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The dorsal anterior cingulate cortex (dACC) is proposed to facilitate learning by signaling

mismatches between the expected outcome of decisions and the actual outcomes

in the form of prediction errors. The dACC is also proposed to discriminate outcome

valence—whether a result has positive (either expected or desirable) or negative

(either unexpected or undesirable) value. However, direct electrophysiological recordings

from human dACC to validate these separate, but integrated, dimensions have not

been previously performed. We hypothesized that local field potentials (LFPs) would

reveal changes in the dACC related to prediction error and valence and used the

unique opportunity offered by deep brain stimulation (DBS) surgery in the dACC

of three human subjects to test this hypothesis. We used a cognitive task that

involved the presentation of object pairs, a motor response, and audiovisual feedback

to guide future object selection choices. The dACC displayed distinctly lateralized

theta frequency (3–8 Hz) event-related potential responses—the left hemisphere dACC

signaled outcome valence and prediction errors while the right hemisphere dACC was

involved in prediction formation. Multivariate analyses provided evidence that the human

dACC response to decision outcomes reflects two spatiotemporally distinct early and

late systems that are consistent with both our lateralized electrophysiological results and

the involvement of the theta frequency oscillatory activity in dACC cognitive processing.

Further findings suggested that dACC does not respond to other phases of action-

outcome-feedback tasks such as the motor response which supports the notion that

dACC primarily signals information that is crucial for behavioral monitoring and not for

motor control.

Keywords: event related potentials (ERP), executive function, functional localization, intra- extradimensional set

shift task, lateralization, outcome valence, prefrontal cortex (PFC), theta oscillations
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INTRODUCTION

The dorsal anterior cingulate cortex (dACC), located in the

medial prefrontal cortex (PFC), has been associated with a broad

range of executive functions including salience (Seeley et al.,

2007), conflict monitoring (Botvinick et al., 2001; Botvinick,

2007), error detection (Holroyd and Coles, 2002; Ito et al.,

2003; Hyman et al., 2013), and reward-based decision making

(Walton et al., 2003; Behrens et al., 2007; Kolling et al.,

2016a). A prominent theory of dACC function suggests the

dACC monitors both external and internal environments,

makes predictions, observes outcomes, and provides a summary

report of outcomes to downstream circuits (Schall et al., 2002;

Heilbronner and Hayden, 2016). While dACC monitoring

signals are usually observed after decisions and feedback, in

some cases dACC signaling can occur throughout the decision-

making process allowing for real-time updating of performance

(Carter et al., 1998; Holroyd and Coles, 2002; Blanchard and

Hayden, 2014). Likewise, while it is universally accepted that

dACCneurons are sensitive to error commission, as evidenced by

error-related negativity signals in event-related potential (ERP)

studies, the strict view of the dACC as exclusively an error

detector has been generally rejected (Amiez et al., 2005). Most

likely, the dACC reacts to error as one of a series of stimuli

that drive the region. For example, the dACC has been shown to

increase in activity in contexts where errors are likely but do not

actually occur (Brown and Braver, 2005). Conflict monitoring,

on the other hand, proposes that ongoing levels of conflict or

competition are tracked by the dACC and signaled as additional

cognitive resources are required (Botvinick et al., 2001). While

this is an appealing idea often suggested in neuroimaging

studies, there is scant supporting evidence in electrophysiological

recordings (Nakamura et al., 2005; Cai and Padoa-Schioppa,

2012; Sheth et al., 2012).

As a result, much of the research into dACC function

has attempted to propose generic, computational models that

unify dACC functions focused on the vital role dACC plays

in learning. The various models based on single-unit recording

and local field potential (LFP) recordings in non-human

primates converge to propose that neurons in the dACC signal

predictions of some parameter, whether external or internal,

that range from the volatility of the reward environment

to the optimal value of cognitive control (Behrens et al.,

2007; Alexander and Brown, 2011; Shenhav et al., 2013;

Silvetti et al., 2014). These predictions act to encode one’s

expectations for the likely outcomes of decisions or actions

(Hayden et al., 2011; Kennerley et al., 2011; Cai and Padoa-

Schioppa, 2012; Procyk et al., 2016). After feedback, these

dACC neurons signal both the valence of the outcomes of

one’s behavior—either positive or negative—and further respond

to valence via prediction error signaling on axes such as

good/bad and expected/unexpected (Philiastides et al., 2010;

Hayden et al., 2011; Guitart-Masip et al., 2014). A positive

valence is associated with actions that result in a reward

(e.g., a successful or desirable outcome) while negative valence

is associated with an undesirable outcome. Such activity is

used to update predictions and optimize future behavior.

Ultimately, questions remain regarding dACC function. Are

these functions performed by anatomically discrete subregions?

Is dACC function lateralized across hemispheres? How does the

dACC, especially in the human PFC, perform such processes?

This last question requires intracortical electrophysiology which

is extremely rare in humans as there are few clinical justifications

to warrant placing recording electrodes in or near the dACC. In

light of the many theories of dACC function, we hypothesize

that the dACC maintains predictive information about the

outcomes of one’s behaviors, monitors the valence of behavioral

outcomes, and uses valence and resulting prediction errors

to drive behavioral adaptations. Further, we hypothesize that

these executive functions in humans are a result of underlying

electrophysiology in the form of or reflected by LFPs as is

observed in non-human primates.

The introduction of deep brain stimulation (DBS) to

treat certain neurological disorders has allowed for some

of these questions to be explored in humans through the

recording of electrophysiology while subjects perform

behavioral tasks. To test our hypotheses, we recorded LFPs

from the dACC bilaterally, in three habitually right-handed

subjects undergoing DBS for chronic pain, allowing the

precise examination of whether prediction signals (reactions

pre-feedback to stimuli presentation), outcome valence signals

(reactions post-feedback to the intrinsic attractiveness or

averseness of an outcome), prediction error signals (reactions

post-feedback to differences between predicted and eventual

outcome) are localized to the dACC (Figures 1A,B). By

recording bipolar mode LFP, we were able to precisely

localize LFP to the dACC, take recordings from within a

few millimeters of the electrodes, minimize volume conduction

effects from distant areas, and record simultaneously from

both hemispheres of the dACC (Lempka and McIntyre,

2013). Diffusor tensor imaging (DTI) was performed

postoperatively to confirm DBS electrode placement and to

ensure the bilateral contacts were capturing electrophysiological

signals from comparable, symmetrical regions in the

dACC.

