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Abstract

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might

be studied within a microscopic or ab initio framework without the use of effective charges; for example with the

proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of

particle-hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb

excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were per-

formed and agree with the new B(E2) values while in-medium similarity-renormalization-group calculations con-

sistently underpredict the absolute strength, with the missing strength found to have both isoscalar and isovector

components. The discrepancy between two microscopic models demonstrates the sensitivity of E2 strength to the

choice of many-body approximation employed.

Keywords: 22Mg; 22Ne; Ab initio; Collectivity; Coulomb excitation

1. Introduction

Recent developments in many-body nuclear theory

have seen a great advance in the number of nuclei ac-

cessible to microscopically derived theoretical models -

including those constructed in an ab initio framework

[1–15]. As these models increasingly reach regions of

the nuclear landscape inaccessible to experiment, it is

essential that their performance is scrutinized in detail

using less-exotic systems where high-precision experi-

mental data are available. The sd-shell lies between the
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traditional shell-model proton and neutron magic num-

bers of 8 and 20 and is an ideal laboratory for testing

new models. The region contains examples of many

phenomena found across the nuclear landscape, rang-

ing from α-clustering [16] and Borromean-nuclei [17],

to shell evolution [18] and high degrees of collective

deformation [19]. In particular, the sd-shell provides

an excellent opportunity for investigations of collectiv-

ity through the probing of first-excited 2+ states in mid-

shell even-even nuclei, which are typically dominated

by collective degrees of freedom. By probing transi-

tions to such states in mirror nuclei, one is additionally

sensitive to charge-dependent effects in the interaction.

Historically, the phenomenological shell model has

proved a successful tool in the modeling of this mass

region, with empirically fit interactions typically well-

reproducing experimental data [20]. A particular limi-
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Figure 1: Doppler-corrected γ-ray spectra for (a) 22Mg impinged on

a 110Pd target at 92.4 MeV, (b) 22Ne impinged on a 110Pd target at

54.8 MeV. Doppler-corrected for 22Mg and 22Ne (black) and 110Pd

(red).

tation in the model, however, lies in the reproduction of

nuclear collectivity - the bulk motion of many nucleons

- and especially the electric-quadrupole (E2) strength

commonly associated with it. As the shell model be-

gins with an assumption of sphericity, collective E2

strength is generated through a coherent sum of many

small-amplitude multi-particle multi-hole (mp-mh) ex-

citations. A model space and interaction that achieve

good reproduction of level energies does not necessar-

ily reproduce transition strength. This strength is often

underpredicted as the inclusion of a sufficiently large

number of mp-mh excitations is in practice unfeasi-

ble. The typical approach is to explicitly compensate

for this missing physics through an artificial inflation

of the nucleon charges with phenomenological effective

charges. It is therefore of considerable interest to deter-

mine whether modern microscopically derived nuclear

theories are able to reproduce the experimentally ob-

served collectivity in this region without the need for

the phenomenologically derived corrections required in

the shell model.

Accurate calculation of collective E2 strengths with-

out the use of effective charges is currently being pur-

22Mg 22Ne

Figure 2: Levels and transitions in 22Mg (left) and 22Ne (right) in-

cluded in the Coulomb excitation analysis. Transitions for which ma-

trix elements were varied in the χ2 minimization are indicated by

dashed arrows. Energy units are keV. Arrow widths correspond to

relative branching ratios.

sued within several theoretical frameworks. For ex-

ample, the no-core symplectic shell model (NCSpM)

has in recent years determined B(E2) values of nu-

clei within the sd shell, without resorting to such phe-

nomenological corrections [21]. This model, though

not strictly ab initio, provides the capability to reach

large shell-model spaces using a microscopic interac-

tion, while being in agreement with ab initio symmetry-

adapted no-core shell-model [13] (SA-NCSM) calcula-

tions in smaller, more feasible model spaces that use

the N2LOopt chiral potential [22]. A suite of ab ini-

tio many-body techniques are also able to perform cal-

culations in the sd-shell with, for example, coupled-

cluster (CC) [23], no-core shell model (NCSM) [24]

and in-medium similarity-renormalization-group (IM-

SRG) [25, 15] methodologies demonstrating promising

results in terms of level-energy calculations. CC tech-

niques reproduced transition strengths in self-conjugate
20Ne and 24Mg with precision comparable to the avail-

able experimental data [23]; however, this required the

use of effective charges.

