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Single-Molecule Fluorescence Detection of a Synthetic
Heparan Sulfate Disaccharide

Charlotte E. Dalton+,[a] Steven D. Quinn+,[b] Aidan Rafferty,[b] Michael J. Morten,[b]

John M. Gardiner,*[a] and Steven W. Magennis*[b]

1. Introduction

Single-molecule fluorescence spectroscopy has revolutionized

the study of biological molecules.[1] In contrast to nucleic acids

and proteins, for which single-molecule detection has been

well exploited, applications to structurally-defined carbohy-

drates have not yet been reported, in part owing to the re-

quirement for non-trivial synthetic chemistry. While carbohy-

drates have been modified with fluorescent dyes for ensemble

studies,[2,3] this does not guarantee the homogeneity and pho-

tostability required for single-molecule detection. To date,

there have been only a few reports of the single-molecule de-

tection of carbohydrates. The super-resolution imaging of cells

containing metabolically-labeled glycans was reported,[4, 5]

whereby any modified glycan on the cell surface can be cova-

lently labeled with a fluorophore using click chemistry.[6, 7] In

addition, the conformational change induced in a protein by

the simple sugar maltose was also reported, though the pho-

tophysics of the dye–maltose conjugate were not character-

ized.[8] In contrast, we are interested in the interactions of com-

plex, structure-specific carbohydrate ligands with biomedically-

important protein targets using well-defined fluorescent glyco-

conjugates.

In this work, we demonstrate the fluorescent labeling, full

photophysical characterization and single-molecule detection

of a chemically synthesized, structurally-specific heparan sul-

fate (HS) disaccharide. The glycosaminoglycan (GAG) polysac-

charide HS, along with the related GAG heparin, is known to

bind a wide variety of proteins including chemokines and

growth factors. However, owing to the structural complexity of

HS, structural requirements for protein binding with regards to

variable sulfation patterns and sequence lengths are ill defined.

Although digest products of native HS can be used to investi-

gate HS properties, these are necessarily heterogeneous.

Chemical synthesis of HS oligosaccharides allows full control of

the structure of resulting oligosaccharides, for example, ena-

bling variable defined lengths[9–11] and programmable sulfa-

tion.[12] NMR has been employed in recent years for structural

investigation of HS fragment-protein interactions, to probe HS

oligosaccharide protein-bound conformation,[13] or identifica-

tion of binding site amino acids.[14] Similarly, X-ray crystallogra-

phy has been utilized to study HS–protein complexes and also

more complex systems such as the FGF1–heparin–FGF recep-

tor.[15] Whilst these ensemble techniques have greatly ad-

vanced the understanding of HS–protein interactions, single-

molecule methods provide unique information because such

measurements avoid ensemble averaging. This is of particular

relevance to dynamic and/or heterogeneous processes. A

better understanding of the structural requirements for HS–

protein binding could facilitate drug design for numerous con-

ditions in which HS–protein interactions are implicated,[16] for

example cancers[17] and viral infections.[18]

The first single-molecule fluorescence detection of a structural-

ly-defined synthetic carbohydrate is reported: a heparan sul-

fate (HS) disaccharide fragment labeled with Alexa488. Single

molecules have been measured whilst freely diffusing in solu-

tion and controlled encapsulation in surface-tethered lipid vesi-

cles has allowed extended observations of carbohydrate mole-

cules down to the single-molecule level. The diverse and dy-

namic nature of HS–protein interactions means that new tools

to investigate pure HS fragments at the molecular level would

significantly enhance our understanding of HS. This work is

a proof-of-principle demonstration of the feasibility of single-

molecule studies of synthetic carbohydrates which offers

a new approach to the study of pure glycosaminoglycan (GAG)

fragments.
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2. Results and Discussion

Owing to the similarity between the protein-binding regions

(NS domains) of HS and the related GAG heparin, the major

glucosamine-iduronic acid heparin disaccharide is a useful

model of HS and was thus chosen for fluorescent labeling. This

fragment is a key component in biologically-active sequences.

Amine tags have been used for the functionalization of syn-

thetic HS oligosaccharides[19–22] (e.g. for microarray attachment,

solid phase support).