Participants performed a modified Wisconsin card-sorting

cognitive test (Intra- Extradimensional Set Shifting test, IED).

IED is a measure of attentional set shifting, assessing cognitive

flexibility and executive function in one’s ability to switch

between arbitrary internal rules (Keeler and Robbins, 2011;

Scheggia et al., 2014). Its physical variation, Wisconsin Card

Sorting, is the most widely used neuropsychological task

for the evaluation of this function in humans (Eling et al.,

2008; Barnett et al., 2010). IED has been used to identify

executive function abnormalities in a wide range of mental

disorders including attentional deficit disorders, obsessive-

compulsive disorders, and Parkinson’s disease (Head et al.,

1989; Owen et al., 1993; Chamberlain et al., 2011). Attentional

set shifting tasks allow for the selective measurement of the

processes underlying discriminative learning, reversal learning

behavior, and the switching of attention within both the same

dimension (during intradimensional shifts) and an alternate

dimension (extradimensional shifts) in a tested subject. Such

a distinction is relevant, as functional specialization within
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FIGURE 1 | Subject electrode placement (A,B) and diffusor tensor imaging (DTI) data (C,D). (A) Post-operative computed tomography (CT)-scans showing subjects’

electrode placements. Electrodes registered and displayed in the common Montreal Neurological Institute (MNI) space. (B) Electrode contacts in AC-PC coordinates

and MNI space. Electrode order from most dorsal, C3, to most ventral, C0. (C) DTI-computed total connectivity derived from the number of voxels with non-zero

connectivity with several regions of interest (ROI) available from two of three subjects. DTI connectivity is from the middle electrode contact pair C2-C1. Both left and

right electrodes displayed connectivity to right superior frontal gyrus (SFG) and left supplementary motor areas (SMA). (D) DTI connectivity strength as mean intensity

per non-zero voxels. Supporting total connectivity results, highest connectivity strength was with right SFG and left SMA.

the PFC has been observed to govern these two types of

shifts. This has been demonstrated between the orbital regions

and the lateral (in non-human primates) and medial (in

rodents) regions in the PFC, respectively (Scheggia et al.,

2014). Orbitofrontal cortex has been shown to be selectively

involved in reversal shifts, while the lateral/medial PFC has

been shown to be involved in the extradimensional shift (Dias

et al., 1996; Hampshire and Owen, 2006; Keeler and Robbins,

2011).

On each IED trial, the subject chooses between pairs of

stimuli—with one stimulus a ‘‘correct’’ match to target and the

other an ‘‘incorrect’’ match to target, based on a rule unknown to

the subject—with success or failure indicated through auditory

feedback following their choice (Figure 2). Once the rule defining

the correct stimulus-outcome had been learned—as evidenced

by several consecutive correct trials in a row—unexpected

rule changes occurred leading to discrepancies between the

predicted and actual validity of a subject’s choice. In addition

to unexpected rule changes, the target visual stimuli presented

also changed from trial to trial, resulting in the presentation of

familiar and novel stimulus pairs. In brief, subjects are presented

with two stimuli, they make a choice, an outcome is signaled,

and this pattern is repeated which informs future rounds. As

rule changes occur unpredictably once a rule is learned by

a subject, the IED task has elements of learning (e.g., is the

rule X or Y?), prediction (e.g., the rule in the previous trial

was X and so it should still be X), and an outcome that can

be manipulated to be expected or unexpected (e.g., the rule

was X as expected or was unexpectedly changed to Y). Using

this design, we searched for electrophysiological correlates of

predictive activity at the time that pairs of stimuli were presented

and outcome valence or other error-related activity at the time of

outcome feedback in left and right dACC, contributing unique

electrophysiological information to the study of dACC function

not obtainable through imaging or directly via surface electrodes

in humans.
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FIGURE 2 | Intra- extradimensional set shift task (IED). (A) Schematic of the

IED task from the Cambridge Neurophysiological Test Automated Battery

(CANTAB) displaying rule order during a given recording. Green rectangles

indicate the correct choice. The rule progresses after six consecutive trials with

correct responses. The test terminates if six consecutive correct trials cannot

be made over a period of 50 attempts. Copyright 2008 Cambridge Cognition,

Ltd. All rights reserved. (B) Schematic representation of IED sensory and

motor events within a given trial. A trial begins with the presentation of two

visual, abstract objects. After a variable-length decision-making phase, the

subject then makes a movement to touch the CANTAB test screen with their

dominant hand. A screen press elicits auditory and visual feedback indicating

whether the subject has chosen the correct or incorrect figure for the current

rule. After an interval of 1.5 s, the screen turns blank and then begins the next

trial. Reproduced with permission from Figure 1 of Gillies et al. (2017), under

the open access Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

MATERIALS AND METHODS

Subject Group and Ethics Approval
Three subjects suffering from chronic pain (one female, two

male, average age = 42 years, standard deviation = 4.9 years)

were studied. All three subjects were habitually right-handed

(Table 1). This study was carried out in accordance with

the recommendations and approval of Oxfordshire Research

Ethics Committee A (Ref 11/SC/0229). All subjects gave written

informed consent in accordance with the Declaration of Helsinki.

Surgery
All three subjects underwent bilateral dACC DBS surgery.

dACC targets were selected on preoperative magnetic resonance

imaging (MRI) scans. Selected targets were 20 mm posterior

TABLE 1 | Subject data.

Subject Age (years) Sex Handedness

1 48 M Right

2 36 F Right

3 42 M Right

The subject group is described in Table 1. Three subjects (one female and two

male) with chronic pain were studied. The average age of subjects at the time of

surgery was 42 years, with a standard deviation of 4.9 years. All three subjects

were habitually right-handed.

to the frontal horns and 8–10 mm lateral to the midline to

target the dACC. The tip of each electrode was targeted to

contact the corpus callosum such that as many contacts lay

within the cingulate bundle as possible. Subjects underwent

general anesthesia and Cartesian coordinates were generated

for preselected targets using a combination of Brown-Roberts-

Wells stereotactic localizer frames, preoperative computed

tomography (CT) head scans performed under anesthesia

and NeuroInspirer (Renishaw plc, Wotton-under-edge,

UK) image fusion software. Cartesian coordinates were then

configured on the Cosman-Roberts-Wells frame attached

to the subject’s head. A 2.7 mm twist drill craniostomy was

made and Medtronic 3387 DBS leads were passed to target

coordinates, with extension leads attached and externalized.

