

Version: Published Version

Article:

停在

https://doi.org/10.1002/ajpa.23682

Reuse

Takedown

?救救救救救救救救救救救救救救救救救救救

RESEARCH ARTICLE

් BOOTE

¹School of Archaeological and Forensic Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom

²Department of Archaeology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

³Centre for Archaeology and Anthropology, Bournemouth University, Dorset, United Kingdom

⁴Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

⁵Department of Archaeology, University of Durham, Durham, United Kingdom

Correspondence

Julia Beaumont, School of Archaeological and Forensic Sciences, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK. Email: j.beaumont6@bradford.ac.uk

Funding information

Natural Environment Research Council, Grant/ Award Number: NE/F018096/2 ; University of Bradford

Abstract

KEYWORDS

in utero, maternal health, physiological stress, stunting, weaning

1 | INTRODUCTION

š satus satus

of infant mortality, birth-spacing, and maternal occupation (for a summary, see Tsutaya & Yoneda, 2015).

American Journal of PHYSICAI ANTHROPOLOGY

Fuller, Fuller, Harris, & Hedges, 2006). However, because of factors such as slow turnover of bone in both mother and infant, and the unknown effect of any disease or nutritional stress on the δ^{15} N values of infants who have died, the assumption that the data from infant bone collagen accurately reflect diet in the individual, and can be used as a proxy for the population as a whole, seems increasingly unsafe (Beaumont, Montgomery, Buckberry, & Jay, 2015; DeWitte & Stojanowski, 2015). The use of incremental dentine collagen to assess the childhood diet of both infants who died and adults who survived their early years has produced isotope profiles which can show detailed temporal changes in the isotope ratios: moreover, the magnitude of δ^{15} N values can be related not only to dietary change but also to periods of physiological stress (Armit, Shapland, Montgomery, & Beaumont, 2015; Beaumont et al., 2015; Henderson, Lee-Thorp, & Loe, 2014; Montgomery et al., 2013). During periods of undernutrition, the body can enter a catabolic state during which an individual will use amino acids from their own body tissues to synthesise new proteins such as collagen. This will have the effect of increasing the $\delta^{15}N$ values in the same way as a trophic level shift (and see discussion in Katzenberg & Lovell, 1999). A recent publication has also shown the relationship between the isotope ratios in breastmilk and the maternal and infant fingernails, albeit in a single modern pair (Herrscher, Goude, & Metz, 2017). This provides evidence for the stability of the δ^{15} N values in breastmilk in this well-nourished pair, with a smaller than expected shift in $\delta^{15}N$ between maternal and infant fingernails. However, there are significant changes in the $\delta^{13}C$ of breastmilk which decreased over the period of breastfeeding, and which could be related to the increase in storage of fat during pregnancy and recycling of maternal fat stores during breastfeeding. Fat stores are built up during the first two trimesters to be available for the fetus during the third trimester (Butte, Hopkinson, Wong, Smith, & Ellis, 2000) which may in turn alter the mother's δ^{13} C. Cameron (2012) reports a study of 36 fetuses which found a dramatic increase in the average weight of fat between 30 and 40 weeks gestation from 30 g to 430 g, interpreted as a high-energy store for the post-partum period. Where fat stores have been recycled this produces a fall in the $\delta^{13}C$ as described by Neuberger, Jopp, Graw, Püschel, and Grupe (2013), Lehn, Rossmann, and Graw (2015), and Cherel, Hobson, Bailleul, and Groscolas (2005) and which was seen in the dentine collagen of juveniles from Kilkenny workhouse during starvation (Beaumont & Montgomery, 2016).

A recent study by Beaumont, Gledhill and Montgomery (2014) has shown that the δ^{13} C and δ^{15} N values of human dentine collagen can be measured either using the denatured and lyophilized (freeze-dried) product, or by freeze-drying a smaller section of the demineralized collagen. In that study, each dentine section was divided into two: one portion which was denatured/lyophilized and a second which was only frozen and freeze-dried prior to analysis. The δ^{13} C and δ^{15} N values of the two differently-treated portions of the section are comparable, and the quality parameters for the *C*:N ratio remained within the limits deemed acceptable by DeNiro (1987) even when using dentine from teeth where the preservation was poor (Beaumont et al., 2014). This means that a much smaller sample than previously can be reliably used to measure δ^{13} C and δ^{15} N of incremental dentine

with even greater temporal resolution, enabling a detailed analysis of perinatal diet, breastfeeding and weaning.

This study is the first time that a previously-published bone collagen δ^{13} C and δ^{15} N analysis of breastfeeding and weaning has been reinvestigated using the incremental dentine from the same individuals. The skeletal remains of the individuals in question derive from the Anglo-Saxon cemetery site of Raunds Furnells and are curated at the Biological Anthropology Research Centre, University of Bradford. The human remains from this site have been the subject of a number of anthropological studies (Craig, 2005; Craig & Buckberry, 2010; Hoppa, 1992; Lewis, 2002; Powell, 1996, 113-124) including previous investigation of δ^{13} C and δ^{15} N (Haydock, Clarke, Craig-Atkins, Howcroft, & Buckberry, 2013; Howcroft, 2008). In the latest study by Haydock et al. (2013), a significant quantity of δ^{13} C and δ^{15} N data were produced from bone collagen samples taken from 20 adults and 59 children. The site has been the subject of intensive research interest because of the large number of burials and good bone preservation of the individuals excavated (n = 361), of which a substantial proportion are the unusually well-preserved remains of juveniles (n = 162; Boddington, 1996; Craig & Buckberry, 2010; Hadley & Buckberry, 2005). Raunds Furnells also benefits from a well-understood site chronology. Radiocarbon dates for the graveyard give a combined date range of cal AD 978-1040 to two sigma (Boddington, 1996, 72); thus, it is apparent that the cemetery was founded in the 10th century and went out of use before the Norman Conquest (AD 1066).

The isotope data from Howcroft (2008) and Haydock et al. (2013) are consistent with other contemporary inland Anglo-Saxon sites and suggest a diet mainly composed of C_3 plants and terrestrial animals, with some input from freshwater fish (Mays & Beavan, 2012).

1.1 | Nutrition and growth

ocost, no negati n

slows down and waits for better times" (Tanner, 1989,130). Human growth has been shown to occur in a saltatory pattern: short intermittent episodes which vary by anatomical site. Each person will have individual episodes of measurable growth (saltations) punctuated by periods of no growth (stasis) the patterns of which are mediated by genetic and environmental factors. The final stature of the individual is the accumulation of different frequency of saltations and the amount of growth during each event (Lampl, 2012). This allows for "catch-up growth" if conditions improve. Stature has been shown to be sensitive to both environmental conditions (such as nutrition and disease) and physiological factors (Jantz & Owsley, 1984) and stunted growth is one of the main complications that can result from chronic inflammation and infection in juvenile individuals (Pinhasi, Teschler-Nicola, Knaus, & Shaw, 2005). In contrast, dental development is not significantly affected by environmental impacts. It has, for example, been demonstrated that no form of malnutrition-neither acute nor chronic-has any measurable impact on the timing of tooth formation (Elamin & Liversidge, 2013: Ives, 2015: Lewis, 2007, 38). Thus, a comparison of skeletal age and dental age in juveniles can be used as a measure of environmental stress, as discussed in Mays, Brickley, and Ives (2008). The Raunds Furnells individuals have been the subject of several previous studies which examined osteological markers of biological stress including Harris lines, enamel hypoplasia, cribra orbitalia, and porotic hyperostosis (Craig & Buckberry, 2010; Haydock et al., 2013; Lewis, 2002; Ribot & Roberts, 1996). These studies conclude that this population experienced high levels of biological stress during their lives.

2 | MATERIALS AND METHODS

டை

2.1 | Measuring in utero dentine development

Micro-CT scanning of deciduous teeth from modern individuals of known-age from the Stack collection (Wellcome collection at the Royal College of Surgeons, London) allowed the measurement of the depth of dentine which had developed before death. These measurements showed that all deciduous teeth had formed at least 0.5 mm of dentine prior to 40 weeks gestation, thus this first-forming section of dentine is considered to represent pre-natal δ^{13} C and δ^{15} N among the archaeological sample in this study (Figure 1). Scanning was carried out at the Microscopy and Cellular Imaging Facility, University of Aberdeen using a SkyScan-1,072 high-resolution desk-top micro-CT

TABLE 1 Tooth notation, developmental stage of teeth, and age at death of individuals from Raunds-Furnell

WILEY

Site	Skeleton number	Tooth notation	Tooth selected	Estimated skeletal age in years
RAUNDS	5251	61	UL DI1	0.0
RAUNDS	5082	71	L DI1	1.3
RAUNDS	5109	51	UR DI1	2.0
RAUNDS	5140	61	UL DI1	2.0
RAUNDS	5273	54	UR DM1	2.0
RAUNDS	5012	61	UL DI1	2.5
RAUNDS	5102	82	LR DI2	2.5
RAUNDS	5292	52	UR DI2	2.5
RAUNDS	5005	85	LR DM2	3.0
RAUNDS	5023	71	LL DI1	3.0
RAUNDS	5264	74	LL DM1	3.5
RAUNDS	5345	55	UR DM2	3.5
RAUNDS	5354	54	UR DM1	3.5
RAUNDS	5170	84	LR DM1	4.0
RAUNDS	5212	73	LL DC	4.0
RAUNDS	5070	61	UR DI1	5.0
RAUNDS	5135	65	UL DM2	5.5
RAUNDS	5338	26	ULM1	6.0
RAUNDS	5125	65	UL DM2	7.0
RAUNDS	5154	16	UR M1	18-25
RAUNDS	5187	41	LRI1	18-25
RAUNDS	5021	41	LR I1	25-35
RAUNDS	5093	12	UR I2	25-35
RAUNDS	5239	42	LR I2	25-35

system. Teeth were scanned at 100 kV/98.4uA at a magnification of \times 23, giving a pixel resolution of 13.31 µm. Back projection images were reconstructed using NRecon software, viewed in Dataviewer and shown in greyscale (Figure 1).

2.2 | Stable isotope analysis

A single tooth was taken from each of the 18 juveniles and 5 adults. πisi molar (M1) for the remaining juvenile individual (for whom no deciduous teeth were available). Deciduous teeth, and most M1 teeth, begin to form before 40 weeks gestation (AlQahtani, Hector, & Liversidge, 2010). The deciduous teeth grow during the first 2.5 years of life, thus recording the isotope ratios from in utero to early childhood and act-incisor or M1 tooth was sampled from each of the adults and was chosen based on the lack of wear on the incisal/cuspal tip (see Table 1). The permanent M1 continues to form until the age of 8.5 years ± 0.5 years. Permanent incisors begin to form in the first 3–6 months of life and continue to grow until 6-10 years (depending on the tooth). Thus, these teeth represent tissue from the earliest period of childhood available in the older child or adult (AlQahtani et al., 2010; AlQahtani, Hector, & Liversidge, 2014). In some cases, the teeth were still developing, or some of the deciduous teeth had undergone some root resorption prior to death, which reduces the amount of the life course available to measure.

PHYSICAL ANTHROPOLOCY

Each tooth was cleaned by air abrasion, a single root removed from molar teeth and incisor teeth were bisected, and the bulk of the enamel removed from the sampled portion using a hand-held saw. There were no macroscopically visible areas of caries or secondary dentine present on any of the teeth sampled, thus avoiding the measurement of damaged collagen or tissue which has grown later than the primary dentine (Beaumont, Gledhill, Lee-Thorp, & Montgomery, 2013).

