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6Instituto de Astrof́ısica de Andalućıa (IAA-CSIC), Glorieta de la Astronomı́a s/n, E-18008, Granada, Spain
7University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Physics, Unska 3, 10000 Zagreb, Croatia
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ABSTRACT

Superluminous supernovae (SLSNe) are at least ∼5 times more luminous than common supernovae
(SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mecha-
nisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an
internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated
jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with
the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO’s Very Large
Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu,
a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of
circularly polarized light, however, these non-detections do not rule out the magnetar scenario as
the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected
circular polarization as a function of distance from the magnetar, which decreases very fast. Addi-
tionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that
the photosphere near peak is close to spherical symmetry.

Key words: supernovae: general – supernovae: individual: OGLE16dmu, PS17bek –
polarization

1 INTRODUCTION

Superluminous supernovae (SLSNe) may include a few re-
maining examples of deaths of extremely massive stars that
in the early universe may have played an important role for

⋆ E-mail: acikota@eso.org
† Alexander von Humboldt Fellow

re-ionisation of the Universe, and are therefore an important
class of objects to understand. They are extremely bright, as
the name would imply, and powering such a luminous display
is a challenge. Peak luminosities of SLSNe are greater by a
factor of ∼5 than peak luminosities of type Ia supernovae,
and ∼10-100 times greater than broad-lined type Ic and nor-
mal stripped envelope supernovae. They are separated into
two classes: the hydrogen poor SLSN-I, which have quite
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featureless early spectra; and hydrogen-rich SLSN-II, which
are thought to occur within a thick hydrogen shell and are
therefore difficult to investigate (Gal-Yam 2012).

Woosley et al. (2007) suggest that collisions between
shells of matter ejected by massive stars, that undergo an
interior instability arising from the production of electron-
positron pairs might explain such luminous SLSNe-I (see
also Woosley 2016) or a pair-instability explosion of a very
massive star (with a core of ≥ 50M⊙ , e.g. Gal-Yam et al.
2009; Dessart et al. 2013). The luminosity may also be pro-
duced by interaction between the ejecta and H-poor circum-
stellar material (Chatzopoulos et al. 2012; Vreeswijk et al.
2017; Sorokina et al. 2016).

Another possibility is that SLSNe-I are powered by
an internal engine, such as a magnetar (Kasen & Bildsten
2010; Woosley 2010; Inserra et al. 2013; Nicholl et al.
2013; Chen et al. 2015) or an accreting black hole
(Dexter & Kasen 2013). Kasen & Bildsten (2010) have
shown that energy deposited into an expanding supernova
remnant by a highly magnetic (B ∼ 5 × 1014 G) fast spinning
neutron star can substantially contribute to the SLSN lumi-
nosity and explain the brightest events ever seen. They cal-
culated that magnetars with initial spin periods < 30 ms can
reach a peak luminosity of 1042-1045 erg s−1 (MBol=-16.3
to -23.8 mag), because of the rotational energy deposition
from magnetar spin-down.

In this work, we first time undertake circular polarime-
try of Superluminous Supernovae in the visible part of the
spectrum. We aim to test the magnetar scenario using cir-
cular polarimetry. Our hypothesis is that if there is a strong
magnetic field, we would expect to observe circularly polar-
ized light, attributed to the monotonic gray-body magnetoe-
missivity which has been theoretically predicted by Kemp
(1970), and demonstrated in the laboratory. The challenge
for the magnetar observations is that the energy from the
magnetar is reprocessed by the ejecta so that the bulk of the
luminosity is arising from thermal processes (as is manifest
in the spectra). In the thermalisation process the polariza-
tion of the original light is destroyed, however, the magne-
tar’s magnetic field will remain.

Circular polarization has already been observed in
white dwarfs with strong magnetic fields. For instance,
Kemp et al. (1970), and Angel et al. (1972) observed strong
circular polarization, 1-3%, in visible light, and 8.5-15% in
the infrared (Kemp & Swedlund 1970) of Grw+70◦8247. For
this white dwarf they estimate a mean projected B field of
1 × 107 G.