Each DBS lead has four circumferential 1.5 mm electrodes

separated by 1.5 mm. A second CT head scan was performed

to check lead position before recovery from anesthesia.

Internalization of DBS leads and implantation of internal

pulse generators took place a week later after clinical testing for

efficacy.

MRI Acquisition
Before DBS surgery, subjects underwent a T1- and T2-weighted

MRI scan on a Philips Achieva 1.5 Tesla magnet. Diffusion-

weighted data were acquired using a single-shot echo planar

sequence. The scanning parameters were as follows: echo time,

65 ms; repetition time, 9390 ms; 176× 176 reconstructed matrix;

voxel size of 1.8 × 1.8 × 2 mm; and slice thickness of 2 mm.

DTI Processing
DTI data were acquired with 33 optimal nonlinear diffusion

gradient directions, 1200 s/mm2, and one non-diffusion-

weighted volume, 0 s/mm2. DTI pre-processing was performed

using the Oxford Centre for Functional MRI of the Brain

Software Library (FSL) tools comprising eddy current and head

motion correction, brain extraction, diffusion tensor fitting

on correct 4D-data and modeling of crossing fibers using an

automatic estimation of 2-fiber orientations per voxel (Smith

et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).

The electrode contact coordinates were determined as described

in a previous tractography study (Boccard et al., 2016). For

the present work, DTI scans were available for two out of

the three subjects. As the LFP were recorded between two

adjacent electrode contacts, we defined as seed each couple

of adjacent contacts: the most ventral two as C0 and C1,

the middle two as C1 and C2, and the most distal two as

C2 and C3. For each subject, the connectivity was computed
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between each of these seeds and brain areas of interest.

For both brain hemispheres, we measured the connectivity

patterns to several areas of the automated anatomic labeling

template in the 2 mm Montreal Neurological Institute (MNI)

space: the hippocampus, the insula, the middle frontal gyrus

(MFG), the posterior cingulate gyrus (PCG), the precuneus,

the Rolandic operculum, the superior frontal gyrus (SFG), the

superior middle frontal gyrus (SMFG) and the supplementary

motor area (SMA). For each subject, we ran probabilistic

tractography using the C0–1, C1–2 and C2–3 electrode seed

areas in each subject’s DTI space. Five thousand sample

streamlines were seeded from each voxel of the seed region.

The probabilistic tractographies obtained were subsequently

registered to the 2 mm MNI space. We then computed the total

connectivity, the number of voxels with a non-zero connectivity,

and the connectivity strength represented as mean intensity

per non-zero voxels within the masks of the above brain

areas.

Intra- Extradimensional Set Shifting Task
Subjects performed an on-screen variation of the Wisconsin

Card Sorting Test called the Intra- Extradimensional (IED)

FIGURE 3 | Average dorsal anterior cingulate cortex (dACC) bipolar mode field potential response in three subjects performing IED task, trial by trial responses.

(A) Trial-by-trial field potential responses (y axis, n = 796 trials, three subjects) from left and right dACC (regardless of correct or incorrect result) vs. time representing

the decision-making period composed of: selection of object (−4000 ms to −2700 ms); receipt of feedback (−2700 ms to −2100 ms); clearing of the screen

(−1500 ms to −200 ms); and object pair presentation of the subsequent trial (0 ms onwards). Color represents magnitude of the field potential (red = higher voltage)

such that individual pixels represent the magnitude of the local field potential (LFP) at a point in time in a trial. The trials were locked to stimulus presentation (0 ms).

The time delay between start of feedback of the preceding trial and presentation of visual object pair in the next trial was constant (2700 ms). Responses were

normalized (x-mean standard deviation) but not filtered. Blue line graphs represent average of individual trial responses with Y-axis representing normalized voltage

and X-axis representing time. The most notable result is the evidence of a left dACC event related potentials (ERP) response to feedback at approximately −2700 ms

with a magnitude of 0.8 µV. A lesser but still significant (P < 0.05) response also appeared in right dACC at this time with a magnitude of 0.3 µV. There was no

apparent response to visual object presentation (0 ms) nor to movement (prior to −2700 ms). (B) Sample IED images aligned with events from Figure 2B.
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Set Shifting task (Cantabr). Subjects learn a series of nine

two-alternative forced-choice discrimination rules between two

visual objects presented on-screen (Figure 2A). A script is read

to the subject before the test begins, informing them to pick

one of two on-screen visual objects. They are informed one

object is ‘‘correct’’ and the other ‘‘incorrect.’’ They are informed

there is no stimulus characteristic which indicates which object is

correct or incorrect on the first trial, but that the computer gives

feedback after selection to inform them whether they selected

the ‘‘correct’’ or ‘‘incorrect’’ object. Subjects are informed that

the rules will change over the course of the test, but that these

rules do not change often, and rule changes occur only once

the preceding rule has been learned. They are not informed

how many times the rules will change or how many correct

trials in a sequence they must achieve before the rule changes.

Selection of an object on-screen by touch causes an audible

tone (pure tone for correct, low frequency modulated pure tone

for incorrect) and simultaneous presentation of a colored box

around the edge of the screen (green for correct and red for

incorrect) with the word ‘‘correct’’ or ‘‘incorrect’’ lasting 0.5 s,

which indicates whether the choice was correct or incorrect

(Figure 2B). The next trial begins automatically 2.7 s after the

start of the previous trial’s object selection auditory feedback.