4 WILEY ANTHROPOLOGY

Each tooth sample was demineralized in 0.5 M HCl at 4 °C following the modified Longin method (Brown, Nelson, Vogel, & Southon, 1988) and then sectioned according to the second method in Beaumont et al. (2013) using a scalpel.

For each of the juveniles, the first-forming 0.5 mm was removed from the incisal edge/cusp tip as a first sample, and 1 mm samples taken thereafter down the length of the tooth.

The first 0.5 mm dentine sample of each deciduous tooth was frozen, freeze-dried, and measured without denaturing (see above and Beaumont et al., 2014). The rationale for analyzing this smaller sample separately is that only the first 0.5 mm of tissue forms before birth, and therefore contains isotope ratio values from the in utero period. Because human dentine is laid down in an overlapping pattern, incremental horizontal sampling of the tissue throughout most of the tooth results in averaging of the isotopic values attenuation of the signal. However, as there is little overlap of the layers nearest to the enameldentine junction, this attenuation will be reduced in the earliestforming dentine, giving a more accurate result.

All of the 1 mm demineralized dentine sections were denatured by heating to 70 $^{\circ}$ C in a pH 3 solution of HCl for 24 hr, frozen and then freeze-dried.

Each of the samples was analyzed in duplicate. The samples were combusted in a Thermo Flash EA 1112 and the separated N_2 and CO_2 was introduced to a Delta plus XL via a Conflo III interface. All samples were interspersed with laboratory and international standards, and the analytical error was determined to be 0.2% or less.

2.3 | Assigning dental and skeletal age

In the original isotopic studies by Howcroft (2008) and Haydock et al. (2013), the completeness of the individuals was not a factor in the selection of samples. Thus, only eight of the juveniles in this study sampled for incremental dentine were sufficiently well-preserved to 任 Basses B

3 | RESULTS

3.1 | Isotope data

ڑ

The highest peak dentine δ^{15} N value from the profiles was R5354, 17.9‰, and the lowest was R5093, 11.2‰. The highest peak dentine δ^{13} C was R5109, -18.0‰, and the lowest was R5021, -19.5‰.

υω

3.2 | Skeletal and dental ages

Skeletal number R5093-1

R5093-2

R5093-3

R5093-4

δ13C ‰

-20.1

-20.0

-19.7

-19.6

δ15N‰

10.9

10.1

10.1

10.1

C:N

3.2

3.2

3.2

3.2

Amt%C

42.5

40.6

41.0

14.8	40.3
14.6	39.8
15.1	41.4
15.6	42.7
15.2	41.8
15.1	41.6
14.9	40.8
15.0	40.7
15.4	42.4
15.0	41.3
15.0	41.3

Amt%N

15.4

14.7

15.0

R5093-5	10.0	-19.5	14.6	39.8	3.2
R5093-6	9.9	-19.3	15.1	41.4	3.2
R5093-7	9.9	-19.4	15.6	42.7	3.2
R5093-8	10.0	-19.5	15.2	41.8	3.2
R5093-9	10.1	-19.6	15.1	41.6	3.2
R5093-10	10.1	-19.5	14.9	40.8	3.2
R5093-11	10.0	-19.5	15.0	40.7	3.2
R5093-12	10.2	-19.5	15.4	42.4	3.2
R5093-13	10.5	-19.4	15.0	41.3	3.2
R5093-14	11.0	-19.4	15.0	41.3	3.2
R5093-15	11.2	-19.6	15.5	42.9	3.2
R5093-16	11.2	-19.8	15.1	41.5	3.2
R5154-1	14.6	-18.9	15.4	42.0	3.2
R5154-2	13.7	-19.0	14.9	40.7	3.2
R5154-3	12.9	-19.1	15.7	42.8	3.2
R5154-4	11.6	-19.6	15.3	41.8	3.2
R5154-5	11.2	-19.8	15.5	42.3	3.2
R5154-6	11.1	-19.7	15.6	42.4	3.2
R5154-7	11.1	-19.6	15.1	41.2	3.2
R5154-8	11.2	-19.6	15.2	41.4	3.2
R5154-9	11.4	-19.6	15.7	43.1	3.2
R5154-10	11.8	-19.4	15.4	42.2	3.2
R5154-11	11.3	-19.5	15.3	41.9	3.2
R5154-12	10.6	-19.7	14.9	40.7	3.2
R5154-13	10.3	-19.8	15.3	41.6	3.2
R5154-14	10.4	-19.7	15.0	40.5	3.2
R5154-15	10.3	-19.7	15.5	42.4	3.2
R5154-16	10.6	-19.6	15.3	42.0	3.2
R5135-1	12.9	-19.6	38.0	13.8	3.2
R5135-2	14.1	-19.1	41.1	15.0	3.2
R5135-3	14.4	-18.9	41.6	15.3	3.2
R5135-4	13.5	-19.0	41.3	15.2	3.2
R5135-5	12.6	-19.3	41.7	15.2	3.2
R5135-6	12.2	-19.3	41.2	14.9	3.2
R5135-7	12.2	-19.3	41.5	15.1	3.2
R5135-8	11.9	-19.4	41.4	15.1	3.2
R5135-9	11.5	-19.7	41.6	15.0	3.2
R5135-10	11.5	-19.7	41.5	14.7	3.3
R5135-11	11.5	-19.6	41.2	14.7	3.3
R5135-12	11.5	-19.6	41.1	14.5	3.3
R5212-1	12.2	-19.4	41.2	15.1	3.2
R5212-2	12.9	-19.0	42.2	15.5	3.2
R5212-3	13.6	-19.1	42.0	15.5	3.2
R5212-4	13.7	-19.1	41.6	15.3	3.2
R5212-5	13.8	-19.3	42.2	15.5	3.2
R5212-6	14.0	-19.4	42.1	15.4	3.2
R5212-7	13.5	-19.4	42.0	15.2	3.2