We introduced a short protected amine-terminated reducing

end tag from disaccharide 1, which we previously deployed as

the core iterative unit enabling synthesis of synthetic HS frag-

ments[23] (Scheme 1). Glycosylation of 1 provided 2 with high

anomeric selectivity and 2 was then elaborated into sulfated

disaccharide 5 with a free amino terminus. Synthesis of such

pure sulfated GAG fragments is non-trivial and access to a sub-

strate suitable for fluorescent labelling required development.

Reaction of 5 with Alexa Fluor 488 SDP ester at pH 8 afforded

the desired fluorescent conjugate 6 (n.b. 0.6 equivalents of dye

were used to avoid the need for separation of disaccharide

and free dye).

The structure of 6 was confirmed by mass spectrometry (Fig-

ure S1) and proton NMR, which also indicated no remaining

free dye (Figure S2). Access to small-scale fluorescent GAG

fragment conjugates is challenging and we believe that NMR

characterization of such conjugates has not been previously re-

ported. This is significant here as the observed NMR coupling

constants imply that the iduronic acid (IdoA) residue exists in

the same conformation (1C4) in both the labeled and unlabeled

species. The conformation flexibility of L-idoA is significant in

the binding of GAG fragments and establishing by NMR that

a terminal L-idoA is not affected by label conjugation is valu-

able. Prior to single-molecule evaluation, 6 was studied using

ensemble steady-state optical spectroscopy, along with the

free dye and Alexa488-labelled single-stranded DNA molecules

(ssDNA). The absorption spectrum of 6 is very similar to that of

the free dye, with only minor changes in peak positions and

profile (Figure 1a). In contrast, the emission spectrum of 6 ex-

hibits a blue shift in comparison to the free dye (Figure 1b).

Importantly, the absorption and emission spectrum of 6 are es-

sentially identical to that of Alexa488 attached to DNA, indicat-

ing a similar perturbation of Alexa488 upon attachment to the

disaccharide.

Single-molecule measurements were first made on the disac-

charide freely diffusing in aqueous solution by using confocal

microscopy. Fluorescence correlation spectroscopy (FCS) of 6

produced a correlation curve that could be fitted using the

same model[24] as for the free dye, incorporating fluctuations

caused by diffusion and triplet formation (Figure 1c). The re-

covered diffusion time for 6 is 307:4 ms, whereas the value

that we measured for the free Alexa488 dye is 254:3 ms and

that for the related rhodamine 110 dye is 200:2 ms under

identical conditions. This corresponds to a 27% and 53% in-

crease in hydrodynamic radii for Alexa488 and 6, respectively,

in comparison to rhodamine 110. The similarity in photon

count rate per molecule for 6 (44:3 kHzmolecule@1) and the

free dye (40:5 kHzmolecule@1) agrees with the small differen-

ces observed in the ensemble data.

We next performed multi-parameter fluorescence detection

(MFD) to look at individual labeled disaccharides. The MFD

method uses a confocal microscope to study freely-diffusing

molecules in multiple detection channels.[25] The majority of

the Alexa488 emission was collected in two of the detection

channels (green), while the tail of the emission spectrum over-

lapped with the red detection channels. Figure 1d shows

a plot of the fluorescence lifetime (t) of molecules detected in

the green channels versus the ratio of the signal in the green

detection channels (SG) to that in the red detection channels

(SR), and the fluorescence anisotropy (r) in the green channel.

Figure 1d reveals that only one population of fluorescent mol-

ecules is present, with the lifetime centered on 4.1 ns and an-

isotropy close to 0. The lifetime of 4.1 ns indicates that the

Alexa488 dye is unquenched, while the low anisotropy indi-

cates that it is able to rotate freely.[26] The data are very similar

to those collected for DNA labeled with Alexa488, which has

been well-characterized previously.[27] A sub-ensemble analysis

of this population (Figure 1e) shows that the fluorescence

decay can be fitted to a single-exponential decay with a life-

time of 4.1 ns, indicating a single dye environment and the ab-

sence of dynamics on the millisecond timescale. The presence

of just one population indicates that there is a single labeled

species (in agreement with NMR and mass spectrometry analy-

sis of 6). It is possible, however, that alternative conformations

of the disaccharide are present (e.g. via ring flipping), but that

these do not lead to changes in the properties of the fluores-

cent label.

