, כݐ, is shown 

in Fig. 13 for all breakup cases considered. For the population of single particles in Fig. 13(a), the profiles 

start at 100% when the system is populated by only the ௔ܰǡ௜ୀଵ sized single particles. Then as time 

(a) (b) 

(c) (d) 
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progresses and the pair-formation and cluster-cluster formation phases set in, more of the ௔ܰǡ௜ୀଵ particles 

are consumed leading to a steady reduction in the number of these particles with time. However, as the 

system progresses further into the breakup phase, the population balance of the ௔ܰǡ௜ୀଵ sized single particles 

predicted by the ݀௙ ൌ ʹǤͲ case starts increasing with time until the profile flattens out a at steady level of 

about 90%. At this point there seems to be a pseudo-equilibrium between the rate of consumption of the 

௔ܰǡ௜ୀଵ sized particles in the production of agglomerates and the rate of their replenishment due to the 

breakup of agglomerates. Contrary to the behaviour of the ݀௙ ൌ ʹǤͲ case, the other cases, ݀௙ ൐ ʹǤͲ, 

continue to reduce with time, with the reduction rate inversely proportional to the strength of the 

agglomerate, and with the base case of no-breakup showing about 70% of the ௔ܰǡ௜ୀଵ particles remaining 

at כݐ ൌ ͵ͲͲ. 

For the population balance of the agglomerates, ௔ܰǡ௜ஹଶ, shown in Fig. 13, it follows that the rate of 

consumption of the double (2) particles in Fig. 13(b), triple (3) in Fig. 13(c) and quadruple (4) in Fig. 

13(d) in the production of larger sized agglomerates, and the rate of replacement of the agglomerate type 

due to breakup, are identical for the weakest agglomerate structure case, i.e. for ݀௙ ൌ ʹǤͲ. The percentage 

of the agglomerate for the ݀௙ ൌ ʹǤͲ case stabilises at approximately 97%, 2.5% and 0% for the ௔ܰǡ௜ୀଶ, 
௔ܰǡ௜ୀଷ and ܰ ௔ǡ௜ୀସ cases, respectively. However, for the other ݀௙ ൐ ʹǤͲ cases, the relationship between the 

rate of production of a specific agglomerate size and its corresponding consumption varies depending on 

the agglomerate size. In the case of double-sized agglomerates, ௔ܰǡ௜ୀଶ, their population steadily reduces 

with time, with the no-breakup case giving the lowest values. This is because for this agglomerate only 

depletion due to agglomeration occurs, with no-breakup of larger particles balancing the consequent 

reduction in their number. For the larger agglomerate sizes, ௔ܰǡ௜ୀଷ and ܰ ௔ǡ௜ୀସ, their population increases 

with time since their number is skewed towards production rather than depletion by either breakup or 

agglomeration.  
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Fig. 14: Influence of fractal dimension, ݀௙, of the agglomerate structure on the time history of the 

particle size distribution, ܰ௔ǡ௜, expressed as: (a) a percentage of the evolution of the primary particle 

size, ܰ ௔ǡ௜ୀଵǡ normalised by the initial number of primary particles, ܰ଴ǡ abd (b, c, d) a percentage of the 

population of the agglomerate size, ௔ܰǡ௜வଵ, normalised by the total number of agglomerate present, ௔ܰ. 

Lastly, Fig. 14 compares the number of primary particles (i.e. single (1)) and agglomerates of the same 

type (double (2), triple (3), quadruple (4), quintuple (5), sextuple (6), etc. particles) existing at simulation 

time כݐ ൌ ͵ͲͲ for the four fractal dimension ൫݀௙ ൌ ʹǤͲǡ ʹǤͷǡ ʹǤͺ	and	͵ǤͲ൯ and the no-breakup base case. 