Another possible origin of circularly polarized light may
be an electron pitch-angle anisotropy in a relativistic jet,
for instance from an accreting black hole, as suggested by
Wiersema et al. (2014). They observed circular polarization
in the afterglow of Gamma-ray burst 121024A, which are
believed to be powered by a collimated relativistic jet from
an accreting black hole.

In section § 2 we describe the targets and observations,
in § 3 the methods, in § 4 we show the results, which we dis-
cuss in § 5, and the summary and conclusions are presented
in section § 6.

2 TARGETS AND OBSERVATIONS

We obtained circular polarimetry of two SLSNe-I at sin-
gle epochs: OGLE16dmu at 101.3 days past peak (rest
frame), and PS17bek at peak brightness. Additionally, we
obtained linear polarimetry of PS17bek at four different
epochs (−4.0,+2.8,+13.4 and +21.0 days relative to peak
brightness in rest frame).

All observations in this study were acquired with the
FOcal Reducer and low dispersion Spectrograph (FORS2,
Appenzeller 1967; Appenzeller et al. 1998; ESO 2015)
mounted at the Cassegrain focus of the UT1 Very Large
Telescope (VLT), under the ESO program ID 098.D-
0532(A), using the MIT CCD chip. The observations were
obtained in the imaging polarimetry mode (IPOL). Cir-
cular polarimetry was obtained, without any filters, with
two different quarter-wave retarder plate (QWP) angles of
θ = ±45◦, but in two different rotations of the instrument
(0◦ and 90◦) in order to remove possible cross-talks between
linear and circular polarization (Bagnulo et al. 2009).

Linear polarimetry of PS17bek was obtained through
the V HIGH FORS2 standard filter (λ0 = 555 nm, FWHM
= 123.2 nm), at four half-wave retarder plate (HWP) angles
(0,22.5,45,67.5◦).

A observation log is given in Table 1.

2.1 OGLE16dmu

OGLE16dmu was discovered on September 23, 2016 (MJD
57654.84) (Wyrzykowski et al. 2016), and classified as a
SLSN-I. The classification spectrum is shown in Fig. 1. It
is apparently hostless at a redshift z∼0.426 (Prentice et al.
2016). From GROND observations (Chen et al., in prepara-
tion), we determined an apparent magnitude at peak of mr

= 19.41 mag in November 11, 2016 (MJD 57698.41). The
total Galactic reddening in the direction of OGLE16dmu is
E(B − V ) = 0.03 mag (Schlafly & Finkbeiner 2011), which
corresponds to Ar ∼ 0.07 mag assuming a Fitzpatrick
(1999) extinction law and RV=3.1. The Galactic reddening-
corrected absolute brightness is Mr = -22.2 mag.1

From the rest-frame light curve, we estimate the rate of
decline at 30 days past maximum (Inserra & Smartt 2014)
to be DM30 ∼ 0.22 mag. Alternatively, using the metric de-
scribed in Nicholl et al. (2015a) (the time to reach from max-
imum light, fmax , to fmax/e), we estimate τdec ∼ 70.6 days.
Thus, this is a bright and slowly-evolving SLSN-I, similar to
PTF12dam or SN 2015bn.

2.2 PS17bek

PS17bek is a SLSN-I at z=0.30992 ± 0.0003 (see Fig. 1,
PESSTO classification).

It was discovered at α=10h47m41.90s and δ=
+26◦50’06.0” on MJD=57802.4 (2017 Feb 18.4) and
it is possibly associated to the galaxy GALEXMSC
J104742.19+265006.8. The object was discovered when
this region of sky was observed by Pan-STARRS
(Chambers et al. 2016; Smartt et al. 2016) in response to a

1 we assume a flat universe with H0 = 67.8 km s−1 Mpc−1 and
ΩM = 0.308 (Planck Collaboration et al. 2016).
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Figure 1. PESSTO classification spectra of OGLE16dmu (mid-
dle blue spectrum) and PS17bek (top red spectrum), compared
to LSQ14bdq (bottom green spectrum, Nicholl et al. 2015b).
The inset shows the [OIII] and Hβ emission lines in the spec-

trum of PS17bek, used for the redshift determination. PS17bek
and LSQ14bdq have been plotted with an constant offset of
+4×10−17, and -1×10−16 respectively.

possible low significance gravitational wave signal provided
by LIGO-Virgo (Abbott et al. 2016), but this transient was
not considered related to that event. As part of the Public
ESO Spectroscopic Survey for Transient Objects (PESSTO),
we took a a classification spectrum (see Smartt et al. 2015
for details of the instrumentation, calibration an data ac-
cess).