Two previous measurements of the 2+
1

state lifetime

in 22Mg have been reported resulting in an evaluated

B(E2; 2+
1
→ 0+

1
) of 95 ± 40 e2fm4 [26–28]. The sta-
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ble nuclide 22Ne has been well measured, with a pre-

cisely known lifetime yielding a B(E2; 2+
1
→ 0+

1
) value

of 46.72 ± 0.66 e2fm4 [28]. Furthermore, the diagonal

matrix element, 〈2+
1
| E2 |2+

1
〉, and thus the spectroscopic

quadrupole moment of the 2+
1

state, Qs(2
+
1
) has also

been measured in 22Ne, yielding an evaluated value of

Qs(2
+
1
) = −0.19±0.04 b [29]. In this Letter we present a

Coulomb-excitation measurement of the A = 22 mirror

pair, 22Mg-22Ne, through which we have significantly

improved the precision of the 22Mg B(E2) and Qs(2
+)

values. This represents the first measurement of Qs(2
+)

in an even-even Tz =
1
2
(N − Z) = −1 nuclide, where

Z (N) is the number of protons (neutrons). The new

data are now of sufficient quality to test state-of-the-art

microscopically derived theoretical calculations. It is

found that NCSpM predictions for this A = 22 mirror

pair are in excellent agreement with experimental tran-

sition strengths.

2. Experimental details

The first-excited 2+ states in 22Mg and its stable mir-

ror 22Ne were populated through Coulomb excitation

in normal kinematics at the TRIUMF-ISAC-II facility.
22Mg was produced using a 50 µA, 480-MeV proton

beam impinged on a SiC target coupled to an ion guide

laser ion source (IG-LIS) [30, 31]. With laser resonance

ionization and suppression of isobaric contamination

from surface ionization a 22Na suppression in excess of

106 compared to the conventional hot cavity-laser ion

source was achieved [32]. It was therefore possible to

accelerate a clean beam of 22Mg ions through the ISAC

accelerator chain to the TIGRESS facility [33]. Two
22Mg beam energies were used for the present measure-

ment: 92.4 MeV and 83.4 MeV. Beam intensities at TI-

GRESS were maintained at approximately 1 · 104 pps

throughout the experiment. The 22Ne beam was pro-

vided by the offline ion-source (OLIS) and accelerated

by the ISAC and ISAC-II accelerators to a final energy

of 54.8 MeV with a mean intensity of approximately

5 ppA.

The 22Mg (22Ne) beam was impinged onto a 97.6-

% enriched, 2.6-mg/cm2 (1.6-mg/cm2) thick 110Pd tar-

get within the BAMBINO setup at the center of the

TIGRESS array. For the present measurements BAM-

BINO consisted of a pair of Micron S3-type silicon de-

tectors [34] covering angles of 20◦ to 49.4◦ and 131.6◦

to 160◦ in the laboratory frame. Scattered beam-like

particles were detected in the BAMBINO S3 detectors

and γ-rays de-exciting states populated in the beam-

and target-like nuclei were detected with TIGRESS.

TIGRESS was operated in its high-efficiency configu-

ration [35], with fourteen HPGe clover detectors at a

target-to-detector distance of 11 cm. Data were ac-

quired through the TIGRESS digital data acquisition

system [36] using a single hit in one of the silicon de-

tectors as the experimental trigger for the 22Mg por-

tion of the experiment, and with a particle-γ trigger

for the higher-rate 22Ne beam. A timing signal from

the laser ion source was acquired with the experimental

data and made it possible to distinguish prompt laser-

ionized 22Mg from time-random surface-ionized 22Na

events. This method of continuously monitoring surface

ionized contamination was verified by periodically redi-

recting the beam into a Bragg detector [37] and yielded

a 22Na:22Mg ratio over the course of the experiment of

approximately 2%.

3. Analysis

Data were sorted using the in-house GRSISort [38]

software package, built on the ROOT [39] data analysis

framework. Particle-gated γ-ray spectra were Doppler

corrected for beam-like and target-like scattering kine-

matics on an event-by-event basis, determined by the

trajectory of the detected particle in the S3 detectors.

Gamma-ray spectra, Doppler corrected for 22Mg, 22Ne

and 110Pd are shown in Fig. 1. Due to the higher beam

energies used for the 22Mg beams, the upstream S3 de-

tector was excluded from the analysis as a result of lying

in an “unsafe” Coulomb excitation regime, i.e. the dis-

tance of closest approach was less than 5 fm [40]. In

the 22Mg analysis the data were split into six angular

bins, while the 22Ne data were analyzed on a ring-by-

ring basis to maximize sensitivity. The data were cor-

rected for offsets in the x- and y-directions relative to

the beam axis on the basis of asymmetries in the particle

distributions on the S3 detectors. Addback was applied

to the TIGRESS γ-ray spectra on the basis of the sub-

crystal segmentation within the HPGe clover detectors.

Gamma-ray detection efficiencies in TIGRESS were de-

termined using 152Eu, 133Ba and 60Co sources.