Note that only up to ܰ௣௣ ൌ ͳͲ agglomerate sizes are shown even though larger sizes were observed in the 

simulation. The results shown complement the findings noted in relation to Fig. 13 where the number of 

a specific particle size decreases as the particle size increases. Hence, the number of the single particles is 

larger than the number of double, triple, etc. particles, and so on. For the single particles, the number 

remaining at כݐ ൌ ͵ͲͲ predicted for the ݀௙ ൌ ʹǤͲ case is larger than for the other cases, and an inverse 

relationship between their number and the value of ݀௙ is maintained. However, the reverse is the case for 

the number of agglomerates sizes, ௣ܰ௣, computed with respect to ݀௙. Figure 14 therefore indicates that 

the number of a specific size of agglomerate remaining in the system increases with an increase in the 

value of ݀ ௙, with an approximately linear relationship between the remaining ௣ܰ௣ particles and ݀௙. The 
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base no-breakup case shows the largest number of agglomerate sizes remaining in the system, with up to 

௣ܰ௣ ൌ ͳͲ. The strength of the agglomerate is characterised by the fractal dimension, ݀௙, and the size of 

the agglomerate, ܰ௣௣, as ߪ௖௥̱݂ሺ݀௙ ǡ ௣ܰ௣ሻ. Hence, as the agglomerate size increases, the strength of the 

agglomerate becomes weaker and it is more susceptible to breakup. Therefore, at smaller ݀௙ and larger 

௣ܰ௣, more agglomerates will breakup, thereby depleting the number of such large agglomerate types. This 

is evidenced by the ݀௙ ൌ ʹǤͲ case where only a small number of ௣ܰ௣ ൌ ͷ particles remain in the system 

at כݐ ൌ ͵ͲͲ. 

V. CONCLUSIONS 

Following preliminary results of turbulence-induced particle agglomeration and breakup presented 

recently 49, large eddy and discrete particle simulation have been used to predict particle agglomeration 

and breakup processes, together with a deterministic treatment of inter-particle collisions and particle 

feedback effects on the fluid phase. Agglomeration is based on the pre-collision energy-momentum 

balance, restitution coefficient and van der Waals interactions. To allow the overall model to be applied 

to practical processes, it was also extended to handle the breakup of the agglomerates. Agglomerate 

breakup was considered to occur instantaneously subject to a hydrodynamic stress exceeding a critical 

value dictated by the properties of the agglomerate. In terms of the critical stress that must be overcome 

for breakup to occur, the fractal dimension and size of the agglomerate are key parameters that control the 

process, with the fragmentation dynamics of an agglomerate becoming slower as the fractal dimension 

increases. Breakup events also increase with time as larger agglomerates are formed which are weaker in 

strength and hence susceptible to breakup. Breakup events, therefore, reduce the number of agglomerates 

in the system as well as populating it with particles of smaller size, thereby promoting more collisions and 

collisions leading to agglomeration. Predictions for the base case of no-breakup followed the behaviour 

previously reported in literature 4, 18-20, 48. 
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For agglomerates of low strength (݀௙ ൌ ʹǤͲ	and	ʹǤͷሻǡ	breakup was found to occur at all locations 

between the two walls of a turbulent channel flow, but mostly in the near-wall regions where the local 

hydrodynamic stresses, ̱߳ߪଵȀଶ, resulting from the local turbulence kinetic energy dissipation rate, ߳, are 

greatest. For higher strength agglomerates (݀௙ ൌ ʹǤͺ and ͵ ǤͲ), agglomerate breakup occurred at the plane 

closest to both walls where the stresses are at a maximum value. 

These results support the conclusion that the local energy dissipation rate controls the kinetics of the 

agglomerate breakup process while the kinetic energy controls the agglomeration processes itself which 

occurs mostly in the bulk region of the channel flow. The bulk flow assists the transportation of the 

agglomerates towards the high shear stress regions where they experience high dissipation rates and break 

as a consequence. 

The predictive technique developed and demonstrated provides a powerful simulation tool which is 

fundamental and generic in nature, and which can be applied to particle agglomeration and agglomerate 

breakup under aerodynamic and hydrodynamic conditions that occur in many industrial and natural 

processes. Finally, it should be noted that for validation of the techniques reported there is a requirement 

for relevant detailed experimental data which are at present scarce, notwithstanding the obvious 

difficulties inherent in measuring the processes of interest. 
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