We determined an apparent magnitude at peak of mr =
19.8 mag (Cano et al., in preparation) at MJD = 57814.58
days. The Galactic reddening in the direction of PS17bek is
E(B − V ) = 0.03 mag (Schlafly & Finkbeiner 2011), which
corresponds to Ar ∼ 0.07 mag. Thus, the Galactic reddening-
corrected absolute magnitude of PS17bek is Mr ∼ -20.7 mag.

For PS17bek we estimate a decline rate of DM30 ∼ 1.62
mag or tdec ∼ 23 days. Thus, this is a fast-declining SLSN-I,
similar to SN 2010gx or SN 2011ke. In fact, the measured de-
cline rate implies that PS17bek is one of the fastest evolving
SLSNe-I (see Inserra et al. 2018b). Starting from Gal-Yam
(2012), it remains an unresolved issue if H-poor SLSNe can
be divided into more subclasses (e.g. Type I/Type R or
fast/slow) and whether this division has physical implica-
tions (Inserra et al. 2018b; De Cia et al. 2017; Quimby et al.
2018). Irrespective, it remains an advantage that our exper-
iment probes representative SLSNe from both sub-classes.

3 DATA PROCESSING AND METHODS

The data consist of two science frames per exposure: the
upper CHIP1 and lower CHIP2, which correspond to two
mosaic-parts of the two CCD detectors. In IPOL mode, the
image is split by the Wollaston prism into an ordinary (o)
beam and an extra-ordinary (e) beam, and the multi-object
spectroscopy (MOS) slitlets strip mask is inserted to avoid
the beams overlapping. The targets were observed at the
bottom of CHIP1 (upper frame), centered in the optical axis
of the telescope. The bottom strip in the upper frame is

the extra-ordinary beam. The Wollaston prism is usually
aligned with the north celestial meridian except when the
instrument is rotated by 90◦ during the second sequence of
circular polarimetry, when it was aligned towards East.

All frames were bias subtracted using the correspond-
ing calibration bias frames. A flat-field correction was not
performed because the flat-field effect gets canceled out, be-
cause of the redundancy introduced by multiple HWP and
QWP angles, for linear and circular polarimetry respectively
(ESO 2015; Patat & Romaniello 2006).

To determine the polarization of our targets, we con-
ducted aperture photometry of sources in the ordinary and
extra-ordinary beams using the IRAF’s DAOPHOT.PHOT
package. An optimal aperture radius of ∼2 FWHM was used.

3.1 Circular polarimetry

Following the FORS2 user manual (ESO 2015), the amount
of circular polarization is given as:

V =
1

2

[(

f o − f e

f o + f e

)

θ=45◦
−

(

f o − f e

f o + f e

)

θ=−45◦

]

(1)

where f o and f e are the measured flux in the ordinary and
extra-ordinary beam respectively, for both quarter-wave re-
tarder plate angles of θ = ±45◦. The circular polarization
error was calculated by error propagation of the flux errors.

To minimize a possible linear-to-circular polarization
cross talk (Bagnulo et al. 2009), we calculate the average
of the Stokes V measured at two instrument position angles,
φ, and φ+90◦:

PV =
Vφ + Vφ+90◦

2
, (2)

which leads to cancellation of the spurious signal
(Bagnulo et al. 2009).