Subjects were invited to use their dominant hand for object

selection (in all three subjects the right hand). The rule is defined

as ‘‘learned’’ when the subject achieves six correct choices in

a row, prompting progression to the next rule. At the start

of the test, each of the two visual objects are composed of a

single solid abstract shape (the internal dimension), which may

occupy one of four on-screen rubrics. The spatial relationship

between the two visual objects varies randomly as a distractor

during a sequence of trials governed by the same rule. Once

the subject has learned rule 1 (i.e., which is the correct solid

shape), the computer switches the rule (simple reversal) and

the subject (having been trained or manipulated into predicting

or ‘‘expecting’’ rule 1) receives ‘‘unexpected’’ incorrect feedback

and now must learn that an alternative shape is now the

‘‘correct’’ one (step 2 in Figure 2A). As the task progresses,

the visual objects acquire an additional abstract element in the

form of white lines (the external dimension). These white line

figures (e.g., rule 3 in Figure 2A) act as distractors during rules

3–5 (compound discrimination 1, compound discrimination

2 and reversal), since the rule is based on the solid shape

component of the objects only. During sequences governed

by rules 3–5, the white line figures randomly associate with

each solid shape, with a small variable range of geometric

relationships to the solid component. Upon transition to rule

6 (intradimensional shift), the solid shapes change to two new

visual objects composed of new solid shape andwhite line figures,

but the rule governing correct object choice is determined by the

solid shape component only (i.e., intradimensional component),

not the white line figures. The white line figure acts as the

stimulus dimension governing correct object choice during the

extradimensional phase of the task (rules 8, extradimensional

shift, and 9, reversal). During transition to reversal rule trials

(rules 2, 5, 7, 9) the visual objects do not change compared

to the last trial of the previous rule. During transition to

discrimination and dimensional shift rule trials (rules 3, 4, 6, 8)

the on-screen visual objects change (although some component

elements of the objects may not) compared to the last trial of

the previous rule. The subject passes the task if he/she learns

all nine rules in sequence. The subject fails if he/she does not

achieve six correct trials in sequence out of 50 trials of a single

rule.

Electrophysiology and Analysis
Differential recordings were made from adjacent circumferential

1.5 mm contacts of each deep brain macroelectrode in a bipolar

configuration to limit the effects of volume conduction and limit

spatial resolution of recordings to a few millimeters of adjacent

tissue (Parra et al., 2005). dACC contacts were identified by

postoperative image-fused MRI and CT. Signals were high-pass

filtered at 0.5 Hz, amplified (10,000×) and digitized at a rate

of 2.5 kHz using a Porti system (Twente Medical Systems

international, B.V., Netherlands) and recorded onto disc using

Spike2 software (Cambridge Electronic Designs, Cambridge,

UK). Raw data were notch filtered at 50 Hz, 100 Hz and 150 Hz

as required using Spike2 infinite impulse response Bessel filters,

Q value adjusted to minimize unwanted filtering of adjacent

frequencies. Pre-processing and analysis of LFPs were performed

offline using MATLAB software (Mathworks Inc., Natick, MA,

USA) and EEGlab (Delorme and Makeig, 2004; Delorme et al.,

2011). Recordings were taken from awake, behaving subjects at

room temperature.

Spike2 data were imported into EEGlab. Raw data were

resampled at 512 Hz. Six-second epochs (beginning −4000 ms

prior to the start of auditory feedback continuing to +2000 ms)

were extracted from left and right dACC contacts and divided

into correct and incorrect trials as appropriate. Trials were

sub-divided into simple correct trials and incorrect trials and

further into correct and incorrect trials that were expected

and unexpected. An expected correct trial was one in which

the previous five trials had received correct feedback. An

unexpected correct was derived from a first correct response

to novel stimuli—a guess. An expected incorrect was the first

incorrect response to novel stimuli—a guess. An unexpected

incorrect was obtained from the first incorrect trial of a reversal

rule set. Baseline prior to feedback (−2000 ms to 0 ms) was

subtracted, then data were normalized by individual mean and

sample standard deviation using MATLAB z-score command to

allow comparison between different subjects. EEGlab commands

were used to generate ERP, power spectra and event-related

spectral perturbations (ESRP). ESRP is a form of wavelet-

based time-frequency analysis that measures average dynamic

changes in the spectral amplitude relative to an experimental

event common baseline, to compare responses in the range of

3–100 Hz (Duda et al., 2001). The time between the presentation

of stimuli on the IED test screen and the subject touching the

screen to make their selection was recorded as a trial’s reaction

time (RT).

Multivariate LFP Discriminant Analysis
We applied a linear multivariate classifier to LFP data locked

to the time of feedback to discriminate between positive vs.
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FIGURE 4 | dACC discriminates positive vs. negative feedback.

(A,B) Decoding performance (Az) during outcome valence

(positive-vs-negative outcome) discrimination of feedback-locked monopolar

LFP data for subject 1 (A) and subject 2 (B). Subject 3 did not produce

enough incorrect trials to reliably train the multivariate discriminant. The

dashed line represents the subject-specific Az value leading to a significance

level of P = 0.01, estimated using a bootstrap test. Spatial weights (w) of

subject-specific discriminating (early and late) components are shown over the

relevant peak component times. These weights represent the relative

contribution of each LFP electrode to the overall discrimination performance

(the sign of the weights is arbitrary and depends on the polarity of the

corresponding electrode signals). Reproduced with permission from Figure 1

of Gillies et al. (2017), under the open access Creative Commons Attribution

4.0 International License (http://creativecommons.org/licenses/by/4.0/). (C,D)

Temporal profile of the early discriminating component activity (y(early))

averaged over trials (for subject 1 and subject 2 shown in A and B,

respectively) for each of the positive (red lines) and negative (blue lines)

outcomes, obtained by applying the subject-specific spatial weights estimated

at the time of maximum discrimination (see timing of w’s shown in A,B) over

an extended time window spanning the delivery of feedback (−200 ms to

600 ms post-feedback). The gray shaded area is used to highlight the range

over which the difference between the two outcome types is more prominent.

(E,F) The temporal profile of the late discriminating component activity (y(late))

for each of the positive and negative outcomes. Same convention as in (C,D).

negative decision outcomes using a sliding window approach.

Only results from subject 1 and subject 2 were used, as

subject 3 did not produce enough incorrect trials to reliably

train the multivariate discriminant. Specifically, we estimated

a projection of the multidimensional LFP signals, xi(t), where

i = {1. . .T} and T is the total number of trials, within a

short time window, τ , that maximally discriminated between

positive and negative outcome trials. Each time window had

a width of N = 50 ms and the window center was shifted

from −200 ms to 600 ms relative to outcome onset, in

10 ms increments. We used logistic regression to calculate the

spatial weighting, w(τ), that achieved maximal discrimination

between positive and negative outcomes, arriving at the

one-dimensional projection yi(τ), for each trial i and a given

window τ:

yi(τ ) =
1

N

∑t=τ+N/2

t=τ−N/2
w(τ )⊥xi(t) (1)

where ⊥ is used to indicate a transpose operator (Parra

et al., 2005). Note that the classifier was designed to

map positive and negative discriminant component

amplitudes (i.e., yi(τ)) to positive and negative outcomes,

respectively.