R5222.9 12.9 -19.5 41.9 15.0 3.3 R5222.9 12.4 -19.5 42.0 15.3 3.2 R522.1 10.9 -19.8 42.0 15.1 3.2 R521.2 10.8 -19.8 42.0 15.1 3.2 R521.4 11.4 -0.01 42.3 15.2 3.2 R524.4 13.5 -18.4 42.0 15.3 3.2 R524.4 13.5 -18.4 42.0 15.3 3.2 R524.4 14.9 -18.8 41.6 14.8 3.3 R524.4 15.0 -10.0 42.1 15.0 3.3 R524.4 15.1 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.3 41.8 14.9 3.2 R524.4 15.1 -19.3 41.8 14.9 3.2 R534.5 15.0 -19.5 41.3 14.9 3.2 R534.5 15.0 -19.5 41.3 14.9 3.2 R534.5 15.0 <th>Skeletal number</th> <th>δ15N‰</th> <th>δ13C ‰</th> <th>Amt%N</th> <th>Amt%C</th> <th>C:N</th>	Skeletal number	δ15N‰	δ13C ‰	Amt%N	Amt%C	C:N
R2212.9 124 -19.5 420 15.3 3.2 R5212.10 10.9 -19.8 42.0 15.1 3.2 R5212.11 10.9 -19.8 42.0 15.1 3.2 R5212.13 11.4 -20.1 42.3 15.2 3.2 R524.1 13.4 -18.5 41.7 15.2 3.2 R524.4 13.5 -18.4 42.0 15.3 3.2 R524.4 14.2 -18.5 42.0 15.2 3.2 R524.4 15.0 -19.0 42.1 15.0 3.3 R524.4 15.1 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.3 42.0 14.9 3.3 R524.4 15.1 -19.3 42.0 14.9 3.2 R524.7 14.9 -19.3 41.1 14.9 3.2 R534.5 15.6 -19.5 41.3 14.9 3.2 R534.5 15.6	R5212-8	12.9	-19.5	41.9	15.0	3.3
8212-10 11.6 -19.6 42.2 15.3 3.2 R5212-12 10.8 -19.8 42.1 15.2 3.2 R5212-13 11.4 -20.1 42.3 15.2 3.2 R524-1 13.5 -18.4 42.0 15.3 3.2 R524-4 13.5 -18.4 42.0 15.3 3.2 R524-4 13.5 -18.4 42.0 15.3 3.2 R524-4 15.0 -19.0 42.1 15.0 3.3 R524-4 15.0 -19.0 42.1 15.0 3.3 R524-4 15.0 -19.0 42.1 15.0 3.3 R524-5 15.0 -19.0 42.0 14.9 3.3 R524-4 14.0 -19.0 42.1 15.0 3.2 R524-5 14.0 -19.3 41.8 14.9 3.2 R5345 14.0 -19.4 14.9 3.2 3.2 R5345-1 15.6 -19.5 41.3 14.8 3.2 R5345-1 15.0	R5212-9	12.4	-19.5	42.0	15.3	3.2
R5212-11 10.9 -19.8 42.0 15.1 3.2 R5212-13 11.4 -20.1 42.3 15.2 3.2 R524-1 13.4 -16.5 41.7 15.2 3.2 R524-2 13.5 -18.4 42.0 15.3 3.2 R524-4 14.2 -18.5 42.0 15.3 3.2 R524-4 14.0 -18.4 44.0 15.3 3.2 R524-4 15.0 -17.0 42.1 15.0 3.3 R524-6 15.1 -19.0 42.0 14.9 3.3 R524-7 14.9 -19.1 42.1 15.0 3.3 R524-7 14.9 -19.1 42.0 14.9 3.3 R524-7 14.9 -19.3 44.0 14.9 3.2 R5345 14.6 -19.8 41.1 14.9 3.2 R5345 15.0 -19.5 41.3 14.8 3.2 R5345-1 15.0 -19.8 41.1 14.7 3.3 R5345-1 15.0	R5212-10	11.6	-19.6	42.2	15.3	3.2
R5212-12 10.8 -19.8 42.1 15.2 3.2 R52212-13 11.4 -20.1 42.3 15.2 3.2 R5242-1 13.5 -18.4 42.0 15.3 3.2 R5244-2 13.5 -18.4 42.0 15.2 3.2 R5244-3 14.2 -18.5 42.0 15.2 3.2 R5244-4 15.1 -10.0 42.0 14.9 3.3 R5244-5 15.0 -17.0 42.0 14.9 3.3 R5244-7 14.9 -19.1 42.1 15.1 3.3 R5244-1 15.1 -19.0 42.0 14.9 3.3 R5244-1 15.2 -19.3 41.8 15.0 3.2 R5345-1 15.2 -19.6 41.4 14.9 3.2 R5345-1 15.6 -19.7 41.5 15.0 3.2 R5345-1 15.6 -19.7 41.5 15.0 3.2 R5345-1 15.6 -19.8 41.1 14.7 3.2 R5345-7 1	R5212-11	10.9	-19.8	42.0	15.1	3.2
R2212-13 11.4 -0.0.1 42.3 15.2 3.2 R2524-1 13.4 -18.5 41.7 15.2 3.2 R264-2 13.5 -18.4 42.0 15.3 3.2 R264-3 14.2 -18.5 42.0 15.2 3.2 R264-4 15.1 -19.0 42.1 15.0 3.3 R264-6 15.1 -19.0 42.0 14.9 3.3 R264-7 14.9 -19.1 42.1 15.1 3.3 R264-8 15.1 -19.0 42.0 14.9 3.2 R264-9 14.6 -19.3 42.0 14.9 3.2 R264-10 14.4 -19.4 14.9 3.2 3.3 R363-1 15.2 -19.6 41.3 14.9 3.2 R3345-1 15.2 -19.7 41.5 15.0 3.2 R3345-1 15.2 -19.7 41.3 14.9 3.2 R3345-1 15.4 -19.7 41.3 14.9 3.2 R3345-1 15.0	R5212-12	10.8	-19.8	42.1	15.2	3.2
R2241 134 -18.5 417 15.2 3.2 R52442 135 -18.4 42.0 15.2 3.2 R52443 14.9 -18.8 41.6 44.8 3.3 R52444 14.9 -19.0 42.0 14.9 3.3 R52445 15.0 -19.0 42.0 14.9 3.3 R52446 15.1 -19.0 42.0 14.9 3.3 R52447 14.9 -19.3 42.0 14.9 3.3 R52449 14.4 -19.3 41.8 14.9 3.2 R53451 15.2 -19.5 41.6 15.0 3.2 R53453 15.6 -19.5 41.6 15.0 3.2 R53453 15.6 -19.7 41.5 15.0 3.2 R53454 15.1 -19.7 41.5 15.0 3.2 R53455 10.0 -19.8 41.3 14.8 3.2 R53457 12.2 -19.8 41.3 14.8 3.2 R53457 10.8 -19	R5212-13	11.4	-20.1	42.3	15.2	3.2
R5244-2 135 -18.4 42.0 15.3 3.2 R5244-3 14.2 -18.5 42.0 15.3 3.2 R5244-4 14.9 -18.8 41.6 18.8 3.3 R5244-5 15.0 -19.0 42.1 15.0 3.3 R5244-7 14.9 -19.1 42.0 14.9 3.3 R5244-8 14.7 -19.3 42.0 14.9 3.3 R5244-9 14.6 -19.3 41.8 18.8 3.3 R5244-1 15.2 -19.8 41.4 14.9 3.2 R5345-1 15.2 -19.5 41.3 14.9 3.2 R5345-1 15.2 -19.8 41.1 14.7 3.3 R5345-1 15.1 -19.7 41.5 15.0 3.2 R5345-1 15.1 -19.7 41.3 14.9 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-0 10.8<	R5264-1	13.4	-18.5	41.7	15.2	3.2
R5244.3 142 -18.5 42.0 15.2 3.2 R5244.4 14.9 -18.8 41.6 14.8 3.3 R524.4 15.0 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.0 42.0 14.9 3.3 R524.4 15.1 -19.3 42.0 14.9 3.3 R524.4 14.4 -19.3 41.8 15.0 3.2 R5345.1 15.2 -19.8 41.4 14.9 3.2 R5345.3 15.6 -19.5 41.6 15.0 3.2 R5345.3 15.6 -19.7 41.5 15.0 3.2 R5345.4 15.1 -19.7 41.5 15.0 3.2 R5345.4 15.1 -19.8 41.1 14.9 3.2 R5345.6 11.2 -19.8 41.1 14.9 3.2 R5345.6 11.3 -19.9 41.4 14.9 3.2 R5345.6 11.3 -19.9 41.4 14.9 3.2 R5345.9 10.8	R5264-2	13.5	-18.4	42.0	15.3	3.2
R3244 149 -18.8 41.6 14.8 3.3 R5244-5 15.0 -19.0 42.1 15.0 3.3 R5244-6 15.1 -19.0 42.0 14.9 3.3 R5244-7 14.9 -19.3 42.0 14.9 3.3 R5244-8 14.7 -19.3 42.0 14.9 3.3 R5244-10 14.4 -19.3 41.8 14.8 3.3 R5245-1 15.2 -19.8 41.4 14.9 3.2 R5345-1 15.2 -19.5 41.3 14.9 3.2 R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-4 15.6 -19.5 41.3 14.9 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 15.2 -19.8 41.3 14.9 3.2 R5345-7 10.8 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-9 10.8 </td <td>R5264-3</td> <td>14.2</td> <td>-18.5</td> <td>42.0</td> <td>15.2</td> <td>3.2</td>	R5264-3	14.2	-18.5	42.0	15.2	3.2
R324-5 150 -190 420 150 33 R524-6 151 -190 420 149 33 R524-7 149 -191 421 151 33 R524-9 146 -193 420 149 33 R524-10 144 -194 418 150 32 R5345-1 152 -195 414 150 32 R5345-1 155 -195 413 149 32 R5345-1 156 -195 413 149 32 R5345-1 151 -197 414 149 32 R5345-1 154 -198 413 148 32 R5345-1 150 -198 413 148 32 R5345-1 150 -198 414 149 32 R5345-1 150 -198 413 154 32 R5345-1 150 -189 227 83 32 R5345-1 150 -186 414 154 32	R5264-4	14.9	-18.8	41.6	14.8	3.3
R5244-6 15.1 -19.0 42.0 14.9 3.3 R5244-7 14.9 -19.1 42.1 15.1 3.3 R5244-8 14.7 -19.3 42.0 14.9 3.3 R5244-9 14.6 -19.3 41.8 14.8 3.3 R5244-10 14.4 -19.6 41.8 15.0 3.2 R5345-1 15.2 -19.8 41.4 14.9 3.2 R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.6 -19.8 41.1 14.9 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-10 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5125-1 15.8 -18.0 41.8 15.4 3.2 R5125-1 1	R5264-5	15.0	-19.0	42.1	15.0	3.3
R5264-7 14.9 -19.1 42.1 15.1 3.3 R5264-9 14.6 -19.3 42.0 14.9 3.3 R5264-10 14.4 -19.3 41.8 14.8 3.3 R5264-10 14.4 -19.6 41.8 15.0 3.2 R5345-1 15.2 -19.5 41.4 14.9 3.2 R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.6 -19.8 41.3 14.8 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.7 41.4 14.9 3.2 R5345-9 10.3 -19.9 41.4 14.9 3.2 R5125-1 15.8 -18.7 41.5 15.4 3.2 R5125-1 15.8 -18.6 41.3 15.4 3.2 R5125-1 15	R5264-6	15.1	-19.0	42.0	14.9	3.3
R52448 147 -99.3 42.0 14.9 3.8 R52449 14.6 -19.3 41.8 14.8 3.3 R53451 15.2 -19.8 41.4 14.9 3.2 R53451 15.2 -19.8 41.4 14.9 3.2 R53453 15.6 -19.5 41.3 14.9 3.2 R53454 15.1 -19.7 41.5 15.0 3.2 R53455 14.0 -19.8 41.3 14.4 3.2 R53455 14.0 -19.8 41.3 14.8 3.2 R53455 14.0 -19.8 41.3 14.8 3.2 R53457 12.2 -19.9 41.4 14.9 3.2 R53459 10.8 -19.7 41.4 14.9 3.2 R53459 10.8 -19.7 41.4 14.9 3.2 R51251 15.8 -18.7 41.5 15.4 3.2 R51252 15.8 -18.7 41.5 15.4 3.2 R51254 16.4	R5264-7	14.9	-19.1	42.1	15.1	3.3
R5264-9 14.6 -19.3 41.8 14.8 13.3 R5244-10 14.4 -19.4 41.8 15.0 2.2 R5345-1 15.2 -19.8 41.4 15.0 3.2 R5345-2 15.5 -19.5 41.6 15.0 3.2 R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.6 -19.8 41.3 14.8 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5345-10 10.9 -18.7 41.5 15.4 3.2 R5125-11 15.0 -18.7 41.5 15.4 3.2 R5125-5 15.8 -18.6 41.6 15.4 3.2 R5125-5 15.8 -18.4 41.6 15.4 3.2 R5125-5 <td< td=""><td>R5264-8</td><td>14.7</td><td>-19.3</td><td>42.0</td><td>14.9</td><td>3.3</td></td<>	R5264-8	14.7	-19.3	42.0	14.9	3.3
R5264-10 144 -19.6 418 15.0 3.2 R5345-1 15.2 -19.8 41.4 14.9 3.2 R5345-2 15.5 -19.5 41.3 14.9 3.2 R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-6 12.6 -19.8 41.1 14.7 3.3 R5345-6 12.2 -19.9 41.4 14.9 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -18.9 22.7 8.3 3.2 R5125-1 15.8 -18.4 41.8 15.4 3.2 R5125-3 16.4 -18.6 41.3 15.4 3.2 R5125-5 15.8 -18.7 41.4 15.3 3.2 R5125-5 15.8<	R5264-9	14.6	-19.3	41.8	14.8	3.3
R5345-1 152 -19.8 41.4 14.9 3.2 R5345-2 155 -19.5 41.6 15.0 3.2 R5345-3 15.6 -19.7 41.5 15.0 3.2 R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.6 -19.8 41.3 14.8 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5345-10 10.9 -18.9 22.7 8.3 3.2 R5125-1 15.8 -18.7 41.5 15.4 3.2 R5125-2 15.8 -18.4 41.3 15.4 3.2 R5125-3 15.8 -18.4 41.3 15.4 3.2 R5125-4 15.2 -18.7 41.4 15.3 3.2 R5125-5 15.8<	R5264-10	14.4	-19.6	41.8	15.0	3.2
R5345-2 15.5 -19.5 41.6 15.0 3.2 R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.6 -19.8 41.3 14.8 3.2 R5345-6 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -18.9 22.7 8.3 3.2 R5125-10 15.8 -18.7 41.5 15.4 3.2 R5125-2 15.8 -18.6 41.3 15.4 3.2 R5125-3 15.8 -18.6 41.3 15.4 3.2 R5125-4 15.2 -18.7 41.4 15.3 3.2 R5125-5 15.	R5345-1	15.2	-19.8	41.4	14.9	3.2
R5345-3 15.6 -19.5 41.3 14.9 3.2 R5345-3 14.0 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.2 -19.9 41.4 14.9 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5125-1 15.0 -18.9 2.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.2 R5125-5 15.8 -18.6 41.5 15.3 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8	R5345-2	15.5	-19.5	41.6	15.0	3.2
R5345-4 15.1 -19.7 41.5 15.0 3.2 R5345-5 14.0 -19.8 41.1 14.7 3.3 R5345-6 12.2 -19.9 41.4 14.9 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5345-10 10.9 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.0 15.4 3.2 R5125-4 16.4 -18.6 41.3 15.4 3.2 R5125-5 15.8 -18.7 41.4 15.3 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.8 -18.9 41.5 15.3 3.2 R5125-7 14.	R5345-3	15.6	-19.5	41.3	14.9	3.2
R5345-5 140 -198 41.1 14.7 3.3 R5345-6 12.6 -19.8 41.3 14.8 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5125-1 15.0 -18.9 2.27 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 41.3 15.4 3.2 R5125-5 15.8 -18.7 41.4 15.3 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.7 41.4 15.3 3.2 R5125-9 14.3 </td <td>R5345-4</td> <td>15.1</td> <td>-19.7</td> <td>41.5</td> <td>15.0</td> <td>3.2</td>	R5345-4	15.1	-19.7	41.5	15.0	3.2
R5345-6 12.6 -19.8 41.3 14.8 3.2 R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.4 14.9 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5125-1 15.0 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 40.0 14.7 3.2 R5125-4 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.	R5345-5	14.0	-19.8	41.1	14.7	3.3
R5345-7 12.2 -19.9 41.4 14.9 3.2 R5345-8 11.3 -19.9 41.9 15.3 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5345-10 10.9 -18.9 22.7 8.3 3.2 R5125-1 15.0 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 41.3 15.4 3.1 R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-7 14.8 -18.9 41.5 15.3 3.2 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12	R5345-6	12.6	-19.8	41.3	14.8	3.2
R5345-8 11.3 -19.9 41.9 15.3 3.2 R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 R5125-1 15.0 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.9 41.5 15.3 3.2 R5125-10 13.2 -19.2 42.0 15.6 3.1 R5125-11 12.7 -19.7 41.6 14.9 3.3 R5170-1 14	R5345-7	12.2	-19.9	41.4	14.9	3.2
R5345-9 10.8 -19.9 41.4 14.9 3.2 R5345-10 10.9 -19.8 42.1 15.3 3.2 T3.3 - - - 8.3 3.2 R5125-1 15.0 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 40.0 14.7 3.2 R5125-4 15.8 -18.6 41.3 15.4 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.7 41.6 14.9 3.3 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7	R5345-8	11.3	-19.9	41.9	15.3	3.2
R5345-10 10.9 -19.8 42.1 15.3 3.2 R5125-1 15.0 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.7 41.4 15.3 3.2 R5125-4 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.7 41.4 15.3 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.7 41.6 14.9 3.3 R5125-12	R5345-9	10.8	-19.9	41.4	14.9	3.2
13.3 R5125-1 15.0 -18.9 22.7 8.3 3.2 R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 41.8 15.4 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.9 41.5 15.3 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 41.4 15.3 3.2 <t< td=""><td>R5345-10</td><td>10.9</td><td>-19.8</td><td>42.1</td><td>15.3</td><td>3.2</td></t<>	R5345-10	10.9	-19.8	42.1	15.3	3.2
R5125-1 15.0 -18.9 22.7 8.3 32 R5125-2 15.8 -18.7 41.5 15.4 32 R5125-3 16.4 -18.6 41.8 15.4 32 R5125-3 16.4 -18.6 40.0 14.7 32 R5125-5 15.8 -18.6 41.3 15.4 31 R5125-6 15.2 -18.7 41.4 15.3 32 R5125-7 14.8 -18.8 41.6 15.4 32 R5125-7 14.8 -18.9 41.5 15.3 32 R5125-9 14.3 -19.2 42.0 15.6 31 R5125-10 13.2 -19.3 41.4 15.3 32 R5125-11 12.7 -19.4 41.8 15.2 32 R5125-12 12.7 -19.7 41.6 14.9 33 R5170-1 14.1 -18.8 42.0 15.5 32 R5170-2 14.5 <td></td> <td>13.3</td> <td></td> <td></td> <td></td> <td></td>		13.3				
R5125-2 15.8 -18.7 41.5 15.4 3.2 R5125-3 16.4 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.6 41.3 15.1 3.2 R5170-5 15	R5125-1	15.0	-18.9	22.7	8.3	3.2
R5125-3 164 -18.6 41.8 15.4 3.2 R5125-4 16.4 -18.6 40.0 14.7 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.9 41.5 15.3 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-10 13.2 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.2 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15	R5125-2	15.8	-18.7	41.5	15.4	3.2
R5125-4 16.4 -18.6 400 14.7 3.2 R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.2 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.	R5125-3	16.4	-18.6	41.8	15.4	3.2
R5125-5 15.8 -18.6 41.3 15.4 3.1 R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.4 40.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7	R5125-4	16.4	-18.6	40.0	14.7	3.2
R5125-6 15.2 -18.7 41.4 15.3 3.2 R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.6 -18.7 41.4 15.3 3.2 R5170-5 15.6 -18.4 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 1	R5125-5	15.8	-18.6	41.3	15.4	3.1
R5125-7 14.8 -18.8 41.6 15.4 3.2 R5125-7 14.8 -18.9 41.5 15.3 3.2 R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.3 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 1	R5125-6	15.2	-18.7	41.4	15.3	3.2
R5125-8 14.5 -18.9 41.5 15.3 3.2 R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.3 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10	R5125-7	14.8	-18.8	41.6	15.4	3.2
R5125-9 14.3 -19.2 42.0 15.6 3.1 R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.3 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 40.7 14.9 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-12 <td< td=""><td>R5125-8</td><td>14.5</td><td>-18.9</td><td>41.5</td><td>15.3</td><td>3.2</td></td<>	R5125-8	14.5	-18.9	41.5	15.3	3.2
R5125-10 13.2 -19.3 41.4 15.3 3.2 R5125-11 12.7 -19.4 41.8 15.2 3.2 R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.3 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-7 14.9 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 40.7 14.9 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 <t< td=""><td>R5125-9</td><td>14.3</td><td>-19.2</td><td>42.0</td><td>15.6</td><td>3.1</td></t<>	R5125-9	14.3	-19.2	42.0	15.6	3.1
R5125-1112.7-19.441.815.23.2R5125-1212.7-19.741.614.93.3R5170-114.1-18.842.015.53.2R5170-214.5-18.641.315.13.2R5170-315.1-18.440.315.03.1R5170-415.5-18.441.415.33.2R5170-515.6-18.741.415.23.2R5170-615.6-18.841.415.23.2R5170-714.9-19.141.315.13.2R5170-814.3-19.240.714.93.2R5170-1013.9-19.340.514.83.2R5170-1113.7-19.440.914.93.2R5170-1213.3-19.440.714.53.3	R5125-10	13.2	-19.3	41.4	15.3	3.2
R5125-12 12.7 -19.7 41.6 14.9 3.3 R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.4 40.3 15.0 3.1 R5170-4 15.5 -18.4 41.4 15.3 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-7 14.9 -19.2 40.7 14.9 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5125-11	12.7	-19.4	41.8	15.2	3.2
R5170-1 14.1 -18.8 42.0 15.5 3.2 R5170-2 14.5 -18.6 41.3 15.1 3.2 R5170-3 15.1 -18.6 41.3 15.1 3.2 R5170-4 15.5 -18.4 40.3 15.0 3.1 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-7 14.9 -19.2 40.7 14.9 3.2 R5170-8 14.1 -19.2 41.2 15.2 3.2 R5170-9 14.1 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 40.5 14.8 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5125-12	12.7	-197	41.6	14.9	3.3
Notic 11.1.11.1.21.1.21.1.11.1.21.1.1R5170-214.5-18.641.315.13.2R5170-315.1-18.440.315.03.1R5170-415.5-18.441.415.33.2R5170-515.6-18.741.415.23.2R5170-615.6-18.841.415.23.2R5170-714.9-19.141.315.13.2R5170-814.3-19.240.714.93.2R5170-914.1-19.241.215.23.2R5170-1013.9-19.340.514.83.2R5170-1113.7-19.440.914.93.2R5170-1213.3-19.440.714.53.3	R5170-1	14.1	-18.8	42.0	15.5	3.2
R5170-115.116.616.616.616.716.16.7R5170-315.1-18.440.315.03.1R5170-415.5-18.441.415.33.2R5170-515.6-18.741.415.23.2R5170-615.6-18.841.415.23.2R5170-714.9-19.141.315.13.2R5170-814.3-19.240.714.93.2R5170-914.1-19.241.215.23.2R5170-1013.9-19.340.514.83.2R5170-1113.7-19.440.914.93.2R5170-1213.3-19.440.714.53.3	R5170-2	14 5	-18.6	41.3	15.1	3.2
R5170 - 4 15.5 -18.4 41.4 15.3 3.2 R5170-4 15.5 -18.4 41.4 15.3 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-3	15.1	-18.4	40.3	15.0	3.1
R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-5 15.6 -18.7 41.4 15.2 3.2 R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-4	15.5	-18.4	41.4	15.3	3.2
R5170-6 15.6 -18.8 41.4 15.2 3.2 R5170-7 14.9 -19.1 41.3 15.1 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-5	15.6	-187	41.4	15.2	3.2
R5170-7 14.9 -19.1 41.3 15.2 3.2 R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-6	15.6	-18.8	41.4	15.2	32
R5170-8 14.3 -19.2 40.7 14.9 3.2 R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-7	14.9	-19.1	41.3	15.1	3.2
R5170-9 14.1 -19.2 41.2 15.2 3.2 R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-8	14.3	-19.2	40.7	14.9	32
R5170-10 13.9 -19.3 40.5 14.8 3.2 R5170-11 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-9	14.1	-19.2	41.2	15.2	3.2
R5170-10 13.7 -19.4 40.9 14.9 3.2 R5170-12 13.3 -19.4 40.7 14.5 3.3	R5170-10	13.9	_10.3	40.5	14.8	3.Z
R5170-12 13.3 -19.4 40.7 14.7 3.2	R5170-11	13.7	_19 <i>1</i>	40.9	1/ 9	3.2
	R5170-12	13.7	_17. 7	40.7	14.5	3.2
		10.0	±7.T		11.0	4:

Skeletal number	δ15N‰	δ13C ‰	Amt%N	Amt%C	C:N
R5273-1	13.2	-18.8	42.5	15.6	3.2
R5273-2	13.9	-18.6	41.2	15.2	3.2
R5273-3	14.0	-18.6	41.2	15.2	3.2
R5273-4	14.4	-18.7	41.4	15.3	3.2
R5273-5	14.8	-19.0	41.7	15.4	3.2
R5273-6	14.4	-19.4	41.1	15.1	3.2
R5273-7	14.1	-19.5	41.5	15.2	3.2
R5273-8	14.2	-19.5	41.5	15.3	3.2
R5273-9	13.2	-19.9	41.2	15.0	3.2
R5273-10	12.2	-20.1	41.3	14.8	3.3
R5273-11	11.9	-20.3	41.7	14.9	3.3
R5292-1	13.8	-19.8	40.8	14.7	3.2
R5292-2	14.2	-19.3	41.2	15.2	3.2
R5292-3	14.8	-19.3	41.2	15.2	3.2
R5292-4	15.2	-19.4	41.0	15.1	3.2
R5292-5	15.4	-19.5	40.9	15.0	3.2
R5292-6	15.5	-19.7	40.9	15.1	3.2
R5292-7	15.3	-19.7	41.2	15.2	3.2
R5292-8	15.4	-19.8	41.2	15.2	3.2
R5292-9	15.1	-19.9	41.1	15.2	3.2
R5292-10	14.6	-20.0	40.9	15.0	3.2
R5292-11	14.0	-20.1	40.8	15.1	3.2
R5292-12	13.2	-19.9	41.2	15.2	3.2
R5187-1	13.6	-19.0	14.4	40.3	3.3
R5187-2	12.4	-19.0	14.8	40.2	3.2
R5187-3	11.7	-19.3	14.8	40.3	3.2
R5187-4	12.0	-19.4	14.8	40.1	3.2
R5187-5	11.4	-19.4	15.1	40.8	3.2
R5187-6	10.6	-19.5	15.5	41.0	3.1
R5187-7	9.9	-19.5	15.4	41.4	3.1
R5187-8	9.4	-19.5	15.2	40.6	3.1
R5187-9	9.8	-19.5	15.1	40.4	3.1
R5187-10	9.7	-19.5	15.2	40.8	3.1
R5187-11	9.3	-19.5	14.8	39.9	3.2
R5187-12	9.2	-19.5	14.9	40.2	3.2
R5187-13	9.0	-19.6	14.9	40.5	3.2
R5187-14	9.0	-19.7	15.1	40.6	3.1
R5187-15	9.1	-19.8	15.0	40.4	3.1
R5187-16	9.4	-19.8	15.1	40.8	3.2
R5187-17	9.7	-19.9	14.9	40.0	3.1
R5187-18	12.3	-19.4	14.8	40.4	3.2
R5187-19	9.6	-19.9	15.0	40.2	3.1
R5187-20	9.7	-19.5	14.8	40.1	3.2
R5239-1	13.9	-19.4	15.0	40.4	3.2
R5239-2	12.5	-19.4	15.1	40.2	3.1
R5239-3	11.8	-19.4	15.3	40.9	3.1
R5239-4	11.3	-19.5	15.2	40.7	3.1
R5239-5	11.3	-19.4	15.2	40.9	31
R5239-6	11.8	-19 5	15.3	40.8	3.1
R5239-7	12.0	-19.6	15.3	40.9	3.1
R5239-8	12.0	-19.8	15.3	41.0	3.1
N5207 0	12.2	17.0	13.5	U.T.F	J.1