To study the behavior of the individual disaccharides over

longer timescales, we encapsulated them into nanoscale vesi-

cles, which were then immobilized onto a glass coverslide

through biotin-neutravidin interactions. This approach has

been widely used for studying single molecules, avoiding the

need for covalent attachment of the molecule of interest di-

rectly to a surface.[28] It allows the partitioning of molecules be-

Scheme 1. Synthesis of labeled disaccharide 6. Reagents : i) N-Z-ethanola-

mine, NIS, AgOTf, CH2Cl2, 4 amol. sieves; ii) LiOH, THF/MeOH/H2O; iii) SO3.Py,

pyridine, RT; iv) PMe3 in THF, NaOH, THF, RT; v) SO3.Py, Et3N, pyridine, RT;

vi) H2, Pd(OH)2, EtOH/H2O; vii) Alexa Fluor 488 SDP ester (green, see SI for full

structure), H2O/DMSO, pH 8.
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tween the aqueous vesicle interior and exterior, and the encap-

sulated molecules can often diffuse freely within the nanocon-

tainer. We made small unilamellar vesicles (SUVs) composed of

98 mol% egg-PC and 2 mol% biotinyl-PE by extrusion. Dynam-

ic light scattering of vesicles formed in the presence of disac-

charide 6 showed them to have an average diameter of

120 nm, with a narrow distribution of sizes (Figure S3). A sche-

matic of the immobilization scheme used for attaching vesicles

to a glass substrate is shown in Figure 2a. The biotinylated

lipids allow each vesicle to bind a single neutravidin protein,

which is in turn bound to a single biotinylated-PEG chain ad-

sorbed onto the glass surface. The surface was imaged using

wide-field total internal reflection fluorescence (TIRF) microsco-

py, allowing long-time observation of hundreds of single mole-

cules in parallel. Vesicles were prepared in solution containing

500 nm disaccharide. To ensure fluorescence signals originated

from encapsulated disaccharide, varying concentrations of vesi-

cles were added to the slide, resulting in a corresponding

change in the number of fluorescent spots (Figure S4).

The number of molecules inside a particular vesicle can be

measured by recording the number of bleaching steps in time

traces of the fluorescence signal from individual spots. This re-

vealed levels of constant intensity, followed by stepwise photo-

bleaching of the fluorophores (Figures 2b–d). The stability of

the signals before a bleaching event (i.e. the absence of blink-

ing) allows a reliable estimate of the numbers of encapsulated

molecules. Traces predominantly displayed one-step bleaching

events (Figure 2b) with fewer two- and three-step bleaching

events observed (Figures 2c and 2d, respectively). Thus most

detected vesicles prepared using a disaccharide concentration

of 500 nm contained only one disaccharide. There were no in-

stances of bleaching events beyond four steps. Preparation of

vesicles containing 1 mm disaccharide gave predominantly

two-step bleaching events; traces showing up to four- or five-

step bleaching were also recorded (Figure S5). Increasing the

amount of encapsulated disaccharide further (10 mm) produced

exponential-like photobleaching decays at early time, suggest-

ing the presence of large numbers of dye molecules (>10)

within the vesicles, followed by stepwise bleaching at longer

times (Figure S6). An evaluation of the fluorescence on-times

as a function of irradiance showed that at 260 Wcm@2 the dyes

were photobleaching over timescales typically <10 s, while at

65 Wcm@2 and 130 Wcm@2 the dyes were longer lived (Fig-

ure S7).