We quantified the performance of the discriminator for

each time window using the area under a receiver operating

characteristic curve, referred to as an Az value, using a leave-

one-out trial cross-validation procedure (Parra et al., 2005). We

utilized a bootstrapping technique to assess the significance of the

discriminator to a significance level of P < 0.01.

To visualize the temporal profile of the resultant

discriminating components, we applied the spatial weighting

vectors, w(τ), from the short time windows, that led to

significant discrimination performance between positive vs.

negative outcomes, to an extended time window (from 200 ms

before until 600 ms after the outcome).

Experimental Design and Statistical
Analysis
In this study, we aimed to test the electrophysiological response

of the human dACC to a stimuli-feedback-response cognitive

task using the unique opportunity of externalized DBS patients.

We did not perform prospective sample size calculations as

post-operative recordings from DBS electrodes—particularly

in the PFC—are a rare research opportunity. Thankfully,

as bipolar LFP recordings have a relatively high signal-to-

noise ratio and minimize volume conduction effects from

without, a small number of subjects (as low as two) with

a large trial count is considered sufficient to detect effects

(e.g., Womelsdorf et al., 2010). To that extent, we reported

the total number of given trial types—correct and incorrect

trials, and familiar and novel stimuli trials. To properly isolate

sources of variation in measurements to improve statistical

testing, additional biological (rather than technical) replicate

measurements were utilized. Our biological replicates, as

defined by Blainey et al. (2014) as ‘‘parallel measurements of

biologically distinct samples that capture random biological

variation, are the recordings made from two of the subjects

we analyzed. Of the three recorded subjects, subject 3 had

to be excluded from the multivariate discriminant analysis as

he did not produce enough incorrect trial data to reliably

train the multivariate discriminant as he did not produce
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enough incorrect trial data to reliably train the multivariate

discriminant.

Across all subjects, we collected a repeated number of

technical replicates of 796 total trials, broken down into

568 correct trials and 228 incorrect trials, and further into

66 trials with familiar stimulus pairs and 33 trials with

novel stimulus pairs. Exact p-values for the cluster-based

permutation correction procedure we used varied in each run

due to the nature of random permutations, and thus were not

reported. EEGlab non-parametric permutation statistics with

false discovery rate (FDR) correction were used to compare

LFP data between trials and between study groups. To assess

the significance of the multivariate LFP discriminator, we used

a bootstrapping technique where we performed the leave-one-

out test after randomizing the trial labels. We repeated this

randomization procedure 1000 times to produce a probability

distribution forAz, and estimated theAz leading to a significance

level of P < 0.01. Non-parametric Rank Sum and Kruskal-Wallis

tests were used to analyze RT as RT data were not normally

distributed. RT data are therefore expressed as medians within

the 25%–75% interquartile range.

RESULTS

Three electrode contact pairs at different coordinates were

available for use in recording (Figure 1B). The central pair,

C2–1, was chosen to orient recordings anatomically directly

within the dACC. MRI DTI was performed to assess the

orientation and integrity of white matter tracts between the

electrode position and multiple regions of interest (ROI) to

confirm electrode positions. This analysis was available for two

of the three subjects (Figures 1C,D). For both subjects and both

electrodes, the strongest connectivity was found to be the left

hemisphere’s SMA. A notable connectivity was also found to the

right hemisphere’s SFG and the SMFG.

A total of 796 IED trials were available for analysis, and

subject data were pooled for respective hemispheres, stimulus

type, and feedback valence—whether the subject made a correct

or incorrect choice. Subjects made a total of 568 choices resulting

in correct feedback and 228 choices resulting in incorrect

feedback (Table 2). Additionally, trials were sorted according

to trends—whether trials resulting in either correct or incorrect

feedback were followed by a subsequent trial resulting in correct

or incorrect feedback—in order to observe behavioral changes.

Subjects made consecutive correct trials in 76.3% of cases and

made consecutive incorrect trials in 40.6% of cases. Detailed RT

data were available from all three subjects. When considering

RT, there was no significant difference (P > 0.40) between the

average correct trial (median RT: 938.5 ms, interquartile range:

709–1372.7 ms) and the average incorrect trial (median RT:

923.5 ms, interquartile range: 722.5–1459.3 ms). Likewise, there

were no significant differences in RT between trials when sorted

by trend as shown in Table 2, with the exception of the RT

of consecutive correct and consecutive incorrect trials. Subjects

performed the second of consecutive correct trials (median RT:

911 ms, interquartile range: 701–1332 ms) significantly faster

(P< 0.05) than the second of consecutive incorrect trials (median

RT: 1016 ms, interquartile range: 731.75–1780 ms).

LFPs from left and right dACC were averaged at time of

stimulus presentation across all trials incorporating visual object

presentation, motor action, and feedback phases (Figure 3). The

most prominent feature of the averaged response, consistent

across trials and subjects, was that feedback was associated with

an ERP beginning 50 ms after the start of feedback in the

left hemisphere with a mean peak magnitude of 0.8 µV, more

prominently than the right hemisphere with a peak of 0.3 µV

(P < 0.05; Figure 3A).

To identify temporally distinct neuronal population

components associated with the value of outcome, we used

single-trial multivariate discriminant analysis on LFP signals

locked to the delivery of feedback to extract information on

the prediction valence generated by the dACC (Lempka and

McIntyre, 2013). We analyzed this post-feedback ERP in

more detail by running a multivariate discriminant analysis

on the broadband signal to integrate information across DBS

electrodes and generate an aggregate discriminator channel

that best dichotomized outcomes into positive (correct)

and negative (incorrect) outcomes (Fouragnan et al., 2015,

2017). Discrimination performance increased in the range

200–400 ms following the outcome, with two distinct temporal

components peaking roughly at 200 ms (early) and 350 ms

(late) corresponding to 6.6 Hz or one theta frequency oscillation

(3–8 Hz) period apart (Figures 4A,B). Using a univariate

discrimination—by considering individual LFP channels in

isolation—was consistently less reliable. Similarly, by comparing

dACC subregions through examining spatially separated

electrode contacts, the spatial weights discriminating outcome

valence (w in Equation 1) were only moderately correlated

between the two components (Figures 4A,B), suggesting

that different sub-groups of neurons within the dACC, or

some other degree of spatial or lateral specialization, might be

responsible for the early and late discriminating activity. Next,

we computed the temporal profiles of the early (Figures 4C,D)

and late (Figures 4E,F) components (y in Equation 1) for

each subject by subjecting the outcome-locked data through

the spatial generators (weights) estimated at the peak times

of the two components. These temporal profiles were highly

consistent across the participants and revealed that both

the early and late outcome components appear to be driven

primarily by negative outcomes and the early component

appears to represent a more transient event compared to

the late component, which exhibited a broader response

profile.