3.2 Linear polarimetry

The Stokes Q and U parameters for PS17bek and a number
of field stars were derived using the standard approach, as
described in Leloudas et al. (2015); that is via the Fourier
transformation of normalized flux differences measured at
four half-wave retarder plate angles of 0, 22.5, 45 and 67.5◦

(see also the FORS2 manual, ESO 2015).
We correct the polarization position angles of the raw

measurements for the half-wave plate zero angle chromatic
dependence (Table 4.7 in ESO 2015), and for the instru-
mental polarization, which increases with distance from the
optical axis (Fig. 5 in Patat & Romaniello 2006). In addi-
tion, we used 7 field stars to determine the interstellar po-
larization (ISP) by calculating their barycenter in the Q–U

plane for each epoch (Fig. 2). The stars give a stable and
self-consistent result with time:
QI SP = 0.066 ± 0.004 %

UI SP = -0.007 ± 0.018 %.
Thus, PI SP = 0.066 ± 0.004 %. This value is lower than the
expected maximum interstellar polarization, pmax = 9.0 ×
E(B − V ), determined by Serkowski et al. (1975), using the
Galactic reddening in the direction of PS17bek, E(B − V ) =
0.027 ± 0.004 mag (Schlafly & Finkbeiner 2011).

Additionally, we do a polarization bias correction, fol-
lowing Patat & Romaniello (2006).
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Table 1. Observations log

Name UT Date and Time Filter λ/2-plate λ/4-plate Wollaston Exposure Seeing
angle [◦ ] angle [◦ ] angle [◦ ] [s] [”]

PS17bek 2017-02-25 05:48:09 None . . . 315 0 200 0.61
PS17bek 2017-02-25 05:53:59 None . . . 45 0 200 0.62
PS17bek 2017-02-25 06:23:44 None . . . 405 90 200 0.67
PS17bek 2017-02-25 06:28:02 None . . . 135 90 200 0.61

PS17bek 2017-02-25 06:42:04 v HIGH 0 . . . 0 650 0.67
PS17bek 2017-02-25 06:53:37 v HIGH 45 . . . 0 650 0.63

PS17bek 2017-02-25 07:05:03 v HIGH 22.5 . . . 0 650 0.66
PS17bek 2017-02-25 07:16:35 v HIGH 67.5 . . . 0 650 0.55

PS17bek 2017-03-06 05:07:26 v HIGH 0 . . . 0 520 0.71
PS17bek 2017-03-06 05:16:48 v HIGH 45 . . . 0 700 0.60
PS17bek 2017-03-06 05:29:04 v HIGH 22.5 . . . 0 700 0.59
PS17bek 2017-03-06 05:41:26 v HIGH 67.5 . . . 0 700 0.50

PS17bek 2017-03-20 01:45:38 v HIGH 0 . . . 0 700 0.64
PS17bek 2017-03-20 01:58:02 v HIGH 45 . . . 0 700 0.69
PS17bek 2017-03-20 02:10:17 v HIGH 22.5 . . . 0 700 0.70

PS17bek 2017-03-20 02:22:40 v HIGH 67.5 . . . 0 700 0.86

PS17bek 2017-03-20 02:36:04 v HIGH 0 . . . 0 700 0.68
PS17bek 2017-03-20 02:48:27 v HIGH 45 . . . 0 700 0.67
PS17bek 2017-03-20 03:00:42 v HIGH 22.5 . . . 0 700 0.77
PS17bek 2017-03-20 03:13:05 v HIGH 67.5 . . . 0 700 0.81

PS17bek 2017-03-30 02:10:19 v HIGH 0 . . . 0 500 0.69
PS17bek 2017-03-30 02:19:23 v HIGH 45 . . . 0 500 0.72
PS17bek 2017-03-30 02:28:18 v HIGH 22.5 . . . 0 500 0.68
PS17bek 2017-03-30 02:37:21 v HIGH 67.5 . . . 0 500 0.56

PS17bek 2017-03-30 02:46:59 v HIGH 0 . . . 0 500 0.47
PS17bek 2017-03-30 02:56:02 v HIGH 45 . . . 0 500 0.54

PS17bek 2017-03-30 03:04:57 v HIGH 22.5 . . . 0 500 0.58
PS17bek 2017-03-30 03:13:60 v HIGH 67.5 . . . 0 500 0.81

OGLE16dmu 2017-03-30 23:59:36 None . . . 315 0 220 0.74
OGLE16dmu 2017-03-31 00:04:14 None . . . 45 0 220 0.85
OGLE16dmu 2017-03-31 00:18:00 None . . . 405 90 220 0.84
OGLE16dmu 2017-03-31 00:22:38 None . . . 135 90 220 0.75

4 RESULTS

We undertook circular polarimetry for two SLSNe-I:
OGLE16dmu 101.3 days after peak brightness (in rest
frame), and PS17bek 4.0 days before peak brightness.