The stability of the time traces is notable, with no dynamics

on the time scales studied. This is further evidence that the

Alexa488 dye is not perturbed by attachment to the sugar,

since interactions with the sugar might lead to dark states in

Figure 1. Ensemble and single-molecule detection of freely-diffusing disaccharides. a) Absorption spectra and b) Normalized fluorescence emission spectra of

free Alexa488 SDP, Alexa488-labelled disaccharide 6 and Alexa488-labelled ssDNA. The inset of (a) shows a smaller region of the same spectra for free dye

and 6. c) Fluorescence correlation spectra of 6 and free dye. Correlation curves (line) and fits (dots) are shown. See the Supporting Information for fitting pa-

rameters. d) Multi-parameter confocal microscopy of single molecules of 6. 2D histogram of fluorescence lifetime (t) versus ratio of signal in green detection

channel (SG) to that in the red channel (SR), and the fluorescence anisotropy (r). e) Sub-ensemble analysis of single molecule bursts within the region t=3.0–

5.6 ns and SG/SR=4.8–42.7 in (d). The decay (black line), tail fit to a single-exponential decay (red line) and the residuals (in blue) are shown, with lifetime of

4.1:0.1 ns; Samples were prepared in 20 mm Tris, 10 mm MgCl2, pH 7.5 buffer.
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which the dye emission is quenched. Furthermore, we believe

that direct lipid–carbohydrate interactions must be absent or

very weak, since addition of 6 to immobilized vesicles in solu-

tion resulted in no binding to either vesicles or the PEG sur-

face. Presumably, this also means that the disaccharides are

free inside the vesicles.

3. Conclusions

We have reported the synthesis and detection of fluorescently-

labeled HS disaccharide conjugate 6, freely diffusing and im-

mobilized, at the single-molecule level. The favorable fluores-

cent properties of the Alexa488 label were maintained upon

attachment to the sugar, indicating that this approach should

be suitable for other labeled GAG oligosaccharides of varying

length, allowing a wide range of biological systems to be

probed.

Encapsulating labeled disaccharides in lipid vesicles, as

shown via stepwise photobleaching, allows long-time observa-

tion. The lack of direct lipid-sugar interaction encourages the

possibility of using such vesicles as artificial cells, by incorpo-

rating additional functionality to the lipid bilayer as models for

GAG–protein interactions.

This work forms the basis of a new method for the investiga-

tion of the behavior of structure-specific synthetic HS-frag-

ments at the single molecule level, which could provide infor-

mation that is currently hidden from ensemble methods such

as NMR and X-ray crystallography. It is a proof-of-principle

demonstration of the single-molecule fluorescence detection

of synthetic carbohydrates, which should lead to new ap-

proaches for analyzing the molecular interactions of this im-

portant class of biomolecule at the single-molecule level free

in solution and when encapsulated.

Experimental Section

Full experimental details are provided in the Supporting Informa-

tion.

Acknowledgements

We thank the Biotechnology and Biological Sciences Research

Council (BBSRC) for support of S.D.Q. (BB/K001957/1) and C.E.D.

(DTP studentship), Engineering and Physical Sciences Research

Council (EPSRC) for support of M.J.M. (EP/L027003/1) ; and the

EPSRC National Mass Spectrometry Facility, Swansea for analysis.

Keywords: carbohydrate · fluorescence · heparan sulfate ·

single-molecule studies · vesicle

[1] W. E. Moerner, Angew. Chem. Int. Ed. 2015, 54, 8067–8093; Angew.

Chem. 2015, 127, 8182–8210.

[2] H. Oka, T. Koyama, K. Hatano, K. Matsuoka, Bioorg. Med. Chem. 2012, 20,

435–445.

[3] H. Oka, T. Koyama, K. Hatano, D. Terunuma, K. Matsuoka, Bioorg. Med.

Chem. Lett. 2010, 20, 1969–1971.

[4] S. Letschert, A. Gçhler, C. Franke, N. Bertleff-Zieschang, E. Memmel, S.

Doose, J. Seibel, M. Sauer, Angew. Chem. Int. Ed. 2014, 53, 10921–

10924; Angew. Chem. 2014, 126, 11101–11104.

[5] H. Jiang, B. P. English, R. B. Hazan, P. Wu, B. Ovryn, Angew. Chem. Int. Ed.

2015, 54, 1765–1769; Angew. Chem. 2015, 127, 1785–1789.