Given the prominence of the outcome-related activity

in the dACC, we analyzed the LFP response to feedback

in more detail using ERSP analysis (Makeig, 1993). We

hypothesized that, supposing the dACC is involved in executive

function both before and after feedback, we would detect

electrophysiological activity related to novel vs. familiar objects

(pre-feedback) and expected vs. unexpected outcomes (post-

feedback). We compared trials with correct predictions and

incorrect predictions without regard to the underlying trial

rule (Figures 5A–C). The most prominent feature of the
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TABLE 2 | Intra- Extradimensional (IED) results.

Correct trials (n = 568) Incorrect trials (n = 228)

. . . following incorrect trial . . . following correct trial . . . following incorrect trial . . . following correct trial

137 431 94 134

A total of 796 trials were available over three subjects. Five-hundred and sixty-eight trials resulted in correct feedback and 228 trials resulted in incorrect feedback. Trials

(whether correct or incorrect) were further sorted into whether they were proceeded by a correct or incorrect trial to gauge behavioral changes. 76.3% of correct trials

were followed by a succeeding correct trial. 40.7% of incorrect trials were followed by a succeeding incorrect trial.

ERSP was that incorrect prediction was associated with a

significantly greater response in the theta frequency band

(3–8 Hz) than correct prediction in the dACC of the left

hemisphere (bootstrapping with FDR, P < 0.05). We found no

difference in outcome-related theta frequency activity between

correct and incorrect trials in the dACC of the right hemisphere

(P > 0.05; Figures 5A–C). In contrast, during stimulus

presentation, there were no significant differences between ERSP

during presentation of novel stimuli and familiar stimuli in the

left dACC, but the right dACC displayed significantly greater

ERSP to novel stimuli than to familiar stimuli in the theta

frequency band (Figures 5D–F).

DISCUSSION

Outcome Valence and Prediction Errors
Considerable evidence from neurophysiological recordings in

non-human primates supports the claim that the dACC signals

crucial information resulting from unexpected outcomes that

guide learning behavior (Amiez et al., 2005; Sallet et al., 2007;

Kennerley et al., 2011). Unexpected outcomes are crucial for

learning; they signal the need for updating expectations about

the environment. While neuroimaging studies in humans have

generally supported this, their low levels of spatial resolution

have failed to localize these signals to different, distinct regions

within either the dACC or adjacent regions of the medial PFC

(Yeung et al., 2004). This study is one of only a limited collection

of studies to examine responses from direct electrophysiological

recordings of human dACC during a cognitive control task. We

hypothesized that electrophysiology in the form of LFPs would

localize to the dACC both prediction errors and outcome valence

at the time of decision feedback. We utilized a cognitive task

that involved presentation of object pairs, a motor response, and

audiovisual feedback to guide future object selection choices,

which allowed for the manipulation of expectancy through

stimulus familiarity and permitted us to probe both prediction

error and valence event-related electrophysiology. Our most

marked finding was that the dACC signals when the outcomes

of decisions were unexpectedly incorrect. We provide strong

support that the human dACC signals both prediction errors

and valence. We do not see particularly striking dACC activity

during movement phases of the task, suggesting that dACC

signals information that is crucial for monitoring our behavior

rather than for actions themselves. This aligns with dACCmodels

that include a large role in motor control, such as that proposed

by Holroyd and Coles, and findings from both human and

animal studies that generally propose the dACC plays a role

in selecting and maintain action policies (Holroyd and Coles,

2002; Holroyd and Yeung, 2012; Holroyd and McClure, 2015;

Procyk et al., 2016; Shahnazian and Holroyd, 2018). While

there is no obvious motor-related activity in-between stimulus

presentation and feedback receipt as expected (at least in the

left hemisphere dACC), IED as a task is not particularly suited

to probe questions of motor control as it is limited to a

consistent motor behavior (arm reaches) that do not vary task-

to-task.

What role do prediction error signals in the dACC serve?

Current computational models of the dACC highlight the

dACC’s role in learning. Both the Prediction Response Outcome

model of Alexander and Brown and the reward value and

prediction model of Silvetti et al. (2014) propose that the dACC

signals prediction errors resulting from unexpected outcomes

(Alexander and Brown, 2011). Computational models have also

suggested that dACC signals not only reflect how surprising

an outcome might be, but are also crucial for learning and

updating predictions after feedback and driving subsequent

adaptive changes to behavior (O’Reilly et al., 2013). Indeed, this

could be seen in the data. Not only were subjects more likely

to make consecutive correct choices and thus repeat successful

behavior; but they were more likely to follow an incorrect trial

(with its associated higher dACC activity) with a subsequent

correct trial and therefore improve their behavior (Table 2).

This implies that the selection of actions, and potentially the

speed with which actions are made, are influenced by the valence

(the ‘‘correctness’’ or ‘‘desirability’’) of one’s predicted outcomes

(Guitart-Masip et al., 2014). While there is modest evidence of

post-error slowness in our RT results, we cannot meaningfully

divide our RT data by rule-type and thus we cannot say how RT

relates to dACC activity. Our results provide support for these

models of dACC function and for the first time demonstrate that

prediction error signaling is reflected in human LFPs.