The circular polarization of both SLSNe is consistent
with zero. We measured a circular polarization of PV=-
0.55 ± 1.31 % for OGLE16dmu, and PV=-0.21 ± 0.18 % for
PS17bek. The results are summarized in Table 2. The signal-
to-noise ratio of PS17bek observed at different instrument
rotation angles φ of 0 and 90 degrees is S/N∼272 and ∼172
respectively, while for OGLE16dmu S/N∼62 (at φ=0 deg)
and ∼59 (at φ=90 deg), which explains the large uncertain-
ties of the calculated polarization2.

Figure 3 shows a section of the FORS2 imaging po-
larimetry field for OGLE16dmu and PS17bek taken with
different instrument position angles. It is shown that the

2 The absolute error of P is related to the signal-to-noise ratio
as σP = 1√

N /2 SNR
, where N is the number of waveplate angles

used (Patat & Romaniello 2006).

measured polarization of our targets is consistent with the
polarization of field stars which are expected to be unpolar-
ized. Furthermore, the fainter sources with lower S/N have
larger polarization values, but also higher uncertainties.

The ISP-corrected linear polarization measurements of
PS17bek are given in Table 3, and shown in Figure 4. At
least for the first 3 epochs (-4, +2.8, +13.4 relative to peak
brightness) the linear polarization of the SLSN is very sim-
ilar to one of the field stars and consistent with zero in Q

and U. Thus, there is no significant linear polarization at
these phases. The fourth epoch (21.0 days past maximum
brightness) might indicate a larger polarization (∼0.8 %)
but the result is not highly significant. The SNR at the last
phase is 154 (since the SN has faded), which is significantly
lower than at -4 days (SNR∼384), +2.8 days (SNR∼384) and
+13.4 days (SNR∼282) relative to peak brightness. Consid-
ering that the uncertainty of the last phase is ∼0.5%, this is
a 2σ result.
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Table 2. Circular polarimetry results

SLSN Phase V0◦ (%) V90◦ (%) PV (%)

PS17bek -4.0 d -0.33 ± 0.25 -0.08 ± 0.27 -0.21 ± 0.18
OGLE16dmu +101.3 d -0.58 ± 1.30 -0.52 ± 2.28 -0.55 ± 1.31
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Figure 2. Q–U plane for all 4 epochs of PS17bek. Comparison
stars are colored light green. In each panel, a dark green cross
indicates the position of the ISP, calculated as the barycenter of
the stars at each epoch. The red cross is the ISP averaged over all

epochs, which coincides with the dark green cross in the individual
epochs. The original measurement of the SN is shown in magenta

and the ISP corrected value in blue.

Table 3. ISP corrected linear polarimetry results for PS17bek

Phase Q (%) U (%) P∗ (%) φ (◦)

-4.0 -0.02 ± 0.18 0.05 ± 0.18 0.0 ± 0.18 56.3 ± 97.1
+2.8 0.1 ± 0.18 -0.13 ± 0.18 0.0 ± 0.18 -26.5 ± 31.6
+13.4 -0.11 ± 0.25 -0.06 ± 0.25 0.0 ± 0.25 -74.6 ± 56.8
+21.0 -0.32 ± 0.46 0.85 ± 0.46 0.19 ± 0.46 55.4 ± 14.5

∗ polarization-bias corrected

5 DISCUSSION

5.1 Circular polarimetry of OGLE16dmu and

PS17bek

In the magnetar scenario, a rapidly rotating magnetar is
born during a core-collapse SN explosion. The explosion
ejects many solar masses of material, which expands while
the magnetar spins down. The spin-down injects ∼1051 ergs
into the ejected material, that has since expanded to a dis-
tance of ∼100 AU, and heats it up, which then radiates
the energy away (Woosley 2010; Kasen & Bildsten 2010;
Inserra et al. 2013; Smith 2015).