B2329-0122-19715241.03.1B2329-10115-19515.241.13.1B2329-1211.5-19415.040.83.2B2329-1311.3-19415.244.43.2B2329-1411.3-19415.244.43.2B2329-1511.6-19.515.341.33.2B2329-1611.5-19.415.040.73.2B2329-1711.7-19.815.140.93.2B2329-189.6-19.915.140.93.2B2329-1812.6-20.214.741.23.2B2321-1412.5-20.415.141.93.2B201-212.9-19.915.040.83.2B201-311.5-19.715.040.83.2B201-411.5-19.715.040.83.2B201-511.9-20.115.040.83.2B201-611.5-20.015.040.83.2B201-710.6-19.715.040.83.2B201-1010.5-20.114.944.03.2B201-1010.5-20.114.944.03.2B201-1010.6-19.715.040.83.2B201-1110.5-20.114.840.73.2B201-1210.5-20.114.840.73.2B201-1410.0-20.114.8 <td< th=""><th>Skeletal number</th><th>δ15N‰</th><th>δ13C ‰</th><th>Amt%N</th><th>Amt%C</th><th>C:N</th></td<>	Skeletal number	δ15N‰	δ13C ‰	Amt%N	Amt%C	C:N
R2329-1011.9-19.415.24.13.1R2329-1111.5-19.415.040.83.2R2329-1211.5-19.415.040.83.2R2329-1311.3-19.415.240.93.1R2329-1411.6-19.515.341.33.2R2329-1511.6-19.515.241.23.2R2329-1711.7-19.515.241.23.2R2329-1711.7-19.515.140.73.2R2329-1711.7-19.514.741.23.2R2329-1312.6-20.214.941.03.2R2329-1412.6-20.214.941.03.2R2329-1312.6-20.214.941.03.2R2321-113.7-70.015.040.83.2R2321-211.7-70.015.040.83.2R2321-311.6-19.715.040.83.2R2321-412.5-20.115.040.83.2R2321-110.5-20.115.040.83.2R2321-110.5-20.115.040.83.2R2321-110.5-20.115.040.83.2R2321-110.5-20.114.740.73.2R2321-110.5-20.114.740.73.2R2321-110.3-20.114.740.73.2R2321-110.3-20.1	R5239-9	12.2	-19.7	15.2	41.0	3.1
R223-1111.6-19.415.140.83.2R5239-1311.3-19.415.240.93.1R5239-1411.3-19.415.241.43.2R5239-1511.6-19.515.341.33.2R5239-1611.5-19.415.040.73.2R5239-1711.7-19.515.241.23.2R5239-189.6-19.915.140.93.2R5239-1711.7-19.515.140.93.2R5021-112.8-19.914.941.03.2R5021-212.9-19.914.941.03.2R5021-311.0-20.015.040.83.2R5021-411.5-19.715.040.83.2R5021-511.9-20.015.040.83.2R5021-610.6-19.914.941.03.2R5021-1010.5-20.115.040.83.2R5021-1210.5-20.114.940.93.2R5021-1310.0-20.114.840.63.2R5021-1410.5-20.114.840.73.2R5021-1510.3-20.114.840.73.2R5021-1610.3-20.114.840.73.2R5021-1710.4-19.914.640.63.2R5021-1610.3-20.114.840.73.2R5021-1710.4-19.7<	R5239-10	11.9	-19.5	15.2	41.1	3.1
R2229:12 11.5 -19.4 15.0 40.8 3.2 R2239:13 11.3 -19.4 15.2 41.4 3.2 R2239:14 11.5 -19.4 15.2 41.4 3.2 R2239:14 11.5 -19.4 15.0 40.7 3.2 R3239:14 11.7 -19.5 15.2 41.2 3.2 R2239:13 9.6 -19.9 15.1 40.9 3.2 R5021:1 13.8 -19.5 14.7 41.2 3.2 R5021:2 12.9 -19.9 14.9 41.0 3.2 R5021:3 12.6 -20.2 14.9 41.0 3.2 R5021:4 12.6 -20.0 15.0 40.8 3.2 R5021:5 11.9 -20.0 15.0 40.8 3.2 R5021:4 10.6 -19.7 15.0 40.8 3.2 R5021:10 10.5 -20.0 15.0 40.0 3.2 R5021:10 10.5 -20.1 14.6 40.6 3.2 R5021:12	R5239-11	11.6	-19.4	15.1	40.8	3.2
R2329:13 11.3 -194 15.2 41.4 3.2 R2329:14 11.5 -194 15.0 40.7 3.2 R3239:16 11.5 -194 15.0 40.7 3.2 R3239:17 11.7 -19.5 15.2 41.2 3.2 R3239:18 9.6 -19.9 15.1 40.7 3.2 R5021-1 13.8 -19.5 14.7 41.2 3.2 R5021-2 12.9 -19.9 14.9 41.0 3.2 R5021-3 12.6 -0.02 14.9 41.0 3.2 R5021-4 12.5 -20.4 15.1 41.2 3.2 R5021-5 11.9 -20.0 15.0 40.9 3.2 R5021-4 10.5 -20.1 15.0 40.8 3.2 R5021-7 10.7 -19.6 15.2 41.1 3.2 R5021-8 10.0 -20.1 14.9 40.0 3.2 R5021-14 10.5 -20.1 14.9 40.7 3.2 R5021-15 1	R5239-12	11.5	-19.4	15.0	40.8	3.2
ੈ 13	R5239-13	11.3	-19.4	15.2	40.9	3.1
ੈ 1 	R5239-14	11.3	-19.4	15.2	41.4	3.2
塙	R5239-15	11.6	-19.5	15.3	41.3	3.2
塙	R5239-16	11.5	-19.4	15.0	40.7	3.2
塙	R5239-17	11.7	-19.5	15.2	41.2	3.2
ੈ	R5239-18	9.6	-19.9	15.1	40.9	3.2
塙 <section-header> 1000000000000000000000000000000000000</section-header>		11.7				
塙	R5021-1	13.8	-19.5	14.7	41.2	3.3
ੈ <text></text>	R5021-2	12.9	-19.9	14.9	41.0	3.2
塙	R5021-3	12.6	-20.2	14.9	41.0	3.2
塙	R5021-4	12.5	-20.4	15.1	41.2	3.2
ੈ	R5021-5	11.9	-20.0	15.0	40.8	3.2
塙	R5021-6	11.5	-19.7	15.0	40.9	3.2
塙 <list-item><list-item> Non de la de</list-item></list-item>	R5021-7	10.7	-19.6	15.2	41.1	3.2
ੈ	R5021-8	10.6	-19.7	15.0	40.8	3.2
ੈ	R5021-9	10.6	-19.9	14.9	40.6	3.2
塙 <list-item><section-header> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</section-header></list-item>	R5021-10	10.5	-20.0	15.0	41.0	3.2
塙	R5021-11	10.5	-20.1	15.0	40.8	3.2
ॅ <text> Š Š Š Š Š Š Š Š Š Š Š</text>	R5021-12	10.5	-20.1	14.9	41.0	3.2
塙	R5021-13	10.0	-20.1	14.7	40.7	3.2
፡	R5021-14	10.0	-20.1	14.8	40.7	3.2
፡	R5021-15	10.3	-20.1	14.6	40.6	3.2
ॅ <text></text>	R5021-16	10.4	-19.9	14.5	40.7	3.3
ॅ <text></text>	R5338-1	13.9	-18.6	14.9	40.9	3.2
ॅ <text>†51151111111111111</text>	R5338-2	13.1	-18.5	15.2	41.5	3.2
塙	R5338-3	13.6	-18.6	15.0	40.7	3.2
塙	R5338-4	12.3	-18.7	15.0	40.5	3.2
塙	R5338-5	10.7	-18.9	15.2	41.1	3.2
塙 n n n n n n n n n n	R5338-6	85	-19.6	15.0	40.9	3.2
塙	R5338-7	76	-19.7	15.0	40.9	3.2
塙 n n n n n n n n n n	R5338-8	74	-19.6	15.0	41.0	3.2
ੈ (),	R5338-9	79	-19.6	15.0	40.9	3.2
ੈ (),	R5338-10	84	-19.8	14.8	40.6	3.2
፡	R5338-11	91	-20.1	147	40.3	3.2
ੈ (),	R5338-12	9.5	-19.7	14.7	40.5	3.2
ॅ <page-header>$\begin{tikzyy}{likzy}{li$</page-header>	R5338-13	9.3	-19.6	14.7	40.7	3.2
塙 n n n n n n n n n n	R5338-14	8.5	-19.8	14.7	40.8	3.2
ॅ	R5338-15	8.6	-19.5	14.5	40.4	33
ॅ	R5338-16	9.2	-19.6	14.3	39.5	3.2
祉	R5012-1	13.8	-18.4	41.6	15.3	3.2
þ	R5012-1 P5012-2	14.5	-18/	41.0	17.0	3.2
្	R5012-3	14.9	-18.5	41 7	15.2	3.Z
ධ\	R5012-0	15.2	-18.7	A1 9	15.2	3.Z
π mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	NJ012-4	15.2	_10.7	41.7	15.0	ა.∠ გე
ႊ	R5012-5	15.0	_10.0	41.0	15.2	3.Z
īin 111111111111111111111111111111111111	RJU12-0 P5012-7	17.0	-17.1	41.Z	15.0	ა.∠ ეე
ධ	RJ012-7	14.0	-19.0	44.1	15.0	3.Z
గ	NJU12-0	14.2	-17.4	40.4	13.7	3.Z