Recent work by Jahn et al. (2014) and Silvetti et al. (2014)

suggest that the dACC signals both predictions and errors related

to those predictions, but that these two signals may be localized

to distinct zones of the dACC. Our results suggest a degree

of lateralization across hemispheres in the dACC response to

outcomes. Right dACC is involved in the initial formation of

predictions while left dACC does not signal prediction error

per se, but a fundamental dynamic signature of the rule-updating

process as suggested by the late components in Figure 3, agreeing

with fMRI work by O’Reilly et al. (2013) showing that dACC

activity updates future behavior. The timing and overall response

profile of these components were generally consistent with

those reported recently in human electroencephalography (EEG)

studies using a similar reward-learning task (Philiastides et al.,

2010; Fouragnan et al., 2015, 2017). In those studies, the early
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FIGURE 5 | Field response to feedback (A–C) and visual object presentation (D–F). (A) Correct trials (n = 568) vs. incorrect trials (n = 228). Graph shows event

related spectral perturbance (ERSP) using EEGlab morlet wavelet-based analysis. Start of feedback = 0 ms and Y axis = log-based frequency (3–100 Hz).

(B) Bootstrapping (p < 0.05) statistical comparison of difference in ERSP between correct and incorrect, showing frequency and time points of statistical

significance. (C) Trial by trial LFP responses from left and right dACC during correct trials and incorrect trials filtered to theta frequency (3–8 Hz). The trials were

averaged to receipt of feedback (0 ms). Color represents magnitude of the LFP (red = higher voltage) such that individual pixels represent the magnitude of the LFP

at a point in time in a trial. (D) ERSP from left and right dACC in response to familiar stimulus pairs (i.e., stimulus of a sequence of six correct responses, n = 66) and

novel stimulus pairs (i.e., first trials of two new object pairs, n = 33). Stimulus onset = 0 ms and Y-Axis as in (A,B). We found a significantly greater theta frequency

response of right dACC to novel stimuli but no significant differences in left dACC. (E) Bootstrapping (p < 0.05) statistical comparison of difference in ERSP between

familiar and novel stimuli presentation. (F) Trial-by-trial data for visual object presentation filtered to theta frequency.

component was shown to represent a quick evaluation of the

outcome along a good/bad axis, whereas the later component

wasmore directly involved in updating/learning stimulus-reward

associations. Both our multivariate analysis (Figure 4) and our

ERSP analysis (Figure 5C) show evidence that the early and

late components are temporally separated by a single theta

oscillation and are in reaction to negative outcome valency,

lending credence to studies that suggest that predictions and

rule adjustment following feedback are primarily processed

through activity in the theta frequency band (Klimesch, 1999;

Womelsdorf et al., 2010; Cavanagh and Frank, 2014). Individual,

separate components were observed following correct feedback

in the left dACC (Figure 5C), implying less of a need for rule

adjustments following expected responses as seen by RT results

(Jensen and Tesche, 2002).

Do our findings offer any clarification on the dACC’s role

in foraging theory (Krebs et al., 1977; Stephens and Krebs,

1986)? The IED task that our dACC subjects performed is a
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cognitive task with clear foraging parallels—how do organisms

make decisions and evaluate the potential consequences of

choices as they arise? In our case, the IED task placed

subjects into an evolving environment, where rewards (positive

feedback and successfully progressing through the task) were

fully known but the consequences (the rules) of a particular

choice were not fixed and had to be reassessed and at

times relearned as the task progressed (Walton and Mars,

2007). Such a scenario is useful as it allowed us to control

and manipulate the parameters of the task through varying

stimulus-response-outcome combinations in order to introduce

elements of unfamiliarity and expectancy. Our results revealed

the dACC to be involved throughout the decision-making

process, both before decisions are made at the time of stimuli

presentation and post-decision after feedback is delivered.

The right hemisphere dACC was shown to respond to the

introduction of stimuli while the left hemisphere dACC was

shown to be sensitive to two distinct variables: the receipt

of feedback and the further recognition and processing of

error. Our results are consistent with the idea that the dACC

is implicated in linking actions with outcomes and using

changes in feedback to provoke the updating of future decision-

making paradigms (Botvinick et al., 2001; Hayden et al., 2011;

Blanchard and Hayden, 2014). Essentially, we offer clarifying

evidence of lateralized decision-making in line with foraging

theories in the dACC. When designing studies for humans or

non-human primates, however, one should be cognizant that

in real foraging situations outcomes are seldom composed of

simple categorically correct or incorrect choices (Walton and

Mars, 2007). This, in effect, limits the sort of conclusions

that can be drawn from results. Future studies of dACC

executive function would benefit from designing more ‘‘natural,

stochastic, experimental designs to better capture diverse types of

foraging-related decision-making that the dACC and the other

subdivisions of the PFC evolved to address in humans and other

mammals.

Our findings are relevant to evaluating competing schools

of thought regarding dACC function. Our experimental results

put us in the camp of Kolling et al. (2016b) wherein the

dACC is thought to play a leading role in the regulation of

behavioral adaptation and persistence. Their theory suggests

the influence of decision-making factors such as difficulty or

conflict are secondary to and derived from the dACC’s role in

evaluating behavioral change. Expected value-related, outcome-

related, and model updating-related activity in the dACC all

work together to regulate behavioral adaptation in the face

of updating environments and stimuli. We observed dACC

activity in response to novelty during stimuli presentation and

following negative feedback; events and subsequent activity

that allow the dACC to adjust the behavior of our subjects

and mirror the behavioral updating of Kolling et al. (2016b).

In contrast, while Shenhav et al.’s Expected Value of Control

theory highlights dACC’s role specifying the optimal allocation

of control, they propose that dACC signal strength varies

in a graded fashion depending on the benefit or effort

required in decision making, which was not observed in

our subjects (Shenhav et al., 2013, 2016). In all fairness, the

IED task is not an ideal paradigm for truly teasing apart

these theories, between which there is a remarkable degree

of agreement. Both theories highlight the dACC’s role in

signaling the value of behavioral paradigms to set up future

behavior. These theories do have different implications for

the role of the dACC in the grander scheme of cognition

and executive function: is the dACC a controller separate

from the workings of cognition that prompts sensorimotor

behavior (Shenhav et al., 2016) or is it an integrated part

of a circuit subject itself to outside factors (Kolling et al.,

2016b)? While our work does not necessarily prompt stronger

certainty in this debate, it does provide rare intracortical

electrophysiological recordings that may lead to a greater

understanding of the dACC and its roles in executive

function.