The idea behind observing a target at early phases was
to possibly detect an imprint of the strong magnetic field in
the ejected material, while the aim of observing a target at
late phases was to observe emitted light originating from the

photosphere which moves inwards with time, closer to the
magnetar, as the ejecta expands and becomes transparent.

Kemp (1970) predicted that a ”gray-body” model in a
magnetic field will emit a fraction of circularly polarized
light. The degree of polarization, q, is proportional to the
emitting wavelength, λ, and the strength of the magnetic
field, B (see Eq. 7 and 16 in Kemp 1970), and is given by:

q(λ) ≃ −
λeB

4πmc
, (3)

where e and m are the electron’s charge and mass, respec-
tively, and c is speed of light.

However, since the magnetic field is decreasing with dis-
tance, proportional to 1/distance3, the polarization will drop
very quickly. Assuming a magnetic field B0 at the surface of
a magnetar with radius R0, the maximum magnetic field
decreases as a function of distance, r, as following:

B(r) = B0

(

R0

r

)3

. (4)

Figure 5 shows the magnetic field, B, and the circular
polarization attributed to gray-body magnetoemissivity, q,
as a function of distance, calculated in the optical (λ = 0.67
µm), for three different surface magnetic strengths, B0, for
a magnetar of radius R0 = 10 km.

For example, assuming a surface magnetic field strength
of B0=5 × 1015 G, the magnetic field strength drops to
4×104 G at a distance of only 5 ×104 km. The degree of
polarization produced by gray-body magnetoemissivity at
that distance is q∼ 0.01 %, which is beyond our detection
capabilities.

Furthermore, our observations were taken without any
filter in order to achieve a high SNR in a reasonable time,
while the absolute degree of circular polarization produced
by gray-body magnetoemissivity increases with wavelength
(see Eq. 3). Therefore, it is generally recommended to ob-
serve circular polarization at infrared wavelengths.

Despite a non-detection of circular polarization in
SLSN-I, the magnetar scenario cannot be excluded as the
internal engine of SLSNe, because in order to observe cir-
cularly polarized light attributed to gray-body magnetoe-
missivity, it is necessary that the light is emitted within
strong magnetic fields, close to the magnetar, which is not
the case in the magnetar scenario as described e.g. by
Kasen & Bildsten (2010), in contrast to the observed cir-
cular polarization in white dwarfs (e.g. Kemp et al. 1971;
Rich & Williams 1973), where the observed light is emitted
from the white dwarf’s surface.

Another possibility for the lack of observed circular po-
larization is that OGLE16dmu and PS17bek are not driven
by an internal engine at all. For instance, other possible
scenarios that could explain such a high luminosity is a
pair-instability supernova (PISN, e.g. Woosley et al. 2007;
Gal-Yam et al. 2009; Dessart et al. 2013; Woosley 2016),
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Figure 3. Sections of the ordinary beams for single imaging polarimetry exposures for OGLE16dmu (left) and PS17bek (right). The top

and bottom panels are exposures taken with the instrument rotated by 0◦ and 90◦ respectively. The red circles mark the targets, while
green circles mark comparison stars in the field. The radii of the circles correspond to the absolute circular polarization, as indicated in
the legend.
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Figure 4. Stokes Q–U plane for PS17bek observed at four
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ple), +2.8 (blue), +13.4 (green) and +21.0 (yellow) days relative
to peak brightness. The dashed concentric circles of equal polar-
ization have a radius of 0.5 % and 1.0 % respectively.

or a normal SN explosion interacting with circumstellar
shells (e.g. Chatzopoulos et al. 2012; Vreeswijk et al. 2017;
Sorokina et al. 2016). In case of a PISN, which requires high
amounts of 56Ni to explain the luminosity, the light curves
are expected to evolve slowly, which likely rules out this sce-
nario for PS17bek that has one of the fastest evolving light
curves (Chen et al., in preparation). However, it is beyond
the scope of this short paper to analyze the light curves for
those SLSNe.
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Figure 5. Maximum magnetic field strength (black lines) and
absolute circular polarization, q (red lines), in the optical (λ=0.67

µm) as a function of distance, r, for three different initial surface
magnetic field strengths, B0, at R0=10 km.