Skeletal number	δ15N‰	δ13C ‰	Amt%N	Amt%C	C:N
R5012-9	14.0	-19.5	45.9	16.9	3.2
R5012-10	13.5	-19.7	41.9	15.4	3.2
R5012-11	13.5	-19.9	42.0	15.4	3.2
R5012-12	13.3	-20.0	43.1	15.9	3.2
R5012-13	13.0	-20.1	42.3	15.5	3.2
R5251-1	12.6	-19.7	41.2	14.8	3.3
R5251-2	12.5	-19.7	43.2	15.6	3.2
R5251-3	12.6	-19.4	41.4	14.8	3.3
R5251-4	12.8	-19.3	42.1	15.1	3.2
R5140-1	15.4	-19.0	40.7	14.8	3.2
R5140-2	15.6	-18.8	43.0	15.8	3.2
R5140-3	15.9	-18.7	40.9	15.1	3.2
R5140-4	16.1	-18.7	40.7	15.0	3.2
R5140-5	16.2	-18.7	40.0	14.7	3.2
R5140-6	16.6	-18.8	41.1	15.1	3.2
R5140-7	17.1	-19.2	42.7	15.5	3.2
R5354-1	15.6	-19.2	41.1	14.9	3.2
R5354-2	16.6	-18.7	40.8	15.1	3.2
R5354-3	17.6	-18.5	40.9	15.1	3.2
R5354-4	17.9	-18.8	41.2	15.2	3.2
R5354-5	17.5	-19.0	41.0	15.1	3.2
R5354-6	17.5	-19.0	41.2	15.2	3.2
R5354-7	16.4	-19.0	41.5	15.2	3.2
R5354-8	14.4	-19.5	41.0	14.6	3.3
R5354-9	12.8	-19.9	41.2	14.6	3.3
R5354-10	11.9	-20.2	40.5	14.4	3.3
R5102-1	14.4	-18.9	35.5	12.8	3.2
R5102-2	15.2	-18.6	41.2	15.2	3.2
R5102-3	15.9	-18.6	41.1	15.2	3.2
R5102-4	16.3	-18.7	41.8	15.5	3.1
R5102-5	16.5	-18.7	41.6	15.1	3.2
R5102-6	16.4	-18.8	41.7	15.1	3.2
R5102-7	16.3	-18.9	41.6	15.1	3.2
R5102-8	16.0	-19.2	41.9	15.0	3.2
R5102-9	15.4	-19.4	41.3	14.8	3.3
R5102-10	14.6	-19.5	41.2	14.7	3.3
R5102-11	14.1	-19.5	41.1	14.7	3.3
R5102-12	12.8	-19.5	41.2	14.8	3.3
R5082-1	13.5	-19.1	30.1	10.8	3.2
R5082-2	14.0	-18.9	40.8	15.1	3.2
R5082-3	14.6	-18.8	40.5	14.8	3.2
R5082-4	15.5	-18.9	39.7	14.3	3.2
R5082-5	16.5	-18.8	39.8	14.5	3.2
R5082-6	17.4	-18.9	40.7	15.1	3.2
R5005-1	14.5	-19.1	43.9	15.9	3.2
R5005-2	14.5	-19.2	41.7	15.3	3.2
R5005-3	15.1	-19.2	41.8	15.3	3.2
R5005-4	15.1	-19.4	41.9	15.2	3.2
R5005-5	14.6	-19.8	41.9	15.1	3.2
R5005-6	14.0	-20.0	41.9	14.8	3.3
R5005-7	13.1	-20.2	42.1	14.9	3.3

American Journal of PHYSICAL ANTHROPOLOGY

TABLE 2 (Continued)

ႊ	3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
ى	 3.3 3.3 3.3 3.3 3.3 3.2 3.1 3.1
ධ	3.3 3.3 3.3 3.3 3.2 3.1
గణం	3.3 3.3 3.3 3.2 3.1
ף שוש שוש שוש שוש שוש שוש שוש שוש שוש שו	3.3 3.3 3.2 3.1
	3.3 3.2 3.1
ī 12222222222222222222222222222222222222	3.2 3.1
ධ ${\sf r}_{{\sf r}_{{\sf r}_{{\sf r}}}}$	3.1
تما مثل	> 1
ႊ). L
ī in the sector of	3.1
R5023-6 15.4 -19.0 41.9 15.4 3	3.2
R5023-7 14.8 -19.1 42.2 15.5 3	3.2
R5023-8 14.0 -19.4 41.9 15.0 3	3.3
R5023-9 13.2 -19.8 41.9 14.9 3	3.3
R5023-10 12.5 -19.9 41.8 14.8 3	3.3
R5023-11 11.9 -19.8 39.8 14.4 3	3.2
R5023-12 11.5 -19.8 41.3 14.5 3	3.3
R5070-1 13.5 -18.8 40.6 14.8 3	3.2
R5070-2 12.7 -19.3 41.0 14.7 3	3.3
R5070-3 13.2 -19.1 40.7 14.5 3	3.3
R5070-4 13.7 -18.9 41.4 14.7 3	3.3
R5070-5 14.0 -18.9 39.7 14.0 3	3.3
R5070-6 14.3 -19.0 41.0 14.5 3	3.3
R5070-7 14.4 -19.1 39.7 13.8 3	3.3
R5070-8 14.5 -19.0 38.2 13.3 3	3.4
R5070-9 14.1 -19.1 37.8 13.0 3	3.4
R5070-10 13.9 -19.3 35.3 12.0 3	3.4
R5070-11 13.6 -19.5 31.2 10.6 3	3.4
R5070-12 13.6 -19.6 32.4 10.8 3	3.5
R5070-13 13.4 -19.5 34.9 11.9 3	3.4
R5109-1 15.5 -18.7 48.9 17.7 3	3.2
R5109-2 14.0 -18.7 41.8 15.3 3	3.2
R5109-3 14.8 -18.5 41.8 15.3 3	3.2
R5109-4 15.3 -18.4 42.1 15.5 3	3.2
R5109-5 15.6 -18.5 42.1 15.4 3	3.2
R5109-6 15.8 -18.4 42.1 15.4 3	3.2
R5109-7 16.0 -18.1 41.8 15.4 3	3.2
R5109-8 15.9 -18.2 42.1 15.6 3	3.2
R5109-9 16.2 -18.1 42.1 15.4 3	3.2
R5109-10 15.9 -18.0 42.1 15.6 3	3.2
R5109-11 15.5 -18.0 42.1 15.5 3	3.2
R5109-12 15.2 -18.1 42.0 15.5 3	3.2
R5109-13 14.9 -18.3 41.9 15.5 3	3.2
R5109-14 14.5 -18.5 42.6 15.6 3	3.2
R5109-15 13.6 -18.6 42.3 15.6 3	3.2

4 | DISCUSSION

4.1 | Isotopic data from comparative sites

FIGURE 2 Biplot showing the carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope ratios for mean bulk bone collagen for 5 Anglo-Saxon British sites compared with prenatal dentine collagen and peak dentine collagen mean δ^{13} C and δ^{15} N. Sites shown are Raunds (n = 20; Haydock et al. 2013), early Anglo Saxons (n = 76; Mays and Beavan 2012, Wharram Percy (n = 29; Richards et al. 2002), Berinsfield adults (n = 65; Privat et al., 2002), Yarnton (n = 9; Lightfoot et al., 2009) [Color figure can be viewed at wileyonlinelibrary.com]

collagen data from adults from Raunds Furnells (Haydock et al., 2013) and the means for both pre-natal and peak dentine measurements of deciduous dentine from this study. Sites shown are Raunds (n = 20; Haydock et al., 2013), Early Anglo- Saxons (n = 76; Mays & Beavan, 2012), Wharram Percy (n = 29; Richards, Mays, & Fuller, 2002), Berinsfield adults (n = 65; Privat, O'Connell, & Richards, 2002), Yarnton (n = 9; Lightfoot et al., 2009). The isotopic data from Raunds Furnells suggests that the adult population were not consuming a different diet from contemporary populations which could explain the perinatal dentine values.

4.2 | Peri-natal and peak dentine collagen data

It can be seen that the dentine collagen δ^{13} C and δ^{15} N are already higher than the Raunds adult mean by 0.7‰ and 3‰ at birth, which is equivalent to the differences interpreted as a trophic level shift and a breastfeeding signal by most studies which measure bulk bone (e.g., Fuller et al., 2006; Fuller, Richards, & Mays, 2003; Haydock et al., 2013; Jay, 2005; Figure 2). As this represents the δ^{13} C and δ^{15} N in utero, it also reflects the maternal values during the third trimester of pregnancy. This could imply that women during pregnancy were consuming foods which differ from the usual inland Anglo-Saxon diet (for example marine foods). Isotopic evidence from sequentially-forming tissues such as hair and fingernail show that healthy modern women during pregnancy generally experience a slight reduction in $\delta^{15}N$ (e.g., Fuller et al., 2006; D'Ortenzio, Brickley, Schwarcz, & Prowse, 2015) due to the anabolic state induced by the pregnancy. The women of Raunds Furnells could also have been experiencing physiological and/or nutritional stress resulting in a catabolic state, as seen in the case of severe morning sickness in a modern pregnancy by Fuller, Fuller, Sage, Harris, and O'Connell (2005), and thus the high δ^{15} N values found in the in utero dentine, (and see discussion in Reitsema (2013) although this does not explain the raised δ^{13} C). However, -WILEY Anthropology

11

子科

4.3 | Dentine profiles

Four main patterns have been identified in these data (Figure 3 shows exemplars), for which interpretations based on dietary and physiological status can be provided as follows:

4.4 | Pattern 1: Weaning curve (R5023)

搔的,翻翻的了,算法的问题,通过的问题,通过的问题,通过的问题,通过的问题,通过的问题,通过的问题,通过的问题。

4.5 | Pattern 2: Weaning curve with overlying physiological effects (R5012)

The dentine collagen profiles show a smooth weaning curve in the δ^{13} C values, but the δ^{15} N remains high for an extended period. This suggests that there is a secondary factor which is affecting the δ^{15} N values. This factor is not likely to be dietary, as any rise in trophic level arising from dietary protein input would also result in a comparable elevation of δ^{13} C (also seen in R5005, R5102, R5170, R5212, R5273, R5292, R5345). There could be an unknown factor affecting the δ^{13} C but a viable explanation for the rise in δ^{15} N without δ^{13} C is the effects of physiological stress.

4.6 | Pattern 3: Sharp drop in δ^{13} C and δ^{15} N values followed by pattern 1 or 2 (R5070)

4.7 | Pattern 4: Flat or rising δ^{13} C and δ^{15} N profiles (R5140)

In these individuals (R5140, R5082, R5251, R5264), the flat δ^{13} C and δ^{15} N profiles suggest that they had little or no breastmilk. R5264 (see Supporting Information figures) has opposing covariance of the δ^{13} C and δ^{15} N values, resembling the starvation patterns seen in the incremental dentine of children from the Great Irish Famine (Beaumont & Montgomery, 2016) and Sumburgh cist (Montgomery et al., 2013).

In the case of R5251, aged as a fetus/neonate, the sections of dentine lining the enamel-dentine junction were all co-forming in utero with no overlap/averaging and because they did not survive birth, no dietary signal.

4.8 | Comparison of bone collagen and dentine collagen $\delta^{13}C$ and $\delta^{15}N$

FIGURE 4 Carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope ratio of bone collagen and peak dentine collagen from Raunds juveniles plotted against mean age in years. Solid lines are the mean, and dashed lines 1 standard deviation of bone collagen δ^{13} C and δ^{15} N values of Raunds adult females of child-bearing age (bone collagen data from Haydock et al. 2013)

the averaging of isotope values in the dentine sections is much less, and the first 0.5 mm sample should reflect the in utero period.

These data call into question the validity of certain interpretations of the bone collagen data. If the dentine collagen data reflects diet alone, then they must be more accurate measures of the actual commencement of weaning in an individual. The two collagen datasets do not match, and there is a much higher difference between WILEY Anertan fournal of PHYSICAL ANTHROPOLOGY

most of the dentine collagen δ^{13} C and δ^{15} N values and the maternal mean than in the bone collagen data.

厌、

Although there are very few comparisons of deciduous incremental dentine and bone collagen, this offset has been recorded in other datasets. Eight out of nine deciduous teeth analyzed from 19th century Lukin Street, London (Beaumont, 2013) have no overlap and an offset with dentine collagen δ^{15} N higher than the bulk bone collagen. The datasets from late Medieval Fishergate House, York, (thought to be a low status population) show similar patterns to the Raunds Furnells data (Burt, 2013, 2015). Of the juveniles sampled at Fishergate House, 23 were under 3.5 years of age and had measurements for late-forming dentine which should be co-forming with their rib collagen. A comparison of the measurements shows that 6 of the 23 had δ^{15} N rib collagen values which do not overlap with any of their dentine values and are between 2.2 and 0.2% lower than the latestforming dentine. This offset was also evident in the data from the recent publication by King et al. (2018) where five of the eight matched dentine/bulk bone pairs have $\delta^{15}N$ values that do not overlap: four have higher dentine collagen $\delta^{15}N$ and one lower. This appears to contradict the conclusions of King et al. (2018) that bulk bone collagen can be used to reconstruct breastfeeding and weaning behavior.