dACC Laterality
This study reports findings from three subjects with bilateral

dACC implantation of DBS electrodes. The landmark used to

target the dACC was the tip of the frontal horn of the lateral

ventricle; a target highly subject to significant interindividual

variability (Boccard et al., 2016). Our MRI data (Figures 1A,B)

indicate that our electrodes were localized to the posterior end of

the rostral cingulate zone (Picard and Strick, 1996; Ridderinkhof

et al., 2004; Amiez et al., 2013). Our surgical procedure assures

that our electrodes are inserted symmetrically. However, there it

is no guarantee that two symmetric coordinates on the medial

walls must be comparable. Many recent studies have shown that

the cingulate cortex has a high rate of interindividual variation

in terms of morphology and functional organization, being

heterogeneous along the dorso-ventral and rostro-caudal axes

(Vogt et al., 1995; Amiez et al., 2013; Scholl et al., 2017). To

justify exploring dACC functional localization and laterality and

to avoid the chance that effects could be explained by simple

intersubject cortex variability, we performed DTI analysis. DTI

is a technique that quantifies the anisotropy of water diffusion in

the brain and allows for the tracing of white matter connectivity

of tissue adjacent to dACC electrode contacts (Basser et al.,

1994). In our subjects, the strongest connectivity at the electrode

location was found to be the left hemisphere’s SMA, with

more modest connectivity found with the right hemisphere’s

SFG and the SMFG (Figures 1C,D). These DTI observations

were consistent with known human and non-human primate

dACC anatomical connectivity with regions of the frontal cortex

and motor areas and confirmed that electrode placement was

bilaterally in the dorsal part of the ACC (Koski and Paus,

2000; Asemi et al., 2015; Neubert et al., 2015). Further, as

connectivity was similar across hemispheres, we can make

claims that our symmetrically implanted electrodes are capturing

signals from comparable (in a connectome sense) regions of the

dACC. Therefore, our MRI and DTI results assure that we can

probe questions of functional subdivisions and laterality in the

dACC.

Functional subdivisions of ACC have been proposed before,

with the evidence of intersubject variability allowing for

additional discrepancies (Polli et al., 2005; Taylor et al., 2006;

Lutcke and Frahm, 2008). While lateralization is not often
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reported in most PFC studies, some groups have observed

cingulate executive function processing specialization in either

the left or the right hemisphere (Konishi et al., 1998; Garavan

et al., 1999, 2003; Menon et al., 2001; Rubia et al., 2001;

Taylor et al., 2006). Our results are in agreement with these

previous studies that investigated hemispheric lateralization of

executive function in the dACC. We were able to show that

individual, separate components could be observed following

the receipt of incorrect feedback in the left hemisphere dACC.

This may indicate that both early and late components would

be expected to be different between the two hemispheres only if

one compared a correct guess at a familiar set of objects vs. an

incorrect guess at a novel set of objects. The presence of theta

and high delta frequency activity in the left and right dACC

during the different phases of the task and theta’s perceived

involvement in a multitude of cognitive processes including

decision making, outcome valence, reaction to novelty, and

recalculation of predictions in medial frontal regions lend further

credence to this theory (Klimesch, 1999; Jensen and Tesche,

2002; Lindsen et al., 2010; Womelsdorf et al., 2010; Cavanagh

and Frank, 2014). Unfortunately, we can only make limited

statements regarding hemisphere dominance in this study as

we had no left-handed subjects. While there is precedence of

discrete dACC lateralization of function with respect to verbal

and figural fluency, the present study presents the first evidence

of dACC lateralization during executive function (Geisseler et al.,

2016).

Limitations
This study examines the electrophysiology underlying executive

function in the dACC of chronic pain subjects. Could the

neurological condition of our subjects influence the results

of our study in any way? Pain has been shown to influence

neurophysiological test performance, including both attentional

and executive functions (Eccleston, 1995; Grisart and Plaghki,

1999; Nicholson et al., 2001; Moriarty et al., 2011). However,

the precise nature of abnormal performance effects on tasks

of executive function in chronic pain patients is unclear and

controversial. When designing a study of cognitive ability in

pain subjects, one factor that should be accounted for is

the influence of psychomotor speed on the chosen cognitive

task (Oosterman et al., 2012). Psychomotor abilities relate

to the relationship between cognitive functions and physical

movements such as the ability to detect and respond to

rapid changes in the environment (Lezak, 2004). Significantly,

psychomotor slowing has been a consistent finding in chronic

pain patients, and at least part of the reported declines in

executive function reflect this slowing (Hart et al., 2000;

Lezak, 2004; Oosterman et al., 2012). This is particularly

crucial in cognitive testing as some of the most commonly

used tests of executive function, such as the Stroop Test, are

strongly dependent on psychomotor speed ability (Lemelin and

Baruch, 1998). We chose the IED task as a neuropsychological

measure, in part, as it is not affected by psychomotor

speed and so avoid the possibility of compromised basic

cognitive processes (Sahakian and Owen, 1992). To further

avoid potential cognitive deficits, patients referred to our

single-center team for chronic pain DBS treatment were screened

with a neuropsychological evaluation that excluded psychiatric

disorders and ensured minimal cognitive impairment (Boccard

et al., 2013, 2014).

CONCLUSION

These results should prove to be a useful addition to the

body of dACC literature that provide insight into the dACC’s

role in executive function. To our knowledge, this study

represents the first bilateral dACC electrode recording study

from awake humans performing a cognitive task with sensory

cue, motor action, and sensory feedback components. Localized

LFP recordings from the ACC in humans are rare, and this

study contributes unique electrophysiological measurements

with high spatial and temporal resolution not obtainable

via fMRI or EEG methods. Collectively, our results indicate

that the human dACC exhibits theta frequency band event-

related LFPs throughout the course of a cognitive task of

executive function. The right hemisphere dACC was active

during the presentation of sensory stimuli, when subjects

began to formulate predictions of behavioral outcomes.

The left hemisphere dACC exhibited two spatiotemporally

separated signals related to processing and responding

to behavioral feedback—an early signal tracking outcome

valence and a late signal related to prediction error. Our

laterality findings are further established through the inclusion

of post-operative CT and DTI analyses that confirm our

electrode placement in the dACC and connectivity uniformity

between hemispheres. Essentially, the human dACC is

active in a lateralized manner during decision-making and

afterwards when outcomes are processed, prompting behavioral

adaptation.
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