5.2 Linear polarimetry of PS17bek

Intrinsic linear polarization of SNe is a measure of the su-
pernova’s photosphere departure from spherical symmetry
projected on the sky. If the projection of the photosphere is
not symmetric, more photons will be scattered by electrons
along the photosphere’s major axis than along the minor
axis, which will produce net-polarization in the continuum
(see e.g. Hoflich 1991; Kasen et al. 2003; Bulla et al. 2015).

Because SLSNe are faint, and thus it is hard to under-
take polarimetry which requires high SNR, only a few SLSNe
have been studied using polarimetry (Leloudas et al. 2015;
Inserra et al. 2016, 2018a; Leloudas et al. 2017; Bose et al.
2018).

LSQ14mo, also a fast-declining SLSN-I (as PS17bek),
did not show evidence for significant polarization or po-
larization evolution from −7 and up to +19 days with re-
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spect to maximum (Leloudas et al. 2015). In the contrary,
the slowly-evolving SN 2015bn did show an increase in po-
larization with time, that was attributed to the photosphere
receding to inner layers of the explosion that are more asym-
metric. Inserra et al. (2016) obtained the first spectropolari-
metric observations of a SLSN-I, at −24 and +28 days, fur-
ther showing that the geometry was consistent with an ax-
isymmetric configuration (that could be consistent with a
magnetar scenario). The polarization increase was confirmed
by Leloudas et al. (2017) who obtained multi-epoch imaging
polarimetry between −20 and +46 days, showing that the in-
crease was coincident with changes in the optical spectrum.

The result obtained for PS17bek is fairly consistent with
the picture obtained from previous events. Similarly to the
other SLSNe-I, observed around peak, no significant polar-
ization is detected. Our last observation (at +21 days) could
be consistent with an increase in polarization but the signif-
icance of this result is below 2σ. Either fast-evolving SLSNe
(PS17bek and LSQ14mo) follow a different geometrical evo-
lution than slowly-evolving SLSNe, or simply the available
data, due to a combination of low SNR and lack of data at
late phases, are not able to significantly detect an increase
in polarization.

6 SUMMARY AND CONCLUSIONS

In this work, we investigated circular polarization of two
hydrogen poor superluminous supernovae for the first time,
using FORS2 at the VLT. Our main results can be summa-
rized as follows:

(i) OGLE16dmu is a slowly evolving hydrogen poor
SLSN. We undertook circular imaging polarimetry at +101.3
days past peak (in rest frame r band) and found no evidence
of circular polarization.

(ii) PS17bek is a fast evolving SLSN-I. We undertook cir-
cular polarimetry at -4.0 days relative to the peak brightness
(in rest frame r band), and found no evidence of circular po-
larization.

(iii) Additionally, PS17bek was observed in linear po-
larimetry mode at four phases (-4.0, +2.8, +13.4 and +21.0
days), and shows no significant linear polarization.

(iv) We cannot exclude the magnetar scenario because
of a non-detection of circular polarization, which, due to the
rapid decrease in the strength of the magnetic with distance,
would only be detectable at small radii close to the surface
of the magnetar.

(v) We note that future attempts to measure the strength
of magnetic fields using circular polarimetry should be made
in the infrared, where the expected degree of circular polar-
ization produced by gray-body magnetoemissivity is higher.

(vi) It is not likely that we will observe circular polar-
ization produced by gray-body magnetoemissivity, because
(assuming the magnetar scenario) the bulk of the luminos-
ity arises from thermal processes in the ejecta, which occurs
at large distances from the magnetar, where the magnetic
fields are not strong enough to produce significant circular
polarization, however, such observations are valuable, be-
cause they may also allows us to probe for other sources of
circular polarization, for example relativistic jets.
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