One potential explanation is that there is an offset between collagen in dentine and bone or that the bone is not recording the highest δ^{15} N values. There is no evidence to suggest that there is any difference in the proteins in type 1 collagen between dentine and bone and so these values must be reflecting the δ^{13} C and δ^{15} N in new tissue laid down by dentinoblasts or osteoblasts although the routing of the amino acids to create the new collagen protein may be different. An alternative explanation is that there is a threshold of stress above which osteoblasts do not produce any new bone collagen, while dentinoblasts continue to produce dentine which records different values for δ^{13} C and δ^{15} N. This would fit well with the concept that bone and thus skeletal growth is salutatory and the gaps between episodes of growth are initiated by nutritional, physiological and emotional stress followed by periods of catch-up growth once the stress is reduced, thus recording δ^{13} C and δ^{15} N at these lower levels only (Lampl, 2012). Neonate R5251 demonstrates this offset which must be caused by high levels of maternal and/or fetal stress in utero. The relationship between high δ^{15} N and stunting is explored below.

Where weaning studies have been produced from bone collagen isotope data alone, conclusions are most often supported by the $\delta^{15}N$ data, while the $\delta^{13}C$ values are either unreported or not discussed in

FIGURE 5 Incremental dentine carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope ratio profile for neonate Raunds5251 [Color figure can be viewed at wileyonlinelibrary.com]

as much detail. The dentine collagen profiles presented in this study suggest that, while the magnitude of changes in values are small, δ^{13} C appears to reflect a breastfeeding and weaning profile in more cases. The δ^{13} C values are also less affected by any physiological changes than δ^{15} N and thus a more robust measure of the expected changes seen during breastfeeding and weaning (although δ^{13} C may fall if body fat is being recycled during periods of starvation; Beaumont & Montgomery, 2016). A further tentative explanation is that maternal physiology in the later stages of breastfeeding includes the mobilization of fat stores and a fall in the δ^{13} C of breastmilk and thus the infant tissues as seen in the example by Herrscher et al. (2017).

In all 18 juveniles, the dentine profiles have reached their peak δ^{13} C values by the age of 1.3 years (±3 months) and, where individuals survive past the age of 3, match their bulk bone collagen values by the age of 2.5–3 years. This results in agreement with the interpretations based on bone collagen for the same population in Haydock et al. (2013): an exclusive breastfeeding period of about 1 year and

Skeletal number	Skeletal age (in years)	Dental age (in years)	Estimated stature (in cm)	WHO standard -measured stature (in cm)
R5005	3.5	4.5	84.6	21.0
R5012	2.0	3.5	77.0	22.4
R5023	3.0	5.0	91.9	17.3
R5102	2.0	4.5	84.3	21.3
R5109	2.5	3.5	80.4	19.0
R5140	0.5	1.0	65.0	9.8
R5233	4.0	5.5	93.5	19.0
R5251	2.0	1.0	67.7	7.1
R5271	3.5	4.5	86.2	19.4
R5273	2.0	5.0	87.3	21.9
R5292	2.5	4.0	83.6	18.9
R5302	1.0	3.5	84.0	15.4
R5310	1.5	3.0	75.7	19.8
R5329	3.0	4.0	92.0	10.5
R5338	0.5	1.0	61.0	13.8
R5354	3.0	4.5	89.5	16.1

ɜ Berr} Berr} Berr} Berr} Berr} Berr} Berr} Berre Berre

FIGURE 7 Plot showing polynomial trends for growth for World Health Organization stature tables (Cole et al., 1998) and estimated stature of juveniles from Raunds (*n* = 15)

weaning foods. This means that 2/3 of the juveniles analyzed do not appear to have had a weaning curve that matches the model (Jay, 2005; Millard, 2000) reinforcing the view that this is not a satisfactory way of estimating this aspect of cultural behavior.

4.9 | The relationship between stunting and $\delta^{13}C$ and $\delta^{15}N$

For the purposes of this study, we estimated skeletal and dental ages (see results and Table 3) and also used long bone measurements to estimate stature of nine of the juveniles. Figure 7 compares the achieved stature for the re-assessed Raunds juveniles, and demonstrates the cumulative effect of stunting, that is the Raunds juveniles diverge more from the WHO growth stature standards as age increases. Figure 8 shows the difference between current WHO data (Cole, Freeman, & Preece, 1998) and the measured stature at Raunds Furnells plotted against the peak values recorded in the dentine for both the δ^{13} C and δ^{15} N. As stated above, the difference between

FIGURE 8 Plot showing the relationship between peak dentine carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope ratios and stunting of individuals from Raunds as measured by the difference between World Health Organization stature tables for modern English children (Cole et al., 1998) and stature estimated from skeletal remains [Color figure can be viewed at wileyonlinelibrary.com]

ے senteneers and senten

WILEY

உ

5 | CONCLUSIONS

This study is the first to compare isotopic data from bone and dentine collagen in the same individuals to investigate the relationship between diet, physiology, and stunting in the early years of life. The improved temporal resolution achieved using incremental dentine, already seen in previous studies, has now been reinforced by the possibility that bone is not forming during extreme stress and thus is not a reliable source of dietary OR physiological information in a stressed juvenile. However, it may be useful to consider the $\delta^{13}\text{C}$ values for estimation of breastfeeding and weaning patterns as these appear more robust especially as most weaning foods appear to be cerealbased, low trophic-level proteins (although the recent paper by Herrscher et al. (2017) hints at a possible physiological explanation here too). This confirms earlier work (e.g., Beaumont et al., 2015) that suggested that bulk bone collagen is not the right tissue to utilize when investigating the breastfeeding and weaning period because of the influence of physiology, particularly on the $\delta^{15}N$ values. These data also reinforce the need to consider the "osteological paradox" (DeWitte & Stojanowski, 2015; Wood et al., 1992) before interpreting the isotope ratios from juvenile tissues.

The relationship between maternal and infant in utero δ^{13} C and δ^{15} N values requires further investigation to establish whether the differences between these are related to a special pregnancy diet, stress of mother or fetus, or another factor of which we are not aware.

Finally, there is a need to investigate the potential for $\delta^{15}N$ as a tool to measure the effect of stress in early life on growth and stunting during childhood and adolescence, and to develop methods which can collect data from bone with increased temporal resolution matching that of the dentine collagen.

ACKNOWLEDGMENTS

Grateful thanks to the Biological Anthropological Research Centre, University of Bradford, for access to the individuals from the site at Raunds Furnells, and to the Wellcome collection at The Royal College of Surgeons, England, for allowing the micro-CT scanning of the Stack Collection. Thank you to Marise Gorton, Andy Gledhill, and Andy

American Journal of PHYSICAL ANTHROPOLOCY PHYSICAL

Holland for technical support in the preparation of this study and article. This study was funded in part by the NERC standard grant NE/F018096/2 "Does ancient human dental enamel record short-term seasonality? Investigating time-lines in teeth with computed tomography and oxygen isotopes" awarded to Janet Montgomery.

ORCID

Julia Beaumont D http://orcid.org/0000-0002-7166-5857 Elizabeth-Craig Atkins D http://orcid.org/0000-0003-2560-548X

REFERENCES

- AlQahtani, S. J., Hector, M. P., & Liversidge, H. M. (2010). Brief communication: The London Atlas of Human Tooth development and eruption. *American Journal of Physical Anthropology*, 142, 481–490.
- AlQahtani, S. J., Hector, M. P., & Liversidge, H. M. (2014). Accuracy of dental age estimation charts: Schour and Massler, Ubelaker and the London atlas. *American Journal of Physical Anthropology*, 154(1), 70–78. https://doi.org/10.1002/ajpa.22473
- Armit, I., Shapland, F., Montgomery, J., & Beaumont, J. (2015). Difference in death? A lost Neolithic inhumation cemetery with Britain's earliest case of rickets, at Balevullin, Western Scotland. *Proceedings of the Prehistoric Society.*, 81, 199–214.
- Beaumont, J. (2013). An isotopic and historical study of diet and migration during the Great Irish potato famine 1845-1852 (PhD PhD), University of Bradford, Bradford.
- Beaumont, J., Gledhill, A., Lee-Thorp, J., & Montgomery, J. (2013). Childhood diet: A closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine. *Archaeometry*, 55(2), 277–295. https://doi.org/10.1111/j.1475-4754.2012. 00682.x
- Beaumont, J., Gledhill, A., & Montgomery, J. (2014). Isotope analysis of incremental human dentine: Towards higher temporal resolution. Bulletin of the International Association for Palaeodontology, 8(2), 212–223.
- Beaumont, J., & Montgomery, J. (2016). The great Irish famine: Identifying starvation in the tissues of victims using stable isotope analysis of bone and incremental dentine collagen. *PLoS One*, 11(8), e0160065. https:// doi.org/10.1371/journal.pone.0160065
- Beaumont, J., Montgomery, J., Buckberry, J., & Jay, M. (2015). Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. *American Journal of Physical Anthropology*, 157(3), 441–457. https://doi.org/10.1002/ajpa.22736
- Boddington, A. (1996). Raunds Furnells. The Anglo-Saxon church and churchyard. London, UK: English Heritage.
- Bose, A. (2018). Let us talk about stunting. Journal of Tropical Pediatrics, 104, 174–175.
- Brown, T. A., Nelson, D. E., Vogel, J. S., & Southon, J. R. (1988). Improved collagen extraction by modified Longin method. *Radiocarbon*, 30, 171–177.
- Buikstra, J. E., & Ubelaker, D. H. (1994). Standards for data collection from human remains (Vol. 44). Fayetteville, AR: Arkansas Archaeological Survey.
- Burt, N. M. (2013). Stable isotope ratio analysis of breastfeeding and weaning practices of children from medieval Fishergate house York, UK. American Journal of Physical Anthropology, 152(3), 407–416. https://doi.org/10.1002/ajpa.22370
- Burt, N. M. (2015). Individual dietary patterns during childhood: An archaeological application of a stable isotope microsampling method for tooth dentin. *Journal of Archaeological Science*, 53, 277–290. https://doi. org/10.1016/j.jas.2014.10.019
- Butte, N. F., Hopkinson, J. M., Wong, W. W., Smith, E. O. B., & Ellis, K. J. (2000). Body composition during the first 2 years of life: An updated reference. *Pediatric Research*, 47, 578–585.
- Cameron, N. (2012). The Curve of Human Growth. In N. Cameron & B. Bogin (Eds.) Human Growth and Development (2nd ed.) London: Academic Press.

- いといとととととととととととととととととととととととととととととととと
- Cole, T. J., Freeman, J. V., & Preece, M. A. (1998). British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. *Statistical Medicine*, 17(4), 407–429.

Craig, E. (2005). An osteological and palaeopathological assessment of stress indicators and social status at Raunds Furnells, Northamptonshire. (unpublished MSc dissertation), University of Bradford, Bradford.