[6] M. Boyce, C. R. Bertozzi, Nat. Methods 2011, 8, 638–642.

[7] S. T. Laughlin, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2009, 106, 12–17.

[8] E. Kim, S. Lee, A. Jeon, J. M. Choi, H.-S. Lee, S. Hohng, H.-S. Kim, Nat.

Chem. Biol. 2013, 9, 313–318.

[9] S. U. Hansen, G. J. Miller, M. J. Cliff, G. C. Jayson, J. M. Gardiner, Chem.

Sci. 2015, 6, 6158–6164.

[10] G. J. Miller, K. R. Broberg, C. Rudd, M. R. Helliwell, G. C. Jayson, J. M.

Gardiner, Org. Biomol. Chem. 2015, 13, 11208–11219.

[11] G. J. Miller, S. U. Hansen, M. B#rath, C. Johannessen, E. W. Blanch, G. C.

Jayson, J. M. Gardiner, Carbohydr. Res. 2014, 400, 44–53.

[12] G. C. Jayson, S. U. Hansen, G. J. Miller, C. L. Cole, G. Rushton, E. Avizie-

nyte, J. M. Gardiner, Chem. Commun. 2015, 51, 13846–13849.

[13] A. Canales, J. Angulo, R. Ojeda, M. Bruix, R. Fayos, R. Lozano, G. Gim8-

nez-Gallego, M. Mart&n-Lomas, P. M. Nieto, J. Jim8nez-Barbero, J. Am.

Chem. Soc. 2005, 127, 5778–5779.

[14] E. Saesen, S. Sarrazin, C. Laguri, R. Sadir, D. Maurin, A. Thomas, A. Imber-

ty, H. Lortat-Jacob, J. Am. Chem. Soc. 2013, 135, 9384–9390.

[15] L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, T. L. Blundell, Nature

2000, 407, 1029–1034.

[16] U. Lindahl, L. Kjell8n, J. Intern. Med. 2013, 273, 555–571.

Figure 2. Single-molecule TIRF detection of immobilized disaccharides. a) Im-

mobilization scheme for 6 in vesicles. Representative 1-, 2- and 3-step pho-

tobleaching traces (b, c and d, respectively) ; the fits are shown as solid black

lines. Experiments were performed in 20 mm Tris, 6% (w/v) glucose,

1 mgmL@1 glucose oxidase, 0.04 mgmL@1 catalase, 2 mm trolox, pH 8 buffer.

Vesicles were prepared in the same buffer.

ChemPhysChem 2016, 17, 3442 – 3446 www.chemphyschem.org T 2016 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim3445

Articles



[17] R. Sasisekharan, Z. Shriver, G. Venkataraman, U. Narayanasami, Nat. Rev.

Cancer 2002, 2, 521–528.

[18] J. Liu, S. C. Thorp, Med. Res. Rev. 2002, 22, 1–25.

[19] C. Noti, J. L. de Paz, L. Polito, P. H. Seeberger, Chem. Eur. J. 2006, 12,

8664–8686.

[20] S. Maza, G. Macchione, R. Ojeda, J. Lop8z-Prados, J. Angulo, J. L. de Paz,

P. M. Nieto, Org. Biomol. Chem. 2012, 10, 2146–2163.

[21] J. L. de Paz, C. Noti, F. Bçhm, S. Werner, P. H. Seeberger, Chem. Biol.

2007, 14, 879–887.

[22] R. Ojeda, J. L. de Paz, M. Mart&n-Lomas, Chem. Commun. 2003, 2486–

2487.

[23] S. U. Hansen, G. J. Miller, M. Bar#th, K. R. Broberg, E. Avizienyte, M. Helli-

well, J. Raftery, G. C. Jayson, J. M. Gardiner, J. Org. Chem. 2012, 77,

7823–7843.

[24] J. Widengren, U. Mets, R. Rigler, J. Phys. Chem. 1995, 99, 13368–13379.

[25] E. Sisamakis, A. Valeri, S. Kalinin, P. J. Rothwell, C. A. M. Seidel, Methods

Enzymol. 2010, 475, 455–514.
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