Efficiency-corrected 22Mg, 22Ne and 110Pd Coulomb

excitation yields were then evaluated using the GOSIA

and GOSIA2 software packages [41], allowing for si-

multaneous analysis of both beam-like and target-like

excitation. As described in Ref. [42], χ2 surface distri-

butions could thus be created for the 〈0+| E2 |2+〉 and

〈2+| E2 |2+〉 matrix elements in both 22Ne and 22Mg,

based on excitation relative to the well-known low-lying

matrix elements in 110Pd which were included in the

GOSIA analysis, with yields corrected to account for the
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degree of enrichment of the target and the contamina-

tion in the beam. Literature 〈0+
1
| E2 |2+

1
〉 and 〈2+

1
| E2 |2+

1
〉

matrix elements for 22Ne and 22Mg were not included as

experimental inputs in the analysis. The levels and tran-

sitions included in the analysis for 22Ne and 22Mg are

shown in Fig. 2. Figures 3 and 4 show the total and 1σ

χ
2 surface distributions plotted for 22Mg, and the 1σ χ2

surface for 22Ne, respectively. Based on these analy-

ses, values for the matrix elements were extracted and

are summarized in Table 1 alongside literature values,

where available, and theoretical values.

4. Discussion

The determined B(E2; 2+
1
→ 0+

1
) value in 22Mg is

approximately 20% lower than the evaluated value re-

ported in the literature [28]. The present value lies

within the 1σ uncertainties of the literature value but

is considerably more precise. Taking a weighted aver-

age of the 22Mg literature values [26, 27] and present

values yields B(E2; 2+
1
→ 0+

1
) = 76.5±9.9

7.4
e2fm4. Asym-

metric uncertainties were combined using the method

outlined in Ref. [44]. The extracted 〈2+
1
| E2 |2+

1
〉 matrix

element is negative, indicating a preference for prolate

deformation. The 22Mg B(E2; 2+
1
→ 0+

1
) value now has

uncertainties comparable to the other Tz = −1 nuclei,

as shown in Fig. 5 in which the updated data are plotted

with theory.

For 22Ne good agreement is obtained with the well-

known literature transition matrix elements, confirm-

ing the validity of the analysis. While agreeing at ap-

proximately the 2σ limit with the evaluated 〈2+
1
| E2 |2+

1
〉

value, the present result is in best agreement with the

values obtained in Ref. [43]. The present 〈2+
1
| E2 |2+

1
〉

matrix element is more than a factor of two more pre-

cise than the evaluated values (see Tab. 1). Incorpo-

rating the present result a new weighted average value

of 〈2+
1
| E2 |2+

1
〉 = −0.283 ± 0.015 eb is obtained, corre-

sponding to Qs(2
+
1
) = −0.215 ± 0.011 eb. Coupling the

present result with the literature yields a new weighted

average value of B(E2; 2+
1
→ 0+

1
) = 46.9 ± 0.5 e2fm4.

As shown in Fig. 5, the NCSpM reproduces the A =

22, 26 and 30 data well. NCSpM calculations are per-

formed with a harmonic oscillator frequency, ~ω = 15

MeV in a model space of 15 major shells. The calcu-

lations agree with ab initio SA-NCSM results using the

N2LOopt where calculations are feasible [45] (e.g., for
22Mg in 9 shells, B(E2) strengths differ by 0.4%). We

note that to achieve the converged B(E2) values shown

in Fig. 5, it is important to include mp-mh excitations to

very high shells, as achieved in the NCSpM [46]. Al-

lowing for the modest theoretical uncertainties resulting
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Shell model IM-SRG NCSpM Experiment

22Ne USDB EM1.8/2.0 N2LOOpt This Work Literature Ref.

E(2+) keV 1363 1657 1248 874 1274.54±0.01 [28]

B(E2) e2fm4 48.97 20.0 18.5 50.8 47.06±0.62 46.72±0.66 [28]

Qs(2
+
1
) eb -0.139 -0.086 -0.096 -0.15 -0.215±0.012 -0.21±0.04 [43]

-0.17±0.03 [28]

22Mg

E(2+) keV 1363 1604 1201 874 1247.02±0.03 [28]

B(E2) e2fm4 65.8 41.3 35.5 73.2 76.1±9.2
9.8

95.2±62.4
26.8

[28]

268±201
183

[26]

64.6±34.2
16.6

[27]

Qs(2
+
1
) eb -0.16 -0.13 -0.13 -0.18 -0.43±0.43

0.38

Table 1: B(E2) values and quadrupole moments for 22Ne and 22Mg as determined in the present work. Also shown are literature values, where

available, including excitation energies. B(E2) values correspond to B(E2; 2+
1
→ 0+

1
). Quoted uncertainties include systematic uncertainties arising

from the beam composition analysis, the 110Pd B(E2), the target composition and the γ-ray detection efficiencies. Theoretical values are included

for the shell-model, IM-SRG and NCSpM methodologies, with IM-SRG values shown for two interactions. Shell-model values were calculated

using effective charges of eπ = 1.36 and eν = 0.45.

from 5% variations in the model parameters shown in

Fig. 5, the NCSpM provides excellent agreement with

the experimental B(E2) data for both Tz = ±1 nuclei.