- Craig, E. F., & Buckberry, J. L. (2010). Investigating social status using evidence of biological status: A case study from Raunds Furnells. In J. L. Buckberry & A. K. Cherryson (Eds.), *Burial in later Anglo-Saxon England*, *c.*650–1,100 AD (pp. 128–142). Oxford, UK: Oxbow.
- de Luca, A., Boisseau, N., Tea, I., Louvet, I., Robins, R. J., Forhan, A., ... Hankard, R. (2012). δ15N and δ13C in hair from newborn infants and their mothers: A cohort study. *Pediatric Research*, *7*1, 598–604.
- DeNiro, M. (1987). Stable isotopy and archaeology. American Scientist, 75, 182–191.
- D'Ortenzio, L., Brickley, M., Schwarcz, H. P. & Prowse, T. (2005). You are not what you eat during physiological stress: isotopic evaluation of human hair. American Journal of Physical Anthropology, 157, 374–388.
- DeWitte, S., & Stojanowski, C. (2015). The osteological paradox 20 years later: Past perspectives, Future Directions. *Journal of Archaeological Research*, 23, 1–54.
- Elamin, F., & Liversidge, H. M. (2013). Malnutrition has no effect on the timing of human tooth formation. *PLoS One*, *8*(8), e72274.
- Floud, R., Wachter, K., & Gregory, A. (1990). *Height, health and history*. Cambridge, UK: Cambridge University Press.
- Fogel, M., Tuross, N., & Owsley, D. (1989). Nitrogen isotope tracers of human lactation in modern and archaeological populations. *Carnegie Institite of Washington Yearbook*, 88, 111–117.
- Fuller, B. T., Fuller, J. L., Sage, N. E., Harris, D. A., O'Connell, T. C. & Hedges, R. E. M. (2005). Nitrogen balance and δ15N: why you're not what you eat during nutritional stress. *Rapid Communications in Mass Spectrometry*, 19(18), 2497–2506.
- Fuller, B. T., Fuller, J. L., Harris, D. A., & Hedges, R. E. M. (2006). Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. *American Journal of Physical Anthropology*, 129(2), 279–293. https://doi.org/10.1002/ajpa.20249
- Fuller, B. T., Richards, M., & Mays, S. A. (2003). Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. *Journal of Archaeological Science*, 30, 1673–1684.
- Gindhart, P. S. (1973). Growth standards for the tibia and radius in children ages one month through eighteen years. *American Journal of Physical Anthropology*, *39*(1), 41–48.
- Hadley, D. M., & Buckberry, J. L. (2005). Caring for the dead in late Anglo-Saxon England. In F. Tinti (Ed.), *Pastoral care in late Anglo-Saxon England* (pp. 121–147). Woodbridge, ON: Boydell.
- Haydock, H., Clarke, L., Craig-Atkins, E., Howcroft, R., & Buckberry, J. (2013). Weaning at Anglo-Saxon Raunds: Implications for changing breastfeeding practice in Britain over two Millenia. *American Journal of Physical Anthropology*, 151, 604–612.
- ുളം Bennnessen Bennessen Ben
- Hoppa, R. D. (1992). Evaluating human skeletal growth: An Anglo-Saxon example. International Journal of Osteoarchaeology, 2(4), 275–288. https://doi.org/10.1002/oa.1390020403
- Howcroft, R. (2008). The interaction between diet, disease and stable isotopes: a study of bone and teeth from the Anglo-Saxon cemetery at Raunds Furnells. (Unpublished MSc dissertation), University of Bradford, Bradford, UK.
- Howcroft, R., Eriksson, G., & Lidén, K. (2012). Conformity in diversity? Isotopic investigations of infant feeding practices in two iron age

populations from southern Öland, Sweden. American Journal of Physical Anthropology, 149(2), 217–230.

- Jantz, R. L., & Owsley, D. W. (1984). Long bone growth among Arikara skeletalmpopulations. American Journal of Physical Anthropology, 63, 13–20.
- Jay, M. (2005). Stable isotope evidence for British Iron Age diet: Inter- and intra-site variation in carbon and nitrogen from bone collagen at Wetwang in East Yorkshire and sites in East Lothian, Hampshire and Cornwall. (PhD thesis). University of Bradford, Bradford.
- Jay, M., Fuller, B. T., Richards, M. P., Knüsel, C. J., & King, S. S. (2008). Iron age breastfeeding practices in Britain: Isotopic evidence from Wetwang slack, East Yorkshire. *American Journal of Physical Anthropology*, 136, 327–337.
- Katzenberg, M. A., & Lovell, N. C. (1999). Stable isotope variation in pathological bone. International Journal of Osteoarchaeology, 9, 316–324.
- King, C. L., Millard, A. R., Gröcke, D. R., Standen, V. G., Arriaza, B. T., & Halcrow, S. E. (2018). A comparison of using bulk and incremental isotopic analyses to establish weaning practices in the past. STAR: Science & Technology of Archaeological Research, 3, 126–134. https://doi. org/10.1080/20548923.2018.1443548
- Lampl, M. (2012). Saltation and stasis. In N. Cameron & B. Bogin (Eds.), Human growth and development (2nd ed.). London, UK: Academic Press.
- Larsen, C. S. (2015). Bioarchaeology, interpreting behavior from the human skeleton in (2nd ed.). Cambridge: Cambridge University Press.
- Lehn, C., Rossmann, A., & Graw, M. (2015). Provenancing of unidentified corpses by stable isotope techniques- presentation of case studies. *Science & Justice*, 55(1), 72–88. https://doi.org/10.1016/j.scijus.2014. 10.006
- Lejarraga, H. (2012). Growth in infancy and childhood: A pediatric approach. In N. Cameron & B. Bogin (Eds.), *Human growth and development* (2nd ed.). London, UK: Academic Press.
- Lewis, M. (2002). Impact of industrialization: Comparative study of child health in four sites from medieval and postmedieval England (A.D. 850–1859). American Journal of Physical Anthropology, 119, 211–223.
- Lewis, M. E. (2007). The bioarchaeology of children: Perspectives from biological and forensic anthropology. Cambridge, UK: Cambridge University Press.
- Lightfoot, E., O'Connell, T. C., Stevens, R. E., Hamilton, J., Hey, G., & Hedges, R. (2009). An investigation into diet at the site of Yarnton, Oxfordshire, using stable carbon and nitrogen isotopes. Oxford Journal of Archaeology, 28, 301–322.
- Maresh, M. (1955). Liner growth of the long-bones of the extremities from infancy through adolescence. American Journal of Diseases of Children, 89(6), 725–742.
- Mays, S., Brickley, M., Ives, R. (2008). Growth in an English population from the Industrial Revolution. American Journal of Physical Anthropology, 136(1), 85–92.
- Mays, S. (1999). Linear and appositional long bone growth in earlier human populations: A case study from mediaeval England. In R. D. Hoppa & C. M. Fitzgerald (Eds.), *Human growth in the past: Studies from bones and teeth* (pp. 290–312). Cambridge, UK: Cambridge University Press.
- Mays, S. (2016). Estimation of stature in archaeological human skeletal remains from Britain. American Journal of Physical Anthropology, 161(4), 646–655. https://doi.org/10.1002/ajpa.23068
- Mays, S., & Beavan, N. (2012). An investigation of diet in early Anglo-Saxon England using carbon and nitrogen stable isotope analysis of human bone collagen. *Journal of Archaeological Science*, 39(4), 867–874.
- Millard, A. R. (2000). A model for the effect of weaning on nitrogen isotope ratios in humans. In G. A. Goodfriend, M. J. Collins, M. Fogel, S. A. Macko, & J. F. Wehmiller (Eds.), *Perspectives in amino acid and protein geochemistry*. Oxford, UK: Oxford University Press.
- Montgomery, J., Beaumont, J., Jay, M., Keefe, K., Gledhill, A. R., Cook, G. T., ... Melton, N. D. (2013). Strategic and sporadic marine consumption at the onset of the Neolithic: Increasing temporal resolution in the isotope evidence. *Antiquity*, 87(338), 1060–1072.

ѕ Angeles, Ang

WILEY

- Müldner, G., Chenery, C., & Eckardt, H. (2011). The "headless romans": Multi-isotope investigations of an unusual burial ground from roman Britain. Journal of Archaeological Science, 38(2), 280–290.
- Neuberger, F. M., Jopp, E., Graw, M., Püschel, K., & Grupe, G. (2013). Signs of malnutrition and starvation: Reconstruction of nutritional life histories by serial isotopic analyses of hair. *Forensic Science International*, 226(1-3), 22–32. https://doi.org/10.1016/j.forsciint.2012.10.037
- Pinhasi, R., Teschler-Nicola, M., Knaus, A., & Shaw, P. (2005). Cross-population analysis of the growth of long bones and the os coxae of three early medieval Austrian populations. *American Journal of Human Biology*, 17(4), 470–488.
- Powell, F. (1996). The human remains. In A. Boddington (Ed.), Raunds Furnells: The Anglo-Saxon church and churchyard. London, UK: English Heritage.
- Privat, K., O'Connell, T. C., & Richards, M. P. (2002). Stable isotope analysis of human and faunal remains from the Anglo-Saxon cemetery at Berinsfield, Oxfordshire: Dietary and social implications. *Journal of Archaeological Science*, 29, 779–790.
- Reitsema, L. J. (2013). Beyond diet reconstruction: Stable isotope applications to human physiology, health, and nutrition. American Journal of Human Biology, 25(4), 445–456. https://doi.org/10.1002/ajhb.22398
- Ribot, I., & Roberts, C. (1996). A study of non-specific stress indicators and skeletal growth in two mediaeval subadult populations. *Journal of Archaeological Science*, 23(1), 67–79. https://doi.org/10.1006/jasc. 1996.0006
- Richards, M. P., Mays, S., & Fuller, B. T. (2002). Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the medieval Wharram Percy site, Yorkshire, UK. American Journal of Physical Anthropology, 119(3), 205–210. https://doi.org/10.1002/ajpa.10124
- Sandberg, P. A., Sponheimer, M., Lee-Thorp, J., & Van Gerven, D. (2014). Intra-tooth stable isotope analysis of dentine: A StepToward addressing selective mortality in the reconstruction of life history in the archaeological record. American Journal of Physical Anthropology, 155, 281–293.
- Saunders, S. R., & Hoppa, R. D. (1993). Growth deficit in survivors and non-survivors: Biological mortality bias in subadult skeletal samples. *American Journal of Physical Anthropology*, 36(S17), 127–151. https:// doi.org/10.1002/ajpa.1330360608
- Scheuer, L., & Black, S. M. (2000). Developmental juvenile osteology. San Diego, CA: Academic Press.
- Sutphen, J. L. (1985). Growth as a measure of nutritional stress. Journal of Pediatric Gastroenterology and Nutrition, 4, 169–181.
- Tanner, J. M. (1989). Foetus into man: Physical growth from conception to maturity. Ware, UK: Castlemead Publications.
- Tsutaya, T., & Yoneda, M. (2015). Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: A review. American Journal of Physical Anthropology, 156, 2–21.
- WHO. (2013). Childhood stunting: Context, causes and consequences. WHO Conceptual Framework. Geneva, Switzerland: WHO.
- Wood, J. W., Milner, G. R., Harpending, H. C., Weiss, K. M., Cohen, M. N., & Eisenberg, L. E. (1992). The osteological paradox: Problems of inferring prehistoric health from skeletal samples [and comments and reply]. *Current Anthropology*, *33*(4), 343–370.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Beaumont J, Atkins E-C, Buckberry J, et al. Comparing apples and oranges: Why infant bone collagen may not reflect dietary intake in the same way as dentine collagen. *Am J Phys Anthropol.* 2018;1–17. <u>https://doi.org/10.</u> <u>1002/ajpa.23682</u>

American Journal of PHYSICAI ANTHROPOLOGI