Also shown in Fig. 5 are calculations performed using

the valence-space IM-SRG formalism [47, 48, 25, 15]

using a consistently evolved E2 operator (see Ref. [49]

for details of the operator evolution) without incorpo-

rating effective charges. These calculations were per-

formed ab initio using both the SRG-renormalized [50]

1.8/2.0 chiral interaction [51–53] and the N2LOopt in-

teraction with a harmonic oscillator basis of ~ω =

20 MeV, and with operators truncated at the two-body

level. Clearly, these values significantly underpredict

the B(E2; 2+
1
→ 0+

1
) strength. It should be noted, how-

ever, that the IM-SRG calculations do provide a good

qualitative description of the E2 strength with increas-

ing mass. Note that variations in the theoretical values

for the excitation energies reflect differences in the fine

details of the interactions used.

For comparison phenomenological shell-model cal-

culations were performed using the USDB interaction

using NuShellX [54] with some of the common combi-

nations of effective charge [20, 54, 55]. The new data

indicate that, while the phenomenological shell-model

is able to reproduce the A = 22 case with a given choice

of effective charge, no single combination of effective

charges is able to reproduce the entire sd-shell, with

notable deviations at Tz = −1, A = 26 and Tz = +1,

A = 34.

The origin of the shortfall in E2 strength from the

IM-SRG calculations is not yet fully understood, but

must reside in the discarded terms involving three-body

or higher-body operators. Work in this direction is cur-

rently in progress. The nature of the missing strength

was assessed by normalizing the B(E2) data according

to the ratio of the theoretical and experimental values of

the mirror partner. For example, a B(E2) strength for

the proton-rich mirror was projected as:

B(E2)
Proj.

Tz=−1
= B(E2)

Theory

Tz=−1
×

B(E2)
Exp

Tz=+1

B(E2)
Theory

Tz=+1

, (1)

This analysis was performed for both IM-SRG and

shell-model calculations and the projected B(E2) val-

ues were compared with experiment. It is found that,

with the exception of mirror-pairs containing a magic

number, the IM-SRG results are highly consistent, over-

projecting the proton-rich strength by a factor of ap-

proximately 15% for the EM1.8/2.0 interaction. If the

missing strength were purely isoscalar, a common scal-

ing between theory and experiment would be expected

for the Tz = +1 and Tz = −1 members of the mirror

pair. The common 15% discrepancy therefore indicates

that the missing strength is not purely isoscalar, and that

a non-negligible isovector component must also be in-

corporated. Shell-model calculations - both with and

without effective charges - on the other hand, exhibit no

such consistent behavior in this analysis.
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Figure 5: Experimental B(E2; 2+
1
→ 0+

1
) values for even-even, Tz = −1 (a) and Tz = +1 (b) mirror nuclei in the sd-shell, including the present value

for 22Mg. NCSpM calculations are shown for the A = 22, 26 and 30 mirror pairs and IM-SRG calculations are shown with an evolved effective

E2 operator but with no further adjustment to the nucleon charges. IM-SRG calculations are shown for two interactions, N2LOOpt and EM1.8/2.0.

Also shown are USDB shell model calculations for a number of common charge modifying combinations (∆eπ and ∆eν modifying the proton and

neutron charges, respectively). Finally, “bare” USDB shell model calculations are also shown, without adjustment to nucleon charges. The error

band on the NCSpM values correspond to the spread in B(E2) values arising from variations of 5% in the model parameters.

5. Conclusions

In conclusion, we present an improved measurement

of the low-lying E2 strength in the |Tz| = 1, A = 22

mirror pair. A first Coulomb-excitation measurement of
22Mg has been performed, indicating its prolate defor-

mation at the first-excited Jπ = 2+ state and significantly

improving the uncertainty of the B(E2; 2+
1
→ 0+

1
) value.

This represents the first spectroscopic quadrupole mo-

ment measurement for an even-even N < Z nuclide.

Comparison with the state-of-the-art no-core symplec-

tic shell model calculations, validated in smaller model

spaces by the ab initio SA-NCSM, show excellent

agreement in the A = 22, A = 26 and A = 30 cases

without a reliance on effective charges. On the other

hand, the valence-space IM-SRG, provides good qual-

itative agreement of the evolution of E2 strength, but

dramatically underpredicts the absolute values. These

agreements provide some promise for reaching descrip-

tions of enhanced collectivity in sd-shell nuclei in the

framework of the ab initio theory starting with chiral

potentials. The failure of the IM-SRG to reproduce the

data in contrast to the NCSpM demonstrates the sensi-

tivity of E2 strength to the choice of many-body approx-

imation employed, which needs to be further explored.
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